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Abstract The Hengill geothermal field, located in southwest Iceland, is host to the Hellisheiði power plant,
with its 40+ production wells and 17 reinjection wells. Located in a tectonically active area, the field
experiences both natural and induced seismicity linked to the power plant operations. To better manage the risk
posed by this seismicity, the development of robust and informative forecasting models is paramount. In this
study, we compare the forecasting performance of a model developed for fluid‐induced seismicity (the
Seismogenic Index model) and a class of well‐established statistical models (Epidemic‐Type Aftershock
Sequence). The pseudo‐prospective experiment is set up with 14 months of initial calibration and daily forecasts
for a year. In the timeframe of this experiment, a dense broadband network was in place in Hengill, allowing us
to rely on a high quality relocated seismic catalog. The seismicity in the geothermal field is characterized by four
main clusters, associated with the two reinjection areas, one production area, and an area with surface
geothermal manifestations but where no operations are taking place. We show that the models are generally well
suited to forecast induced seismicity, despite some limitations, and that a hybrid ETAS model accounting for
fluid forcing has some potential in complex regions with natural and fluid‐induced seismicity.

Plain Language Summary In the southwest of Iceland, the Hengill volcanic region is the seat of a
geothermal field exploited with two power plants. The power plants provide district heating and electricity to the
capital region. The area continuously experiences small to moderate earthquakes, associated to the volcanic
nature of the region and to the power plant operations (injection and withdrawal of fluids from the underground).
To better manage the risk posed by these earthquakes, we use statistics‐based computer simulations to forecast
the rate of earthquakes during a year‐long experiment. The simulations are trained on 14 months of data. One of
the models (the Seismogenic Index) is designed to relate rate of earthquakes to the volumes of fluids injected
and withdrawn; while the other relies on statistical characteristics of earthquake sequences. We show that these
computer simulations are well suited to forecast earthquake rates in the Hengill geothermal field, even though
they have their respective limitations. The combination of the statistical seismicity simulations with a term
accounting for the volumes does show promising results in an area with complex earthquake sequences.

1. Introduction
Iceland's capital region gets most of its district heating and a third of its electricity from the exploitation of
neighboring geothermal plants (Gunnlaugsson & Ívarsson, 2010). Located 30 km east of Reykjavik, the Hengill
field hosts two major power plants supplying the capital region: Hellisheiði and Nesjavellir, with installed ca-
pacities of 303 MWe plus 133 MWth and 120 MWe plus 150 MWth respectively (Hersir et al., 2009). Nesjavellir
was commissioned in 1990 while Hellisheiði started production in 2006, with the subfield of Hverahlíð beginning
full scale production in late 2017.

Iceland is a seismically active country, especially along the mid‐Atlantic ridge that crosses through the island
(Jakobsdóttir, 2008). On top of this natural seismicity, the exploitation of deep geothermal energy can cause
induced seismicity (Grigoli et al., 2017). In the Hengill field, numerous episodes of seismicity have been recorded
since the early 1990s with the start of instrumental catalogs in southwest Iceland (SIL network, Icelandic Met
Office). Both volcano‐tectonic and induced sequences illuminating the field have been mapped to shallow depth,
and the discrimination between natural and induced seismicity is particularly difficult in this area.

Although relatively isolated and with a low building density, the area around the Hengill field has seen several
large events in the last decades, including two likely induced events of magnitude around 4 in October 2011. The
operators of the geothermal plants thus need tools to assess and mitigate the seismic risk posed by their injection
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and production operations. In this study, we use probabilistic models to forecast seismicity happening in the
Hellisheiði field between late 2018 and early 2021.

Statistical models have shown some encouraging results to model induced seismicity (Király‐Proag et al., 2016;
Mancini et al., 2021; Verdon & Budge, 2018), although these models do not account for coupled processes in the
subsurface. We use two different classes of statistical models developed for very different use cases: Seismogenic
Index, developed for injection‐induced seismicity; and Epidemic‐Type Aftershock Sequence (ETAS) models that
are widely used for natural seismicity modeling. The Seismogenic Index is a simple yet robust model that relies on
a linear relationship between volume rate and seismicity rate, and has proven its reliability in numerous induced
seismicity sequences (Mignan et al., 2017, 2021; Shapiro et al., 2010). Recent work showed that its parameters
can be updated in near real time during stimulations (Broccardo et al., 2017, 2019; Mignan et al., 2019). The
Epidemic‐Type Aftershock Sequence model relies on several empirical observations, from the Gutenberg‐Richter
power law, to Omori's law for aftershock decay. ETAS models are at the forefront of operational earthquake
forecasting (Marzocchi et al., 2014; Nandan, Kamer, et al., 2021).

We try to answer a few questions: How do Seismogenic Index‐type models (tailored to induced seismicity)
compare to ETAS based models (adapted from natural to mixed seismicity with fluid forcing term)? How do these
models perform in forecasting the seismicity, retrospectively? What can these models tell us about the seismicity
in the Hengill geothermal field?

2. Geological Context
The Hengill geothermal field is located in southwest Iceland, 30 km east of Reykjavik. The field is nested between
three volcanoes: Hengill to the north, Hrómundartindur to the north‐east, and Grænsdalur to the east. Mount
Hengill was last active around 2000 years ago, while Hrómundartindur was last active circa 10,000 years ago, and
Grænsdalur has been extinct for 300,000 years (Foulger & Toomey, 1989; Jousset et al., 2011; Sánchez‐Pastor
et al., 2021). The area forms the junction of three tectonic systems: The Reykjanes Peninsula oblique rifting
system (RP), the South Iceland Seismic Zone (SISZ) and the West Volcanic Zone (WVZ) (Tomasdóttir, 2018;
Figure 1 lower left panel).

Located to the south of Mount Hengill, the Hellisheiði subfield is characterized by a water dominated fractured
system, comprising basaltic lava layers, hyaloclastites series and dyke intrusions (Franzson et al., 2005;
Snaebjörnsdóttir et al., 2018), with and average porosity of 10% (Gunnarsson et al., 2011). Only the southern‐
most area of Hverahlíð presents a different composition with mostly lava series. The formation temperature
averages between 220 and 250°C at 1000 m b.s.l. (Gunnarsson, 2013). The produced fluid is a water‐steam mix
ranging in temperature between 240 and 320°C.

The area is characterized by the Hengill fissure swarm, which strikes 30°N forming a graben structure around
40 km in length (Saemundsson, 1992). Extensional structures (normal faults) and eruptive fissures are a common
occurrence (Steigerwald et al., 2020), as well as strike‐slip faults oriented N‐S associated with the SISZ.

The field has seen a major volcanic uplift event between 1994 and 1999, with up to 8 cm of inflation, close to
100,000 earthquakes recorded with a largest magnitude of ML 5.5 (Blanck et al., 2021; Jakobsdóttir, 2008).
Two earthquakes of magnitude 6 have been recorded in 2008 in the eastern part of the field, reactivating strike‐
slip faults (Decriem et al., 2010). Following the late 1990s uplift event, subsidence has been observed since the
mid 2000s (Ducrocq et al., 2021), coinciding roughly with the commission of the Hellisheiði power plant in
2006.

