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Hierarchical Rule-Base Reduction Fuzzy Control
for Path Tracking Variable Linear Speed
Differential Steer Vehicles

Samuel R. Dekhterman, William R. Norris, Ramavarapu Sreenivas, Dustin Nottage, Ahmet Soylemezoglu

Abstract—A novel waypoint navigation controller for a skid-
steer vehicle is presented, where the controller is a multiple
input-multiple output nonlinear angular velocity and linear speed
controller. The membership functions of the fuzzy controller
employed a trapezoidal structure with a completely symmetric
rule-base. Notably, Hierarchical Rule-Base Reduction (HRBR)
was incorporated into the controller. This entailed selecting
inputs/outputs, determining the most globally influential inputs,
generating a hierarchy relating inputs via a Fuzzy Relations
Control Strategy (FRCS), and selecting only the rules correspond-
ing to the hierarchy. Similar to a traditional fuzzy controller,
the entire operating environment was covered. However, a rule
for every possible combination of input states was no longer
necessary. Thus, HRBR fuzzy controllers can increase both the
number of inputs and their associated fidelity without the rule-
base dramatically increasing. The stability analysis proves the
asymptotic stability of the closed-loop controller-vehicle system.
Additionally, a set of test courses were used to examine the
effects of steering disturbance, phase lag, and overshoot as
expressed in Root Mean Square Error (RMSE), Max Error (ME),
and Course Completion Time (CCT). Outdoor experimental
results for the controller’s performance are contrasted with a
comparable waypoint navigation controller, pure pursuit, and a
simpler implementation with constant linear speed. The Variable
Linear Speed Fuzzy was found to outperform the pure pursuit
and Constant Linear Speed Fuzzy experimentally by 72% and
50% in RMSE, 71% and 40% in ME, and with moderately
worse CCTs of 6.2% and 8.7%, on average. Thus, validating the
controller’s viability.

Index Terms—Differential steer vehicle, fuzzy logic, pure pur-
suit, asymptotic stability, waypoint navigation.

I. INTRODUCTION

HEN designing path-tracking controllers for au-

tonomous skid steer vehicles, considerations for posi-

tion and velocity are paramount. Off-road environments pose
a particular challenge to several traditional approaches.

A skid steer vehicle, when represented as a unicycle model

[1], has no A matrix, while the B matrix directly maps
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the vehicle dynamics to the control action. This structure is
directly at odds with model-based approaches, such as LQR,
MPC, and H-infinity. These controllers use the vehicle’s A
matrix and control error signal to develop an optimal and/or
robust target trajectory and a corresponding control action. [2]
(31 [4].

In the case of frequency domain control on an ideal flat
road, the stability and performance criteria can be guaranteed
[5]. Although, better performance requires intense systems
identification and tuning [6], [7]. In contrast, for off-road
settings, the dynamics and thus, stability of these controllers
vary greatly with velocity and terrain for a given set of gains
[8].

Sliding mode controllers operate in a binary fashion by
prescribing either a maximal or minimal control effort to drive
the desired error state to a sliding manifold with a zero-error
state [9]. Sliding mode controllers have been demonstrated
to work to an extent on skid steer autonomous land vehicles
[10], but the steady-state oscillations have kept them from
widespread use.

Learning-based controllers, [11], that create a multi-
variable, nonlinear, sensor-input control-output mapping have
become popular for autonomous vehicle control applications
[12]. However, vehicles can become unstable [13] when pre-
sented with disturbances outside of their training space, such
as unexpected changes to the vehicle dynamics, ground contact
physics, or unforeseen sensor measurements. As such, off-road
environments pose a challenge.

Geometric controllers determine the optimal control ac-
tion based on the manifold defined by the geometric-based
constraints on the vehicle and its error state [14]. The most
common form of geometric control for differential and skid
steer vehicles is pure pursuit [15]. These controllers are robust,
so long as the target point is far enough away from the vehicle
to account for the maximum system time delays [16]. As such,
pure pursuit was the baseline controller used in this paper.