2.1. Areas of Interest

The Hengill geothermal field is host to two large power plants: Nesjavellir in the north, and Hellisheiði in the
south (Figure 1). In this study, we only focus on the southern part of the field, which comprises of various
production areas as well as two deep reinjection areas. We selected four areas of seismological interest, based
on the spatial clustering in the COSEISMIQ catalog. These areas are highlighted by the colored boxes in
Figure 2.
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2.1.1. Production Areas

The Hengill field produces a water‐steam mixture at an average rate of 38Mton/year (for the 2012–2015 period,
Juncu et al. (2017)). The production occurs in 40+ wells located in two distinct areas: The central Hellisheiði
field, and Hverahlíð, a sub‐field to the south.

Hellisheiði: The main production area of the Hellisheiði field has not been associated with much seismicity since
the end of the volcanic event in 1999. The drilling of the production wells since 2001 in the area did not trigger
seismicity (except for well HE‐08). However, since 2009 and the end of drilling, there has been sustained levels of
seismicity, with some seismic swarms happening intermittently (Hjörleifsdóttir et al., 2021). The area is however
rather quiet during our period of interest and is thus not looked at in detail in this study.

Hverahlíð: Hverahlíð is located in the south of the Hengill region and is considered a subsystem of Hellisheiði. It
hosts the most powerful wells of the Hengill field and is associated with a shallow (2–3 km depth) low velocity
anomaly (Sánchez‐Pastor et al., 2021). The area is also characterized by a relative abundance of strike‐slip faults
linked to the SISZ, making the area likely even more permeable than the rest of the field (Franzson et al., 2010).
The drilling of the production wells in Hverahlíð was not associated with seismicity except for well HE‐21 in
2006. The production in the area started in fall 2017, coinciding with an increase in the seismicity which remains
elevated as the production continues (Hjörleifsdóttir et al., 2021).

2.1.2. Reinjection Areas

The reinjection of spent fluids in a geothermal field is mandated for multiple purposes: To sustain reservoir
pressures, avoid subsidence and reservoir compaction, enhance the natural recharge of the system, improve
thermal extractions along flow‐paths, and comply with environmental regulations (Axelsson, 2012). In Hell-
isheiði, the reinjection occur mostly in two clusters of wells (Húsmúli and Gráuhnúkar) with a few other rein-
jection wells scattered within the production areas.

Figure 1. Location of the Hengill geothermal field in southwest Iceland (lower left panel) and distribution of seismicity in the
Hengill geothermal field from 01.12.2018 to 31.01.2021, COSEISMIQ high quality hypo‐DD relocated catalog (Grigoli
et al., 2022). Dot size is proportional to the magnitude, color coded by time of occurrence. The dashed rectangles in the main
panel and lower left panel show the active Hellisheiði geothermal area in which the models are evaluated.
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Gráuhnúkar: Gráuhnúkar is the first dedicated reinjection area of the
Hellisheiði field, and is located in the southwest of the region. The six
injection wells were commissioned between 2006 and 2008, and are
continuously used for reinjection purposes since then (Hardarson
et al., 2010). The formation temperature is much higher than expected with
temperatures reaching up to around 300°C. The start of reinjection in
Gráuhnúkar did not lead to an alarming increase in the seismicity rate,
which remained low until the injection rate was increased in mid‐2011.
Since 2011, the seismicity has been low to moderate and seems to correlate
with the injection rates and to take off when the 300 L/s mark is reached
(Flóvenz et al., 2015; Ritz et al., 2021).

Húsmúli: The drilling of the eight wells in Húsmúli started in 2007 and
continued until mid‐2011. The reinjection started systematically in five of the
wells in September 2011 (although some injection had been done in one of the
wells since 2009 (Gunnarsson et al., 2015; Hardarson et al., 2010)). Seis-
micity started during the drilling operations, linked to repeated circulation
losses, and remained very high during the first nine months of reinjection until
the injection rates were reduced (Ágústsson et al., 2015; Gunnarsson, 2013;
Hardarson et al., 2010; Kristjansdottir et al., 2021; Ritz et al., 2021). During
the first year of reinjection, a 2 cm uplift was observed in Húsmúli (Juncu
et al., 2018). A shallow (∼3 km) deflating source has been observed in the late
2010s, potentially linked to the localized fluid extraction and circulation
(Ducrocq et al., 2021).

2.1.3. Ölkelduháls Area

Ölkelduháls is located to the east of our region of interest. It is characterized by surface geothermal manifestations
like hot springs and fumaroles probably linked to the residual heat of Hrómundartindur volcano. A high velocity
anomaly at depths 2–4 km has been identified (Jousset et al., 2010). In 1995, an exploratory well was drilled in the
area, and two more have been drilled since but are not active. Ölkelduháls is very close to the center of the late
1990s volcanic uplift (estimated between 5 and 6 km depth), experienced subsidence between 2006 and 2017 and
was at the center of the an inflating source mapped in 2017–2018 with up to 12 mm vertical displacement
(Ducrocq et al., 2021). These deformation cycles are not well understood but have been theorized to be the results
of either irregular magmatic intrusions or hydrothermal fluid migrations (or a combination of both with different
layers seeing different fluids intrude or migrate). Ölkelduháls is the only region that is not highlighted because of
its suspected induced seismicity, but quite some seismicity is recorded in the area.

3. Data
3.1. Seismic Catalog

The seismic data was acquired as part of the COSEISMIQ project (http://www.coseismiq.ethz.ch/en/home/)
during which the Hengill region was instrumented with a small aperture seismic array between December 2018
and February 2021. Multiple catalogs were created with different quality thresholds and relocation techniques.
Here we use the high quality catalog with relative relocation (Grigoli et al., 2022). This catalog contains about
8,500 events distributed in a 35 × 30 km area centered around the Hellisheiði power plant (Figure 1). We use all
the events in the catalog to determine the statistical properties shown in Figure 3. The active area highlighted in
the main panel of Figure 1 corresponds to the limits of Figure 2.

The b‐value and magnitude of completeness of the catalog are estimated jointly using a method proposed in the
literature by Clauset et al. (2009) andMizrahi et al. (2021a). We assume the magnitude of completeness (Mc) to be
constant both in time and space in the area of interest and test different values of Mc, calculating for eachMc the
corresponding b using the maximum likelihood approach (Marzocchi & Sandri, 2003). We then check whether
the observed cumulative magnitude distribution function is plausible to be a realization of the fitted Gutenberg‐
Richter (GR) law as follows. The cumulative distribution function (CDF) corresponding to the fitted discretized
power law is compared to the observed cumulative distribution function using the Kolmogorov‐Smirnov distance

Figure 2. Distribution of injection and production wellheads in the active
geothermal area, as well as recorded seismicity between December 2018 and
January 2021. The regions highlighted by boxes are areas of specific
seismological interest. The grid lines show the space discretization for the
forecasts. The direction of SHmax indicated in the top left corner is based on
borehole measurements in Húsmúli (Batir et al., 2012).
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(KS‐distance). The probability pMc
of observing a KS‐distance of at leastDMc

from a sample randomly drawn from
a discretized GR power law is estimated through the simulation of 10,000 of such random draws. pMc

is defined as
the fraction of simulated samples for which the KS‐distance is at least DMc

. The smallest Mc for which this
probability is greater than or equal to 0.1 is considered to be the magnitude of completeness of the catalog. From
this analysis we conclude that the magnitude of completeness of the catalog is 0.3 (Figure 3a), and that the b‐value
is equal to 0.93 ± 0.01 (Figure 3b).

3.2. Hydraulic Data

The Hellisheiði geothermal field counts 17 active reinjection wells and around 45 active production wells at all
times (Figure 2). These wells are directional wells for the most part, but we only have access to the wellhead
coordinates for the production wells, which we used as proxy for the feedzone locations.

The Hengill field has been in continuous operation since 2006, and with more than a decade of continuous
circulation, one can assume that the volume of the reservoir is at its maximum extent by the start of the
COSEISMIQ project. For this reason, the injection and production rates per well obtained from the power plant
operator (Reykjavik Energy) are distributed in a symmetrical bi‐variate Gaussian distribution around the well‐
head to account for fluid migration in the subsurface with daily granularity. The covariance matrix of the

bivariate Gaussian is defined as Σ =
5 × 10− 5 0

0 5 × 10− 5
( ) (in degrees longitude/latitude). This value of 10− 5

chosen for the variance stems from a comparison of the extent of the reservoir using a regional TOUGH2 model
(Bjornsson et al., 2003; Gunnarsson et al., 2021), and has been slightly increased to account for the use of the
wellhead as a proxy for the feedzones of the know‐to‐be deviated wells. The produced and injected volumes are
summed up into a compound volume that we will use as input for the models taking in fluid volume or rate.

It is worth noting that this isotropic distribution of the volumes is only a coarse proxy and doesn't exactly match
with the areas of seismological interest (Figure 4). In particular, the volumes distributed in Gráuhnúkar are offset
to the north‐west compared to the seismic cluster. The wells in Gráuhnúkar actually strike southeast, and line up
pretty well with the seismicity cluster highlighted by the box in Figure 4 (Hjörleifsdóttir et al., 2021; Ritz
et al., 2021). More physical approaches to the distribution of fluids are rendered complicated by the two‐phase
nature of fluids in the reservoir. Indeed, one cannot simply rely on the hydraulic diffusivity as the high portion
of gas‐phase would result in a highly unrealistic distribution of the fluids.

4. Models
Two families of models are implemented: a Seismogenic Index type and a class of Epidemic‐Type Aftershock
Sequence models.

Figure 3. Statistical analysis of the catalog. (a) Joint estimation of the magnitude of completeness (vertical line) and b‐value
(blue errorbars) for different magnitudes; K‐S distance (purple) and pMc (yellow). (b) Frequency magnitude distribution of
the catalog. The blue dots show the non‐cumulative FMD, the vertical line denotes the magnitude of completeness, and the
pink lines show the estimated b‐value and its 1σ error.

Journal of Geophysical Research: Solid Earth 10.1029/2023JB028402

RITZ ET AL. 5 of 22

 21699356, 2024, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JB

028402 by E
T

H
 Z

urich, W
iley O

nline L
ibrary on [06/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4.1. SI—Seismogenic Index Model

This model is based on a purely empirical relationship between the injected/produced volume and the seismicity,
and contains a set of parameters describing the geological and seismological characteristics of the targeted site.
Various versions exist in the literature after the pioneering work of S. Shapiro's group (Shapiro, 2018). Other
forms account, for example, for the injection rate rather than the injected volume, as well as for an exponential
decay of the seismicity after shut‐in (Broccardo et al., 2017; Mignan et al., 2017). The proposed model follows the
approach by Broccardo et al. (2017). The expected number of events Nexpected follow the relationship:

Nexpected,m≥Mc
= Vinj∕prod10a fb − bMc (1)

where Vinj/prod is the compound (i.e., injected and produced) volume, afb the activation feedback (in m− 3), and b
the b‐value of the Gutenberg‐Richter power law. This underground activation feedback afb is the a‐value of the
Gutenberg‐Richter power law normalized by the volume such that afb = a − log10(V), and is also known as the
seismogenic index in the poroelastic context (often noted Σ; Shapiro et al. (2010); Dinske and Shapiro (2013)).
This parameter has also been interpreted as resulting from geometric operations on a static stress field produced
by a change in the volume in the underground (Mignan, 2016). For simplicity, we refer to the model as the
’Seismogenic Index’ and the productivity parameter afb as the activation feedback, and do not assign any specific
physical meaning beyond that of fluid‐earthquake productivity factor.

Equation 1 can be translated into an equation to determine the seismicity rate for active phases as:

λ t,m>Mc( ) = V̇ (t) ⋅ 10a fb − bMc (2)

In this model, the linear relationship between V̇ (t) and λ(t,m>Mc) derives from the linear relationship between
injection rate and overpressure, and neglects potential temporal changes in injectivity (Mignan, 2016). Note that
this equation has been extensively tested on injection‐induced sequences, but not on the production phase
(Broccardo et al., 2019; Mignan et al., 2017), although the classical Seismogenic Index approach has been
extended to production cases (Shapiro, 2018).

We do not account for post‐injection phases and the associated seismicity decay—as modeled by Mignan
et al. (2017)—as the Hengill field is in constant operation, both for production and injection.

4.1.1. Parameter Calibration

For the estimation of the parameters of the Seismogenic Index model,Mc is taken from the catalog, while afb and
b are optimized for each cell by minimizing the log‐likelihood function (Equation 3). The Maximum Likelihood
Estimate is modified from Broccardo et al. (2017) to only account for active injection and/or production phases.

lnL(D|θ) =
N (afb‐bMc)

log(e)
+∑

N

n=1
ln(V̇ (tn)) − V (t) · 10a fb − bMc

+ N · ln(b) + N · ln(ln(10)) − b · ln(10) · ∑
N

n=1
mn − N · ln(10 − bMc − 10 − bMmax )

(3)

Figure 4. (a) Distribution of cumulative compound volumes at the end of the experiment. (b) Temporal evolution of the
compound volume in the areas of interest.
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This data‐driven cell by cell approach allows the model to assume that the underground feedback parameter afb

varies spatially within the area of interest. For cells with less than 50 events above completeness, the b‐value of
the catalog (b = 0.93) gets assigned, and the underground feedback parameter afb gets calibrated using the
minimization of the log‐likelihood function. The variability in afb and b is small from one cell to the next, but
significant between different subregions, which indicates different stressing and/or fluid‐phase conditions in the
field (see Figure S1.1 in Supporting Information S1 for maps of the optimized a fb and b parameters at the end of
the learning period; note the uniform b‐value in the central region denoting that less than 50 events are counted in
the cell at the end of the learning period).

Figure S1.2 in Supporting Information S1 gives an impression of the ability of the model to fit to the data by
showing the difference between the recorded and expected events during the learning period. The Seismogenic
Index model fits very well in the Húsmúli, Hellisheiði, and Hverahlíð regions, where there are both volumes
injected and/or produced and seismic events. The model is not able to fit anything in Ölkelduháls as there are no
injection or production activities. The fit in Gráuhnúkar is good in the eastern part where the volumes are present,
but unsatisfactory to the west where there are no volumes distributed.

In this current state, the Seismogenic Index model is probabilistic by nature and carries the assumption that
induced seismicity can be described as a Poissonian process. From the optimized parameters, we calculate the
mean rate of seismicity in the cell at this given time and extrapolate a Poissonian distribution from it to be able to
make a probabilistic comparison of the forecast to the recorded seismicity.