The authors of this paper’s previous work successfully
solved this very control problem regarding a skid steer system
using a fuzzy controller with Hierarchical Rule-Base Reduc-
tion (HRBR) [17]. In that paper, however, there was only one
output to the proposed controller, angular velocity. As such,
an additional output of linear speed was investigated in the
hopes of seeing improved path-tracking performance.

Changing the linear velocity in path tracking is common in
similar control efforts. Examples include:

In underwater environments, trajectory tracking using a
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velocity-observer has been constructed for a line of unmanned
underwater vehicles [18]. Similar work was seen using re-
inforcement learning in the context of car traffic [19]. In
a non-highway heavy-duty ground vehicle setting, velocity
control was implemented in [20] by solving an optimal control
problem to reduce fuel usage.

Additionally, the HRBR method, used in [17] and further
discussed in Section II, was employed to solve the ballooning
rule-base issue associated with increasing the number of mem-
bership functions and linguistic variables in fuzzy systems.
When paired with the use of trapezoidal membership functions
and a symmetric rule-base due to HRBR, additional robust-
ness and ease of implementation objectives were successfully
achieved.

The remainder of the paper is organized as follows. Section
IT describes the design of the fuzzy logic controller and the
HRBR. Section III proves the stability of the controller. Sec-
tion IV discusses the outdoor experimental setup and results
achieved using the skid steer Clearpath Jackal [21]. Lastly,
Section VI concludes the paper.

II. CONTROL DESIGN
A. General Structure

In fuzzy logic control, crisp inputs, z € R"”, feed into the
input linguistic variables I,,, which are then categorized into
input linguistic values A,, ,, in a process called fuzzification
[22]. Linguistic values describe their associated variable’s per-
formance with descriptors like “fast” and ”slow”. Furthermore,
a level of membership between zero and one is assigned
to a given linguistic value upon fuzzification. Membership
functions, iz, ., determine what elements comprise the fuzzy
set associated with each linguistic value [23].

After fuzzification, the levels of membership in the output
values are determined using IF-THEN (t-norm) rules [24]. The
antecedent of any given rule is the level of membership in the
Ap.m tied to I,,. While the consequent of any given rule is
the level of membership in the output linguistic value B, ,,
of the output linguistic variable Oy.

Moreover, the AND (t-norm) and OR (t-conorm) operators
can be used to integrate multiple linguistic values into a single
antecedent/ consequent. The way that the AND, OR, and IF-
THEN operators interact with the membership functions in
the antecedents and consequents varies with implementation.
Although, the two most common choices of t-norm/ t-conorm
are the product/division and min/max operators [25].

An example of this structure is

IF Il is A172 AND 12 is A275 THEN 01 is Bl,l

To calculate these crisp outputs, the Center of Mass (CoM)
defuzzification, equation (1), is commonly used [25]. In
equation (1), n is the total number of output membership
functions, x; is the amount of control output associated with
output membership function ¢, and p.(x;) is the degree of
membership in output membership function ¢. Note, it is
also common to defuzzify an aggregated membership function
generated from the outputs of the rules.
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Fig. 1. Distances and Angles Relevant to the Robot

When initially developing the proposed fuzzy waypoint
navigation controller, control objectives, outputs, and inputs
were established. The control objectives sprung from the need
to complete any given course with variably spaced waypoints,
as quickly and accurately as possible. Thus, the corresponding
objectives minimize the time required to complete a given
course and the lateral distance error. The vehicle completed
these objectives through movement. The movement command
was decomposed into two outputs, namely an angular velocity
and a linear speed.

The inputs to the control system were the path-related error
functions that also followed from the control objectives such
that the error functions were minimized when the vehicle
was in a given state. Further, the span of all error states
corresponded to all possible vehicle positions and orientations.
For these errors, the relevant sections of the path at any given
time are seen in Figure 1. In Figure 1, A is the waypoint the
vehicle most recently passed, B is the current target waypoint,
C is the next waypoint on the path after the current target
waypoint, and R is the robot’s current position.