4.2. ETAS–Epidemic‐Type Aftershock Sequence Models

ETAS models (Ogata, 1988) view seismicity as a combination of background and triggered earthquakes.
Background earthquakes result from tectonic forces or anthropogenic factors such as fluid injection and/or
production. These background earthquakes can trigger a cohort of aftershocks which can then trigger their own
aftershocks and so forth. In its simplest form the ETAS model describes the conditional seismicity rate of
magnitude m events, λ t,x,y,m|Ht( ), at any location (x,y) and time t as

λ t,x,y,M|Ht( ) = μ + ∑
i:ti < t

g mi,t − ti,x − xi,y − yi( )[ ] ⋅ βe− β m− Mc( ) (4)

where β = ln(10) · b is the GR‐law exponent in base e, μ is the background intensity function, which may or may
not depend on space or time,Ht is the history of the process up to time t, and g(m,Δt,Δx,Δy) describes the rate of
aftershocks triggered by an event of magnitude m, at a time delay of Δt and a spatial distance (Δx, Δy) from the
triggering event. Here we use the specific kernel g defined as:

g(m,Δt,Δx,Δy) =
k0 ⋅ ea m− Mc( ) ⋅ e− Δt/τ

Δx2 + Δy2( ) + d ⋅ eγ m− Mc( )( )
1+ρ ⋅ (Δt + c)1+ω

, (5)

see Nandan, Kamer, et al. (2021) and Mizrahi et al. (2021b).

This kernel combines three components to describe the aftershock rate of an event of magnitude m at a temporal
and spatial distance of (Δt, Δx, Δy) from its origin. The productivity law which quantifies the number of events
directly triggered by an event of magnitudemi as k0ea mi − Mc( ), where a parameterizes the magnitude dependent part
of the aftershock productivity, and k0 parameterizes the magnitude independent part. The time‐based Omori‐Utsu
aftershock decay is given as e− Δt/τ

(Δt+c)1+ω , where c avoids a singularity at time 0 and has been brought in relation with

different phenomena ranging from short‐term aftershock incompleteness to physical mechanisms involved in
earthquake nucleation, 1 + ω quantifies how fast the aftershock rate decays with time, and τ determines the onset
of the exponential taper that allows negative ω values to be obtained. The spatial aftershock decay is described

through an isotropic power law, Δx2 + Δy2( ) + d ⋅ eγ m− Mc( )( )
− (1+ρ), where 1 + ρ describes how fast aftershock

rate decays with distance from the triggering event, and d ⋅ eγ m− Mc( ) describes a magnitude dependent distance at
which the aftershock rate decay starts. Note that it is implicitly assumed that the completeness magnitude Mc

coincides with the magnitude of the smallest event which is capable of triggering other events.
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4.2.1. Calibration of Parameters

To calibrate the parameters of the ETAS model, we apply the Expectation‐Maximization algorithm (Veen &
Schoenberg, 2008). In this iterative algorithm, one starts with a random initial guess for each of the parameters
that need to be calibrated. The expectation step and the maximization step are repeated, updating the current
estimation of the parameters, until the difference between the parameters of two iterations falls below a desired
threshold. In the expectation step, the probabilities pij that event ej was triggered by event ei, the probability pind

j

that event ej is independent, the expected number of background events n̂, and the expected number of directly
triggered aftershocks l̂i of each event ei, given the ETAS parameters of the current iteration, are estimated as

pij =
gij

μ +∑k:tk < tjgkj
, (6)

pind
j =

μ
μ +∑k:tk < tjgkj

, (7)

and

n̂ =∑
j
pind
j , (8)

l̂i =∑
j
pij. (9)

Here, gkj = g(mk, tj − tk, xj − xk, yj − yk) is the rate of aftershocks of event ek at the location and time of event ej.
With these definitions, the independence and triggering probabilities are proportional to the contribution of
background and aftershock triggering terms at any given time and location.

In the Maximization step, the ETAS parameters are optimized to maximize the complete data log‐likelihood, and
these optimized parameters are used in the next iteration of the Expectation step.

4.2.2. Issuing a Forecast Through Simulations

Once the ETAS parameters are calibrated based on the training catalog, a forecast is issued by simulating 100,000
possible continuations of this training catalog. This includes the simulation of aftershock cascades of the events in
the training catalog, and the simulation of background earthquakes which fall into the forecasting period plus their
cascades of aftershocks. A detailed description of the simulation algorithm is given in Mizrahi et al. (2021a).
Training as well as simulation are done for the full region of the catalog, although they are evaluated only in the
active geothermal area (Figure 1). This ensures that aftershock triggering which goes beyond the borders of the
relatively small active area is still captured by the model.

Based on the simulated catalogs, the likelihood p(k) of k events to occur in a spatial cell of interest during the
forecasting period is then given through the empirical distribution as

p(k) =

n(k)
100,000 + 1

if n(k) > 0

1
m0 ⋅ (100,000 + 1)

if n(k) = 0 and k ≤ 100

0 otherwise,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(10)

where n(k) is the number of simulations for which k events are observed, m0 is the number of values k between
zero and 100 for which n(k) = 0. To avoid zero probabilities for values of k that do not appear in the simulations,
that is, n(k) = 0, this definition of p(k) includes a water‐level probability for all k ≤ 100.

4.2.3. ETAS Variants

The four ETAS variants applied in this study differ only in their formulation of the background seismicity term.

Journal of Geophysical Research: Solid Earth 10.1029/2023JB028402
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4.2.3.1. ETAS‐0

In the most basic variant (standard ETAS), ETAS‐0, μ is considered constant in space and time during
parameter calibration. This means that the background term which determines independence and trig-
gering probabilities in Equations 6 and 7 is the same for all events, irrelevant of where and when they take
place.

For the simulation of catalog continuations, the background seismicity term is space‐dependent. While the
number of simulated background earthquakes during the forecasting period is simulated from the constant
parameter μ, their locations are simulated by randomly drawing locations of earthquakes in the training catalog,
weighted by their probability of being a background event, and adding a distortion drawn from a Gaussian
distribution with mean 0 and σ = 0.5 km.

4.2.3.2. Varying Background Rate (ETAS‐v)

The second ETAS variant considered in this study uses a space‐varying background term μ(x,y) during model
calibration and is designated afterward as ETAS‐v. In each iteration of the Expectation‐Maximization algorithm,
μ(x,y) is calculated as

μ(x,y) =
1
T
⋅∑

j
pind
j ⋅ k Δxj,Δyj( ), (11)

where k(Δxj, Δyj) is a Gaussian kernel with bandwidth σ = 0.5 km applied to the distance (Δxj, Δyj) of event ej to
the location (x,y), and T is the time length of the training catalog. This model corresponds to the flexible ETAS
model with free background described by Mizrahi et al. (2023).

4.2.3.3. ETAS With Fluid Forcing (ETAS‐f)

ETAS‐type models have been used in induced seismicity contexts (Bourne & Oates, 2017; Mena et al., 2013),
generally in regions with low natural background seismicity where the calibration could focus on induced
earthquakes only. However, fluid‐driven seismicity has distinct spatio‐temporal characteristics from tectonic‐
loading driven seismicity and requires its own parameters when we want to model complex areas with both
induced and natural seismicity.

For single‐well injections, Bachmann et al. (2011) introduced an external forcing on the background rate linearly
proportional to the injection rate, and found this model to perform better than the standard ETAS in a pseudo‐
forecasting experiment of the hydraulic stimulation in Basel (Switzerland). More recently, the same approach
has been applied to a hydraulic fracturing context with promising results (Mancini et al., 2021).

We here introduce an ETAS variant ETAS‐f with the background term

μ(x,y,t) = μtect + ι ⋅V(x,y,t), (12)

which, in addition to the tectonic background rate μtect, comprises a fluid background rate μ f luid = ι · V(x,y,t)
which is proportional to the compound volume (sum of produced and injected volumes) V(x,y,t). The inde-
pendence (or background) probability pindj defined in Equation 7 can be split into a tectonic and a fluid part

ptectj =
μtect

μ(x,y,t) +∑k:tk < tjgkj
, (13)

pfluid
j =

μfluid

μ(x,y,t) +∑k:tk < tjgkj
, (14)

and analogously the expected number of background events is the sum of the expected number of tectonically
triggered and fluid triggered background events, n̂tect and n̂fluid. The new parameter ι eventsm3[ ] can be calibrated in the
Maximization step of the Expectation‐Maximization algorithm as
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ι̂ =
n̂fluid

∭R,T V(x,y,t) dx dy dt
. (15)

When a forecast is issued for this ETAS‐f model, two types of background earthquakes are simulated, tectonic and
fluid‐induced ones. Both types of background events can trigger cascades of aftershocks (the aftershock trig-
gering parameters are the same for both tectonic and fluid‐induced events). The number of induced earthquakes
simulated in a given cell on a given day is determined by the compound volume of that cell on that day. Note that
this is based on the assumption that the planned compound volume for that day is already known at the time the
forecast is issued, which is a reasonable assumption for short enough forecasting horizons and in a geothermal
field with stable exploitation conditions like Hellisheiði. The locations of simulated induced earthquakes within a
cell are generated using a uniform spatial distribution inside the cell for which the volume is given.

This modification of the ETAS model can be applied to the standard ETAS version as well as the version with
spatially varying (tectonic) background seismicity. This yields a total of four variants of ETAS: ETAS‐0, ETAS‐
v, ETAS‐f, and ETAS‐fv.

Note that this formulation of ETAS with fluid forcing is based on several simplifying assumptions. No difference
is made between injected and produced volume, the effect of fluids on seismicity is assumed to be immediate and
only valid on the current forecasting horizon, induced seismicity is assumed to be proportional to compound
volume, etc. If this simple approach produces promising results, these assumptions can be revisited in future
studies and a more realistic formulation of the fluid‐induced term can be applied. In particular, production and
injection could be split into two terms to better account for the differences in physics behind the triggering of
induced events in the different settings.

4.3. Model Comparison Framework

Evaluating the performance of a model to reproduce or forecast induced seismicity is not an easy task, but is a
necessary step to the implementation of ensemble modeling with model‐specific weights (Király‐Proag
et al., 2018). Different classes of models have intrinsic assumptions that make it difficult to do direct comparison,
in particular in the statistical or stochastic expression embedded in the models. Guidelines have been proposed to
standardize the evaluation of models, in particular the “Induced Seismicity Testbench” (Király‐Proag
et al., 2016), and the guidelines developed by the Collaboratory for the Study of Earthquake Predictability (CSEP,
https://cseptesting.org/).

Each model provides a forecast consisting of a probability distribution of the number of earthquakes for each time
and spatial bin. To evaluate and rank model performance, we use a probabilistic score: The log‐likelihood, which
is the natural logarithm of the probability of the model matching the recorded number of events in the time and
space bin. The Seismogenic Index model doesn't yield a forecast in “non‐fluid” cells, so it is only evaluated in a
portion of the cells (colored cells in Figure S1.1 in Supporting Information S1). This practically means that a score
of “0” is assigned to cells without a forecast, thus allowing us to compare on the entire region even though not all
models yield a forecast for each cell. This approach could be criticized as it assumes what is effectively a perfect
forecast in cells where no forecast is produced, but the Seismogenic Index model is only designed to model fluid‐
induced seismicity and it would be unfair to penalize it in non‐fluid cells. For each time bin, the log‐likelihood is
summed up over the spatial cells to obtain the “score” of the model at this forecasting horizon. The log‐likelihood
is then accumulated over time into the cumulative spatial joint log‐likelihood to show the evolution of the
forecasting performance and compare models.

We use the Information Gain to measure the predictive performance of a model compared to that of a reference
model (Kagan & Knopoff, 1987). In this study, the standard version of ETAS is used as the reference model. The
Information Gain is calculated as the difference of the log‐likelihoods of the models, and is positive when the
model performs better than the reference model and vice‐versa.

ETAS models provide a full probability distribution of the expected event number per spatial cell as described in
Equation 10. In the case of the Seismogenic Index, we assume a Poissonian distribution with the forecast number
of event as the mean λ of the distribution.

Journal of Geophysical Research: Solid Earth 10.1029/2023JB028402
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4.4. Forecasting Framework

The pseudo‐prospective forecasting experiment runs between December 2018 and the end of January 2021, the
period being covered by the COSEISMIQ high‐quality relocated catalog. The first 14 months are used as a
learning period to train the models (1.12.20218–31.1.2020). We then perform daily forecasts for 366 days
(1.2.2020–31.1.2021). After each forecasting horizon, the day is added to the calibration data set (Figure 5).

The area of interest is centered around the production region of Hellisheiði and encompasses the reinjections
regions of Húsmúli and Gráuhnúkar, as well as the production sub‐field of Hverahlíð. We discretize the space in
0.005°latitude × 0.005°longitude spatial bins (rectangular cells measuring approximately 560 × 240 m; shown in
the background of Figure 2). The forecasts are issued for each spatial and temporal bins. Subsets of the forecast
are examined for the regions of Húsmúli, Gráuhnúkar, Hverahlíð, and Ölkelduháls (boundaries defined in
Figure 2).

5. Results and Discussion
5.1. General Performance of the Models

We evaluate the absolute and relative predictive performance of the models over a one year period. Figure 6
shows a comparison of the cumulative number of events recorded (dashed line) and forecasted by the different
models (color‐coded), for the active region (top panel) and for the subregions of special interest. The Seismogenic
Index model has a very linear trend, resulting from its low number of parameters, whereas ETASmodels are more
flexible and display variations in the modeled seismicity rate. Overall, ETAS‐0 and ETAS‐v show a closer fit to
the total number of events, even though the seismicity rate is overestimated between March and late October
2020. The ETAS models with fluid‐forcing and the Seismogenic Index have a better fit initially, but fall behind in
the second half of the forecasting experiment period. This discrepancy between ETAS‐0 and ETAS‐f models is a
consequence of the lower branching ratio η in the ETAS‐f versions, which means that less events are interpreted as
aftershock. This is a direct consequence of the doubling of the background terms (tectonic μtect and fluid μf luid)
that leads to more flexibility of the model to accommodate events as background (tectonic or fluid). Thus, even
though the background rate is high, fewer events are simulated because aftershocks are missing compared to the
non‐fluid versions.

Figure 7 shows the cumulative spatial log‐likelihood in time for each model for the active region. This metric
evaluates the consistency of the models with the observations, with a log‐likelihood closer to zero indicating a
better model performance. All models exhibit a somehow jagged behavior during periods of higher seismic in-
tensity, which is expected. The Seismogenic Index is quite competitive with the ETAS models until October
2020, when it plunges down and is unable to explain a sudden increase in seismicity, that the ETAS models
manage to accommodate. The cumulative number of events presented in Figure 7 only shows the events recorded
during the forecasting period, to account for all the recorded seismicity, and does not include the 1,093 events
above completeness recorded during the learning period.