Figure 1 also depicts the distance errors. Those distance
errors were the “distErr Target”, the distance from the vehicle
to the target point, and “distErr Line”, the lateral distance from
the vehicle to the current path segment. The associated values
and membership functions for both are presented on the pages
that follow this one in Tables I and II.

In addition, Figure 1 depicts the angles used to generate
the angular errors. In Figure 1, 6y is the yaw angle of the
vehicle, 04 is the orientation of the path segment formed by
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TABLE I
DISTERR TARGET MEMBERSHIP FUNCTIONS

Linguistic Values Membership Functions
close trap(-100, -100, 0, 0.6418)
far trap(0, 0.6418, 100, 100)

waypoints A and B, ¢ is the orientation of the path segment
formed by waypoints B and C, F is a recovery point for when
the vehicle is far from the path, and g is the orientation of
the vector formed from points R and F.

From these path angles, the angular errors were calculated
using equations (2)-(4); the angular errors were 0pyeq, the
angle between the vehicle’s heading and the current path
segment, 07 ookahead, the angle between the vehicle’s heading
and the next path segment, and 0p,,, the angle between the
vehicle’s heading and F. The angular errors’ associated val-
ues and membership functions were presented on subsequent
pages in Tables III-IV.

Hnear = eAB - eR (2)
OLookahead = OBC — OR 3)
0Far = HRF - oR (4)

There were certain considerations regarding the set of input
membership functions that further reflected the names of the
linguistic values. Some of those considerations were: distErr
Target could only output non-negative values as it measured
the distance to the target waypoint. Onear, OLookaheads OFars
and distErr Line needed to output real values as they needed
to distinguish if the orientation/position was to the right or
left of the path. Another consideration was that the vehicle
had to drive the real-valued inputs to and maintain some zero
error state where no steering control action was needed. The
purpose of the zero error state was to eliminate any potential
bang-bang/oscillation in the control action when the errors
were close to zero [26]. This prompted the creation of a zero
linguistic value/ membership function for Onear, OLookaheads
OFar, and “distErr Line”. An assumption originating from the
rule-base was a need for symmetry, similar to the rule-base
presented in [27]. This assumption was used so the vehicle
would act the same on both sides of the path as is typical of a
steering control system. This came with the added benefit of
simplifying membership function placement.

In addition, consideration was given to the form of the input
membership functions. The fuzzy controller used trapezoidal
input membership functions, as opposed to the traditional
triangular or Gaussian membership functions. This choice is
related to a human operator in [28]. The use of trapezoidal
over triangular membership functions further reduced bang-
bang and improved overall system stability as the flat regions
provided a margin of acceptable error in the input, especially
around the zero error region. Moreover, using a trapezoid
allowed for some of the more desirable traits of a Gaussian
function to be captured, [29], in a computationally efficient
way. Furthermore, it was desirable to have shoulder functions
that covered any remaining inputs. This ensured that the entire
operating environment had an associated control effort.
DistErr Target, Table I, had two associated linguistic values,

TABLE II
DISTERR LINE MEMBERSHIP FUNCTIONS

Linguistic Values Membership Functions

far left trap(-100, -100, -2, -1.6)
near left trap(-2, -1.6, -1.398, -0.7981)
close left trap(-1.3981, -0.7981, -0.3247, -0.01645)

Zero

close right
near right
far right

trap(-0.3247, -0.01645, 0.01645, 0.3247)
trap(0.01645, 0.3247, 0.7981, 1.3981)
trap(0.7981, 1.3981, 1.6, 2)
trap(1.6, 2, 100, 100)

TABLE III
THETA NEAR MEMBERSHIP FUNCTIONS

Linguistic Values Membership Functions
far left trap(-3.142, -3.142, -1.46, -0.8556)
near left trap(-1.46, -0.8556, -0.6118, -2.447e-05)
ZEero trap(-0.6118, -2.447e-05, 2.447e-05, 0.6118)
near right trap(2.447e-05, 0.6118, 0.8556, 1.46)
far right trap(0.8556, 1.46, 3.142, 3.142)

far and near. distErr Line, Table II, incorporated seven associ-
ated linguistic values to categorize how far away the vehicle
was from the target trajectory: far left, near left, close left,
zero, close right, near right, and far right. The remaining
FRCVS, Oncars OLookahead, and 0., Tables III - IV, all
used similar linguistic values to qualify the orientation of the
vehicle: far left, close/near left, zero, close/near right, and far
right.