In Figure 8, we compare the different ETAS variants and the Seismogenic Index to a reference model, by
visualizing their cumulative information gain over time with respect to the standard version ETAS‐0. It is worth

Figure 5. Schematic illustration of the pseudo‐prospective forecasting experiments.
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noting that the vertical scale of the figure is cut‐off at − 600, but that the Seismogenic Index's information gain
plunges all the way down to − 2900 by the end of the forecasting period. The Seismogenic Index performs quite
well in the beginning, outperforming all ETAS models. Its downfall comes in October 2020, as the first high‐
intensity period takes place with sudden high rates of seismicity that the model cannot accommodate. ETAS‐f
outperforms the standard ETAS model by the end of the forecasting experiment, showing that in a geothermal
area with active injection and production, accounting for the volumes does improve the forecasts. However, the
gain is limited for most of the study period until October 2020 which sees a shift in the baseline seismicity rate
with heightened activity in the reinjection area of Húsmúli. On the other hand, the varying background versions of
ETAS (ETAS‐v and ETAS‐fv) don't perform as well as the standard version of ETAS. Possibly, the formulation
of the varying background seismicity used here is not well‐suited to describe a complex field like the present one.
Giving too much flexibility to the background part of seismicity can make the model wrongly interpret local
phenomena or fluid‐induced seismicity as variations in background seismicity rate. In future studies, the band-
width σ determining the spatial smoothing in Equation 11 could be calibrated as a hyper‐parameter, or a different
type of smoothing could be tested to obtain better performance.

When comparing Figures 6–8, one might be puzzled as it appears that models getting the closest fit in terms of
total number of events are not ranked higher in the log‐likelihood evaluation. However, the model matching the
forecasted cumulative number of events the closest is not guaranteed to have the best performance. Indeed, by
estimating the log‐likelihood and accumulating it over time, we jointly evaluate the ability of a model to fit
changes in the seismicity rate. In Hverahlíð, the Seismogenic Index is closest to reality in terms of cumulative
forecasted number of events (Figure 6 bottom right panel), but is performing worse than all ETAS models
(Figure 7 bottom right panel), which is reflected as an increasingly more negative information gain (Figure 8

Figure 6. Comparison of the number of events recorded (dashed line) and forecast by the different models (colored lines). The
top panel shows the entire Hengill field, the subpanels show the subregions.
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bottom right panel). This is the result of ETAS models being better at reproducing temporal variations in the
seismicity rate.

5.2. How Do Models Perform in the Subregions of Interest?

We evaluate the models in four separate subregions of specific seismological interest by summing the log‐
likelihoods within the boundaries of each region. This evaluation for subregions is done from the outputs of
the entire field for each model that is, the models are not trained specifically on the subregions.

Ölkelduháls is not a region with active injection or production so the Seismogenic Index Model does not give any
forecast for the region (Figure 7 middle right panel). Seventy‐three events were recorded during the learning
period, and 69 events are recorded during the forecasting period. In this subregion, ETAS‐0 yields the best
performing forecast, closely followed by ETAS‐v (Figure 8 middle right panel). It not surprising that the versions
of ETAS‐f under‐perform in this subregion as there should be no influence of the fluids. This also further supports
the idea that the bad overall performance of ETAS‐fv is due to the model interpreting the influence of fluid
injection and/or production as variations in the background.

Hverahlíð sees a similar pattern, with ETAS‐0 remaining the most well‐suited model (Figure 7 bottom right
panel). The area is relatively seismically active with 224 events recorded during the learning period, and 282
events are recorded during the forecasting period. The poorer performance of ETAS‐f and ETAS‐fv models in the
subregion suggests that for production areas, the cumulative extracted volume is not a good proxy for the seis-
micity rate. Induced earthquakes in production areas (for oil and gas or geothermal energy) are often a response to
reservoir compaction caused by long‐term production. Hverahlíð has been in full operation since in late 2017, so
these long‐term effects are unlikely to be already visible. The area was also not associated with particular vertical
displacement in any geodetic data and InSAR between 2015 and 2018 by Ducrocq et al. (2021). In the future, we

Figure 7. Cumulative spatial joint log‐likelihood in the active region (top panel) and subregions.
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will investigate other metrics to account for fluid production, for example, including a proxy term for poroe-
lasticity and/or pore‐pressure instead of a coupling with produced volumes per day.

In the reinjection areas, the results are more contrasted. Gráuhnúkar only sees moderate seismicity at rather
smooth rates (Figure 6 bottom left panel); 99 events were recorded during the learning period, and 117 events are
recorded during the forecasting period. The evolution of the relative performance of the Seismogenic Index is
quite interesting, as it outperforms all models for the first half of the forecasting period, before taking a dive in
July 2020 when an increase in the seismicity rate in the region happens (Figure 8 bottom left panel). In the
Gráuhnúkar area, ETAS‐0 and ETAS‐v perform better than the versions with fluid forcing despite the injections
being significant with roughly 12,000 m3/day injected (Figure 4b). The seismicity is known to be associated with
the injections as the area was quiet beforehand (Flóvenz et al., 2015; Ritz et al., 2021). We would expect that
ETAS‐f picks up the injection‐induced characteristics, however, the injections have been sustained since 2006 at
very similar rates, which could explain how ETAS interprets the low‐level seismicity as background, as our
learning period doesn't cover pre‐injection periods.

Húsmúli on the other hand, is the main seat of seismicity in the whole region; 579 events were recorded during
the learning period, and 1,110 events are recorded during the forecasting period (Figure 6 middle left panel).
The reinjection in Húsmúli is mixed with production at the eastern border of the area, with compound volumes
varying between 30,000 and 40,000 m3/day (Figure 4b). The area is known for its reactivity to injection
changes (Gunnarsson et al., 2015; Ritz et al., 2021), which is confirmed in the models with ETAS‐f out-
performing all other models. The area also sees drastically varying rates of seismicity with three high‐intensity
events in October 2020, November 2020, and January 2021, when seismicity rates surpass 75 events per week.

Figure 8. Cumulative information gain of ETAS and Seismogenic Index models calculated relative to ETAS‐0 in the active
region (top panel) and subregions. The vertical scale is cut‐off at − 600, but the Seismogenic Index plunges all the way down
to − 2900 by the end of the forecasting period.
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In this later part of the forecasting period, all advanced ETAS models see a stark change in their predictive
capabilities and start performing better than ETAS‐0 (Figure 8 middle left panel). These periods of high seismic
intensity are the ones that see the Seismogenic Index's performance plummet (Figure 8 is cut‐off at − 600, but
by the end of the forecasting period, the Seismogenic Index's information gain accumulates down to − 3,600 in
the Húsmúli subregion).

The top panel of Figure 8 shows the Seismogenic Index as the best performing model for the first half of the
forecasting period. However, the only areas where this is highlighted in the subregions panels is Gráuhnúkar,
where the performance is marginally better than all the ETAS models. This means that outside of our areas of
interest (and in the cells where there is injections and/or production), the Seismogenic Index performs quite well
compared to the ETAS models.

5.3. Adaptability to Rapid Seismicity Rate Changes

We now focus on the Húsmúli reinjection area that sees semi‐periodic bursts of seismic activity which do not
seem to be linked to changes in the injection rate, temperature or well‐split (Figure 9a). The origin of these high‐
intensity periods of seismicity is unclear, they could be induced, linked to the volcanic activity of the region or to
the rift. In this section, we investigate how fast models are able to adapt to the new baseline seismicity during
these high‐intensity events.