Having so many linguistic values with a Mamdani-type
implementation and a product t-norm, while effective in test-
ing, also introduced issues around the size of the rule-base.
For a standard fuzzy controller, the rule-base associated with
the above inputs would be exceedingly difficult to tune as
a rule would be necessary for every combination of input
variables and linguistic values (1750 rules). However, the
fuzzy controller(s) incorporated all of the above inputs and
linguistic values while keeping the rule-base fairly small (40
rules). This level of fidelity was achieved using the Fuzzy
Relations Control Strategy (FRCS) introduced in [30].

Hierarchical Rule-Base Reduction (HRBR) starts with the
establishment of an overarching control objective, inputs, and
outputs for the system [30]. This control objective is then
broken down into a set of sub-control objectives that enable the
completion of the larger control objective. Each sub-control
objective is assigned a Fuzzy Relations Control Variable
(FRCV), i.e. an error tied to an input linguistic variable. These
FRCVs are then put in a hierarchy of importance/influence.
Next, a set of linguistic values are selected for each of the
FRCVs. Each branch of the FRCV hierarchy then has a set of
fuzzy values associated with it. Finally, a rule is assigned to
each combination of linguistic values available in each of the
complete branches [27].

Applying HRBR to the fuzzy controller was simple, as
an overarching objective, inputs, and outputs, as discussed
at the top of this section, were already established. From
these, the sub-control objectives followed. Completing the path
segments was unconditionally crucial for the entire duration
of the control effort. Thus, distErr Target was a root node of
the hierarchy. However, aligning the relative angle to the next
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TABLE IV
THETA FAR MEMBERSHIP FUNCTIONS

Linguistic Values
far left
close left
Zero
close right
far right

Membership Functions
trap(-3.142, -3.142, -2.45, -1.4)
trap(-2.45, -1.4, -1.2, -0.2)
trap(-1.2, -0.2, 0.2, 1.2)
trap(0.2, 1.2, 1.4, 2.45)
trap(1.4, 2.45, 3.142, 3.142)

TABLE V
THETA LOOKAHEAD MEMBERSHIP FUNCTIONS

Linguistic Values
far left
close left
Zero
close right
far right

Membership Functions
trap(-3.142, -3.142, -2.391, -1.414)
trap(-2.391, -1.414, -0.9409, -0.0034)
trap(-0.9409, -0.0034, 0.0034, 0.9409)
trap(0.0034, 0.9409, 1.414, 2.391)
trap(1.414, 2.391, 3.142, 3.142)

path segment became necessary when the vehicle was close
to completing the current path segment. As such, 01 o0kahead
was a leaf node connected to distErr Target. Two additional
leaf nodes of the hierarchy were present when the vehicle
was far from completing the current path segment. Both leaf
nodes were concerned with reducing the lateral distance to
the path by minimizing distErr Line. The magnitude of the
lateral distance from the path determined whether the vehicle
needed to align itself toward the recovery point or parallel to
the path. Thus, distErr Line was a child node of distErr Target
and a parent node to Oy, and Oy, for the two respective
cases. The hierarchy comprised of the single root node, single
parent&child node, and three leaf nodes is summarized in
Table VI. The linguistic values for the FRCVs can be found
in Table I-V. With those in mind, the set of linguistic values
associated with the case where the vehicle was close to the end
of the path segment followed from distErr Target being near
and 01o0kahead Deing any of its linguistic values. Moreover,
when the vehicle was far from the end of the path segment
the values associated with the two remaining sets were distErr
Target being far, distErr Line being far, and every value of
O Fqr in the recovery case and distErr Target being far, distErr
Line being zero/close/near, and every value of 0.4, in the
close to the path case.

With the hierarchy established and the input linguistic
values segmented along the branches of the hierarchy, the
antecedents of the rules could be generated. For example, the
leaf node for when the vehicle was close to the next path
segment, distErr Target was near and 6p,0kqheqd, had five
associated rules, and thus needed five antecedents, as there
were chosen to be five fuzzy values for 010kahead-

For the consequents of the rules, output linguistic values
also needed to be assigned. For the angular velocity, its output
was chosen to be in the set of real values in order to drive
inputs to their zero error states. Conversely, the linear speed
could only output non-negative values as the vehicle was only
meant to drive forward. Thus, the angular velocity had the
following nine linguistic values: left4, left3, left2, leftl, zero,
rightl, right2, right3, and right4. Likewise, the linear speed
had three linguistic values: slow, med[ium], and fast.

TABLE VI
SUMMARY OF APPLIED HIERARCHY (FRCS)

Metric Used for FRCS Classification
distErr Target Far
FRCVs distErr Target | distErr Line distErr Line
Near Zero/ Close / Far
Near
distErr Target 2 3 3
distErr Line 2 2
eLookahead 1
01\] ear 1
chL'r' 1

Recalling that the rule-base was symmetric, the left half of
the rule-base is finally presented in Table IX.

TABLE VII
PARAMETERS ASSOCIATED WITH THE STEERING MEMBERSHIP
FUNCTIONS
Linguistic Values Membership Functions
left 4 tri(-8.0704, -7.0704, -6.0704)
left 3 tri(-7.0561, -6.0561, -5.0561)
left 2 tri(-5.9934, -4.9934, -3.9934)
left 1 tri(-4.3981, -3.3981, -2.3981)
Z€ero tri(-1, 0, 1)
right 1 tri(2.3981, 3.3981, 4.3981)
right 2 tri(3.9934, 4.9934, 5.9934)
right 3 tri(5.0561, 6.0561, 7.0561)
right 4 tri(6.0704, 7.0704, 8.0704)
TABLE VIII
PARAMETERS ASSOCIATED WITH THE LINEAR SPEED MEMBERSHIP
FUNCTIONS
Linguistic Values | Membership Functions
slow tri( 0, 0.2, 0.4)
med tri(0.8, 1, 1.2)
fast tri(1.8, 2, 2.2)

Having a complete rule-base, attention was turned toward
defuzzifcation. Given that the level of membership in an
output value could be determined from the crisp input values,
input membership functions, and the rule-base, establishing the
shapes of the output membership functions was necessary for
the Mamdani-like fuzzy controller. Since bang-bang was only
a concern for the inputs, the outputs used triangular as opposed
to trapezoidal membership functions for simplicity. Table VII
shows the membership functions for angular velocity, while
Table VIII displays the membership functions for linear speed.

III. STABILITY ANALYSIS

A. Continuous System

u(®) y(®)