5.3.1. ETAS Parameters Interpretation

The branching ratio η represents the share of events categorized as triggered aftershocks. Shifting from ETAS‐0 to
a varying background rate (ETAS‐v) leads to more events being classified as background, thus the lower
branching ratio (Figure 9c; Mizrahi et al. (2023)). Similarly, the ETAS‐f model allows for more events to be
classified into their two background categories (natural and fluid‐induced), leading to an even lower base value of
the branching ratio η. The effects of the free background and the additional fluid‐background term add up to make
ETAS‐fv the model with the lowest branching ratio of the class.

The tectonic background term μtect (given as number of events per km
2 per day in Figure 9) also shows this effect

of increasing classification into ’background’ with model complexity, with ETAS‐0 at the lowest global values,
ETAS‐f with a significant increase in its base value due to the added fluid‐background termwhich gives the model
more flexibility to interpret events as background earthquakes, and the ETAS models with varying background
(ETAS‐v and ETAS‐fv) at the highest base values of μtect (mean value on the active area, Figure 9b) because they
give the most flexibility to this term. If we look at the evolution of the background term in time, we notice a
general decrease as the learning period length increases. Mizrahi et al. (2021b) proposed that this downwards
trend denotes that longer learning periods allow models to reveal more long‐term earthquake interaction and
aftershock sequences, leading to more events being classified as “triggered” as the forecasting experiments
progress. This general trend of μtect is interrupted by bursts of seismic activity in the field, as highlighted by the
gray areas marking the “high‐intensity periods” in Húsmúli. All ETAS models see an increase in the background
rate to accommodate this new temporary baseline seismicity rate. The relaxation of μtect after the high‐intensity
periods is slow and seems to follow the general decreasing trend that we interpret as being due to the lengthening
of the learning period.

During the high‐intensity periods, the branching ratio for all models increases to accompany the increase in
background seismicity rate. However, this increase is only temporary for the ETAS versions without fluid‐forcing
and η quickly recovers to its pre‐high‐intensity‐period levels, whereas the ETAS‐f and ETAS‐fv models see a
much slower recovery of η with a permanent change in the parameter resulting from the high‐intensity period.
These shifts in μtect and η suggest that all ETAS models accommodate the high‐intensity periods by producing
more background events that are also produce more aftershocks.

For the ETAS with fluid forcing class, the fluid‐background term μf luid (also given as number of events per km
2

per day in Figure 9) combines the scaling factor ι (Equation 12) with cumulative compound volume. While ι
defines the seismicity induced by a unit volume, μf luid gives the rate of fluid induced events given the compound
volume in the forecasting period. ETAS‐fv shows higher base values of the fluid‐background term, mirroring the
higher values of μtect. The evolution of μf luid shows a non‐systematic behavior (Figure 9d). The first and third
high‐intensity periods show an increase in the productivity of fluid driven events, which is what we expect ETAS‐
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f and ETAS‐fv models to do in order to adapt to increasing seismicity rates in an area with active injection and/or
production. However, the second high‐intensity period shows a sharp drop of μf luid, maybe suggesting that ETAS‐
f models try to explain this change in the seismicity with tectonic events. When looking at the high‐intensity
periods on the map (Figure 9f), the first and third events cluster to the north where less fluids are distributed
while the second high‐intensity period clusters on the edge of the most heavy reinjection region, closer to the
injection wells. This might suggest that peripheral regions can be more sensitive to fluid during certain periods,
while the center of the area has so much fluid injected/extracted continuously that ETAS‐f models can't explain a
sudden increase of seismicity with a change of productivity of a unit of fluid, thus a drop in μf luid down to its base
value at the start of the second high‐intensity period.

In the Ölkelduháls area the split background terms and set‐up with the entire region used for training lead to the
background terms in the case of ETAS‐f being larger than for the standard ETAS‐0. This calibration on the entire
region also leads the triggering kernels to be different for ETAS‐0 and ETAS‐f, which drives the models to assign
events as “background,” “triggered” or “induced” differently. Thus, even in areas without fluids, ETAS‐f pro-
vides a different forecast than ETAS‐0. If the ETAS‐f model had been trained only in Ölkelduháls, ETAS‐0 and
ETAS‐f would yield the exact same forecast.

Figure 9. (a) Weekly number of events recorded in Húsmúli (moving average with 1 day increment; red) and injection rate in
the area (blue). (b–d) Evolution of the ETAS models parameters. (e) Seismogenic index parameter evolution. The gray areas
highlight the high‐intensity periods. (f) Spatial distribution of the seismicity during the high‐intensity periods overlaid on the
cumulative volume map.
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Figure S2 in Supporting Information S1 shows the evolution of the param-
eters describing the aftershock distribution in time and space for all models of
the ETAS class.

5.3.2. Seismogenic Index Parameter Evolution

The average value of the productivity parameter afb increases in time to
accommodate the change in seismicity rate (Figure 9e). Figure 10 shows a
break down of the change of afb in time in the three subregions where fluids
are injected and/or produced. The activation feedback is much higher in the
reinjection regions and Hverahlíð production area than the average shown in
Figure 9e, highlighting the regions as seats of seismicity. The value of afb is
quite stable in Hverahlíð, where the production rate and seismicity rate are
relatively constant during the forecasting experiment (Figures 4 and 7). On
the contrary, in the injection regions of Gráuhnúkar and Húsmúli, where both

the seismicity and injection rates have a more jagged behavior, the value of afb sees sharp increases to try to
accommodate the changing rate of seismicity. The case of Gráuhnúkar in particular shows that these “spikes” in
afb are followed by a slow healing phase during which the parameter is gradually lowered.

If we compare the fluid scaling factor ι for ETAS‐f models and the Seismogenic Index's afb as analogous “seismic
productivity per unit volume” terms, we notice a similar relative increase in the first half of the forecasting period.
However, the fluid productivity terms show different reactions to the high‐intensity periods. The Seismogenic
Index model only has this parameter to adapt to the fast changes in the seismicity rate, while ETAS‐f and ETAS‐fv
models are able to explain the shift in seismicity rate with other parameters for example, assigned them as
background or naturally triggered events.

6. Discussion
All the models used seem well suited to modeling seismicity in the Hengill geothermal field, although they show
their respective limitations in specific subregions or following unexpected and abrupt changes in the seismicity
rate.

However, the set‐up of our pseudo‐forecasting experiment also reveals some of its limits. First of all, the modeled
period needs to match the length of operations in the field to provide a complete picture of the processes. As we
saw in the Gráuhnúkar area, a 14 months training period on a reinjection in operation since 2006 with stable
seismicity and injection rates can lead to a misattribution of the induced seismicity as background by ETAS‐f and
ETAS‐fv models. The choice of the learning and forecasting periods was dictated by the high quality seismic
catalog, however, it would be interesting to run a much longer term experiment that encompasses pre‐reinjection
times to see if ETAS‐f and ETAS‐fv models pick up on the onset of the injection‐induced seismicity.

Following up on this point, the discrimination between induced and natural seismicity that ETAS‐f models allow
has not been fully explored. In particular, one could look at the attribution of aftershock sequences to induced or
natural events. So far, the use of both ETAS and Seismogenic Index models only tell us broad information, for
example, the case of Ölkelduháls, which must be a natural sequence (or induced by naturally occurring fluids) as
no injection or production is taking place in the vicinity.