Plant

FLC

Ya() ~ e®
+

Fig. 2. Continuous Block Diagram I
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TABLE IX
LEFT HALF OF THE SYMMETRIC FUZZY CONTROLLER RULE-BASE
IF THEN
distErr Target | distErr Line | 01 o0kahead Orar ONear 0 R Speed
near far left right 4 slow
near close left right 2 med
| _ _ mear | _ _ _ _ _ _|___ zero | _ _ _ _ _|_____| zero_| fast |
far far left far left right 4 slow
far far left close left right 1 fast
far far left Zero Zero fast
far far left close right left 1 fast
far far left far right left 4 slow
=7 Tfar T T T[T near left. |~ ~ T " T T T[T T 7 T 7| farleft | right 4 T Tslow |
far near left near left right 3 med
far near left Zero right 2 med
far near left near right | right 1 fast
| far | near left | | far right | left2 | med |
far close left far left right 4 slow
far close left near left right 2 med
far close left Zero right 1 fast
far close left near right Zero fast
far close left far right left 3 med
=7 Tfar T T T[T zero | T T T[T T T 7T 7| farleft [ right3 | med |
far Zero near left right 1 fast
far Zero Zero Zero fast
far Zero near right left 1 fast
far Zero far right left 3 med
Ya(®) e(t) combined with y4(t), equation (6), to make the new e(t).
ki . .. . . .
- 4| e |FLC @) plant O In Figure 3, an additional input of ¢é(¢) was included.
i Furthermore, each of the previous rule’s antecedents were t-
normed with the singular linguistic value of é(t). This singular
linguistic value Dummy was assumed to have a membership
value of one regardless of input. As such, the controllers in
Fig. 3. Continuous Block Diagram II Figure 2 and Figure 3 are equivalent.
In Figure 4, the output of the controller was taken to be
2 d(t)+ °®) i) © o 4(t), which was then integrated so the plant still took in u(t).
— u . . .
d | ew [|FLC f Plant Thus, from the plant’s perspective, the controllers in Figures
dt 2, 3, and 4 are all equivalent.
Next, the e(t) and é(t) terms were transformed into
er = é&(t,0ncar(t), - ,distError Target(t)) and ey =
Fig. 4. Continuous Block Diagram III e(t, Onear(t),- - ,distError Target(t)). e; was the representa-
tive singular input error generated using the elements compos-
ing e(t), the calculation of which will be explored below. A
similar simplification was seen for es and wq, with u; being
r 0 the output trajectory of the vehicle. This output was made by
ear combining the rule-base’s two outputs of angular velocity and
Ofar . g p g y
. 9 | Or 5 linear speed into a single Cartesian velocity.
e(t) = lookahead , u(t) = d ) -
distError Line spee Consequently, for each rule of the original fuzzy controller,
distError Target each antecedent and consequent combination of linguistic
- 0 0 values described above became its own linguistic value. For
GR QAB example, if distError Target was far, distError Line was far
® eR 0 = GRF ©) left, and 0¢,, was close left, Angular Velocity would be set to
Yy = R ’ yalt) = VBC right]l and Linear Speed would be set to fast. Here, e; would
—distError Line 0 . .
. have the linguistic value T'F, LF'L,0;CL (Target Far, Line
| —distError Target 0

In order to prove the stability of the proposed controller, Figure
2, an equivalent controller was constructed to match a popular
passively stable fuzzy structure in the literature [31], [32], [33].
In Figure 2, the error input into the controller was e(t), and
the output of the controller was u(t) as seen in equation (5).
u(t) then entered the plant and resulted in y(¢), which was

Far Left, 044, Close Left) whose level of membership would
be determined by taking the t-norm of the level of membership
in distError Target in Far, distError Line in Far Left, and 0 ¢,
in Close Left. eo would have a membership of 1 in Dummy
and 4(t) would have the linguistic value AR1, LF (Derivative
of Angular Rightl, Derivative of Linear Fast).

Note, Definitions 1 - 3, and any other quoted text below in
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this section was taken from [33] with:
€1 = ez
Uy = <I>(el, 62)
—e1 = é(t,—Onear(t), -+ ,— dE Line(t), dE Target(t))
—ey = &(t, —bpear(t),- - - ,— dE Line(t), dE Target(t))
An additional core assumption of [33] that will initially
be carried forward is that there are no delays in either the
continuous or discrete systems. However, in most systems,
such assumptions are not true. As such, there has been a great
deal of work done showing both the passivity and robustness
of time-delayed fuzzy systems [34], [35], [36].
“Definition 1. For any fuzzy controller with two inputs
and one output, if the input-output non-linear mapping can be
described by a continuous bounded Lipschitz function ®(-, -)

with the following properties, the fuzzy controller is called an
SFC

1.|®(e1,e2)] < up and M = max xj;
J

2.9(0,0) = 0 (steady state condition);
3.D(e1,e0) = —P(—eq, —e3) (0dd symmetry);
4.9(e1,0) =0=¢; =0;
5.9(-,-) is a sectional function, in the sense that for every
(e1, e2), there exist A’,y" > 0 such that:
0<e-(P(e1,e2) — ®(0,e3)) < Ne?
0<ey (®(e1,e2) — P (e1,0)) <led”

Since every input that es(k) could take had a membership
value of one in Dummy, ® (eq, e3) = ® (e1,0) and @ (0,¢5) =
0. As a result 5. simplifies to

0<er-(®(er,e2) —0) < Ne? (7
0<eg-(P(er,en) — ®(er,en)) <~e2  (8)

D (e1,e2) < Ne? 9)
(10)

which is true for V)N
(61 y 62).

Oneqr had membership functions yu,, (), 6 74, had member-
ship functions p¢(zf), iookahead had membership functions
wi(z;), distError Line had membership functions pr, (21, ), and
distError Target had membership functions pr(2) such that
T, Ty, € {—m, 7} and zp, z € R. Both the Aggregation
operation on the output membership functions and the t-norm
were a product of the inputs. Note that the following structure
would be valid for any combination of aggregation operation
and t-norm types.

For rules i = 1-10, 04, distError Line, and distError Target
determined the membership in the output as follows

Hiq = AND{/Lfi (If)a HL; (IL)}
H1; = AND{lu‘lia y T (xT)}

with the output membership for this set of rules determined
by

Y

up/lei], V' > 0, and for every

M1 = Agg{ﬂhaﬂlm T 7”110}

For rules i = 11-35, 0,,cqr, distError Line, and distError
Target determined the membership in the output as follows

H2;, = AND{:um (xn)v KL, (‘rL)}

H2; = AND{lu‘Qia y T (xT)}

with the output membership for this set of rules determined
by

po = Agg{o,, s o1y s H2ss |

For rules i = 36-40, 0;o0kahcad and distError Target deter-
mined the membership in the output as follows

w3, = AND{p, (@), pr, (z7) }

with the output membership for this set of rules determined
by
H3 = Agg{,u335, /’L337a e 7”340}

Aggregating everything together gave:

p= Agg{p, pa, p3}

The defuzzified output function was thus given by

SV (g x ()
P = = (11)
Zévzl H (33])

where z; was the Cartesian acceleration associated with rule
J-
”Consider a continuous system in the state-space form as

reER",ueR™

= f(x,u), (12)

y=h(z,u), yeR™ (13)
where f(-,-) and h(-,-) are smooth functions. - - -

Definition 2. System (12) with a properly chosen output
(13) is said to be passive with respect to the supply rate
s(u,y) = ul'y € R, if there exists a positive definite function
V with V(0) = 0, regarded as the storage function, such that
the following inequality is satisfied for all x(¢p).

Valty) = Vestta) < [ stu(o).y(e))do, v,

to

- the fuzzy controller can be considered as a single-
input single-output (SISO) non-linear system with internal
dynamics, where es is the input, u is the output and e; is the
state variable.”
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Using Definition 2. and the above variable declarations, the
passivity of the controller was shown with:

/tfeg(a)ul(a)doz/o ea(T)P(e1(7), ea(7))dr
_ /O e(r)D(e1 (1), 0)dr

t

ea(7)(®(ex(7), e2(1))
(ex(7),0))dr

t

ea(7)®(e1(7),0)dr

é1(1)®(e1(7),0)dr

ey (t)

<I>(61, 0)d61

+

S—

|
oA

Y

Il
T— — —

e1(0)

(e1(t)) = V(e1(0))

<

Corollary 1. The memoryless function y = h(t,u(t))
where h : [0,00) x R — R is said to be input-output
strictly passive with respect to the supply rate s(u(t),y(t)) =
w(t)Ty(t) —eru(t)? —eay(t)? for e, e > 0, if s(u(t),y(t)) >
0, WVt vu() [37] [32].