Another important aspect of induced seismicity mitigation methods relies on linking modeling results to hazard
and risk calculations (Broccardo et al., 2019; Schultz et al., 2021, 2022). In this work, we stopped on the level of
forecasting seismicity rates and did not venture further, however, we do plan to expand to hazard and risk in future
work.

6.1. Future Improvements to the Models

6.1.1. Seismogenic Index Model

In this study, we used a simple implementation of the Seismogenic Index, and could likely improve its perfor-
mance in two ways. First, by improving the way how to account for the uncertainties of the model parameters
replacing the Poissonian assumption by a method sampling from the parameter space around the optimized model

Figure 10. Evolution of the activation feedback in time during the forecasting
experiment by subregion.
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parameters and defining a confidence interval around them (Rinaldi & Passarelli, 2021). Furthermore, as sug-
gested by Broccardo et al. (2017), a Bayesian optimization approach using prior‐distributions of the model pa-
rameters gathered from past induced seismicity cases in geothermal exploration sites, would be advantageous for
two reasons: First, a model using the Bayesian theorem would automatically give a pseudo‐Poissonian proba-
bilistic output in form of a posterior distribution in terms of for example, seismicity rate. Second, such a model
would be able to give a forecast also for cells that do not present an event during the training phase, contrary to the
currently implemented version. A further way of improving the performance of the Seismogenic Index model is to
improve the distribution of volumes in space, to take into account the field anisotropy driven by faults and
fractures, as well as well directionality. Figure S3 in Supporting Information S1 shows an example of circular
versus elliptical Gaussian distribution to account for well direction and faults in the Húsmúli region (Bessason
et al., 2012; Khodayar et al., 2015). These results show that the distribution of volumes improves the performance
of the Seismogenic Index by about 5% by accounting for a first order of subsurface anisotropy.

6.1.2. ETAS Models

In this work, we tested different variations of ETAS, from the standard implementation to a version with fluid‐
forcing. However, this is only the beginning as many more things could be implemented into ETAS to increase its
predictive skill in complex systems. For example, we saw that the ETAS with fluid forcing class seems promising
for reinjection regions but performs poorly in production regions. Production induced seismicity is known to be
linked to poroelastic stress changes (Segall, 1989; Zbinden et al., 2017). We want to introduce a proxy for
poroelasticity in ETAS to account better for this phenomenon. This ETAS‐poroelasticity would need to be tested
separately on production regions, to emancipate ourselves from the noise of reinjection‐induced seismicity and
natural seismicity present in the Hengill field (Goebel et al., 2017; Segall & Lu, 2015).

In our current implementation, we distributed the volumes without accounting for the faults and geological unit
adding anisotropy to the underground. We however have hydro‐geological models at our disposal both for the
Húsmúli reinjection area and Hengill‐wide field (TOUGH2 models provided by Reykjavik Energy; Ritz
et al. (2021)). These models could be coupled to ETAS (and to the Seismogenic Index model) into a hybrid model
to give ETAS and the Seismogenic Index model a more realistic representation of the flow rate and volume
distribution in the field. Such models with high‐resolution local information on the fluid flow could help support
operators in the well‐sitting process. Indeed, the combination of a calibrated fluid‐ and heat‐flow model with
seismicity forecasting models provide a rare insight to decide on the development of production and injection
areas while combining productivity information and a proxy for the seismic risk.

Besides the implementation of fluid‐forcing, ETAS models can be made more flexible by playing on a number of
parameters. In particular, adaptive smoothing kernels can be implemented in which the standard deviation of the
kernel itself is determined to best fit the data (Nandan, Ram, et al., 2021; Ogata, 2011; Zhuang et al., 2002). Such
models have been shown to have powerful forecasting capabilities. Furthermore, the productivity of aftershock
sequences have been shown to have statistical differences between tectonic and induced earthquake sequences
(Karimi & Davidsen, 2021; Llenos & Michael, 2013). One could account for these different signatures by having
different parameters (e.g., productivity) for fluid‐induced and tectonic events.

6.1.3. Other Models

Beyond ETAS and Seismogenic Index models, we could test other statistical models in a similar pseudo‐
forecasting framework. For example, we could design an extremely simple model like “the rate that one will
observe in the forecast is the same as the average in the last X weeks,” and use it as a reference model instead of
comparing all models to ETAS‐0.

Purely statistical description of earthquakes in time and space are however limited as they do not account for the
physical mechanisms behind induced seismicity. These mechanisms include static and dynamic stress transfer,
the frictional properties of faults, as well as changes in pore pressure which are fundamental to explain induced
events. Physics‐based models able to describe aftershock triggering (e.g., Coulomb models; King et al. (1994);
Catalli et al. (2016)) could be useful in complex contexts like Hengill. Physics‐based model range from the
simpler with analytical solutions for pore‐pressure to more advanced ones like rate‐and‐state or models incor-
porating elements of poroelasticity. This last point would be interesting to compare in the production area of
Hverahlíð where we saw that using the produced volume as a proxy is not very successful. Hardebeck (2021)
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notes a general under‐performance of Coulomb‐Rate‐and‐State models relative to ETAS models, but argues that
incorporating heterogeneities in background conditions into physical forecasting models may be key in improving
their performance. This conclusion is supported by Mancini et al. (2019), which however argues that stress‐based
models which consider secondary triggering mechanisms (stress changes, earthquake interactions) can preform
similarly to ETAS in complex sequences.

7. Conclusion
The complexity of the seismicity in the Hengill geothermal field, with natural and induced events, as well as
sudden periods of high‐intensity activity, makes it an interesting but challenging testing ground for forecasting
models. As we've seen, the Seismogenic Index and ETAS models have captured some seismicity aspects when
forecasting the seismicity in the field and its different subregions, although the former can only produce a forecast
in active injection and/or production regions. In such a complex geothermal field, the Seismogenic Index model
performs similarly or better than ETAS models as long as the rate of seismicity remains relatively stable. As soon
as an abrupt change in the seismicity rate occurs, the Seismogenic Index model perform significantly worse than
any ETAS model. One major advantage of ETAS models lay in their ability to forecast natural seismicity, which
allows them to fit data even in areas where no fluids are injected (as seen in Ölkelduháls).

Although there are still routes to explore to improve individual models, as highlighted in the Discussion section,
the respective strengths of the models could be harvested by using an ensemble modeling framework. The concept
to combine different models to obtain more robust forecasts and limit the individual model's biases, has been
widely tested in recent years with all sorts of forecasting models (Bayona et al., 2021; Dempsey & Suckale, 2017;
Király‐Proag et al., 2018; Llenos & Michael, 2019; Marzocchi et al., 2012; Mizrahi et al., 2023). Such an
approach with ETAS and Seismogenic Index‐type models could prove useful as near‐real‐time tools in areas
experiencing induced seismicity like Oklahoma or near the Groningen gas field in the Netherlands.

Hydraulic data is often difficult to stream in real time andmight not be available with fine enough granularity to be
useful for forecasting exercises. ETAS‐0 does not require this input of fluids to yield forecasts. In the event that
injection and/or production rates are available in real‐time, ETAS with fluid forcing performs slightly better than
standard ETAS and could easily be run in parallel to a Seismogenic Indexmodel in an operational forecasting tool.

Data Availability Statement
Seismic catalog: Grigoli et al. (2022). Seismic network: 2C network, at ETH Zurich, Swiss Seismological Ser-
vice (2018). Hydraulic data: Ritz (2023).
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