Using Corollary 1. with the plant, y(t) = u(¢), input-output
strict passivity was determined via:

u(t)Ty(t) — eru(t)? — eay(t)* > 0
u(t)? — equ(t)? — equ(t)? >
(]. — €1 — 62)U(t)2 >

Theorem 1. A sufficient condition for the asymptotic sta-
bility of an SFC, see Definition 1., fuzzy control closed-
loop is the input—output passivity of the controller and the
input—output strict passivity of the plant such that the two in
series have a well defined negative feedback connection [32]
[33].

From the passivity of the controller and the input-output
strict passivity of the plant, the sufficient condition of The-
orem 1. for the asymptotic stability of the continuous fuzzy
control closed-loop was met.

Including delays the state space form of the controller
became:

(14)
(15)

where z(t) € R", u(t) € R™, y(t) € R™, and T, was
some delay s.t. 0 < T, < ¢ for ¢ € R*t. The supply rate
from Definition 2. remained s(u,y) = uly. However, i(t)
and y(t) changed in accordance with equations (14) and (15)
respectively. As a result, the passivity of the controller was

expressed using,

/tf es(o)uq(o)do

= [ e(7)

* (4{0(61(7)7 ea(7)) + ®(er (T — T1), e2(7)))dr

= /Ot ea(7)(P(e1(1),0) + (er(7) — T1,0))dr

+ /Ot e2(7)(®(ex(7), e2(7)) + P(ex (T — T1), e2(7))
— ®(e1(7),0) — ®(er (7 — T1),0))dr

> /Ot ea(7)(P(e1(7),0) + ®(er(r — T1,0))dr

- /Ot(él(T) Lalr—T)

* (D(e1(7),0) + @(ey(r — T1),0))dr

:/ (él(T)q)(el(T),O))dTJr/ (é1(7)®(e1(r —T1),0)))dr
ot 0
+/O (é1(m7 —T1)®(es(7),0))dr

+ / (é1(r = T1)®(ea(r — T1), 0)))dr
0
=A1+As+ Az + Ay
> 4Cn /el(t) (I)(elao)del
e1(0)
=V(ei(t)) — V(e1(0))

Such that A, = [/(e1(T)®(ei(7),0))dr, Ay =
[e®lelr — T),0)dr Ay = [l -
Tl)q)(el(T),O))dT, and A4 = fo(é1<7' — T1><I>(€1(T —
T1),0)))dr. There were then four possibilities at any time t.
Rather, min(Al,AQ, Ag, A4) = A;. Then,

Cpn=41/A1=1
min(A, Aa, Az, Ay) = As. Then,
Cp, = min(Az/A;) from 0 to t
min(Ay, Aa, A, Ay) = As. Then,
C,, = min(As/A;) from 0 to t
min(Ay, Aa, As, Ay) = Ay. Then,
Cn = A3/A;

The continuous plant could not integrate a delay as it was
a memoryless function and thus could only act on the current
input. As such, the input-out strict passivity of the plant shown
in the delay-free case would carry over. Given the four possible
C,,s, the sufficient condition of Theorem 1. for the asymptotic
stability of the continuous fuzzy control closed-loop with
delays was met.



IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 34, NO. 1, OCTOBER 2023

Ya(t) e(k)

L Au(k u(k) u(t)

y()

r

Plant

Fig. 5. Discrete Block Diagram III

B. Discrete System

Figure 5 is the discrete equivalents of Figures 4 with u(k) =
u(k—1)+ Au(k) and similarly Ae(k) = e(k) —e(k—1). The
transition from discrete to continuous time for this controller
was achieved via a Zero Order Hold (ZOH), which held the
controller output/ plant input for time At. Additionally, the
assumptions from the continuous case carried over except for,

Aei = eo
—eg = Aé(t, —AbOpear(t), -

Now, examining a discrete version of passivity:
”Consider a discrete system in the state-space form as

z(k+1) = f(z,u), z€R",ueR™ (16)
y = h(z(k),u(k)), yeR™ (17
where f(-,-) and A(-,-) are smooth functions. - - -

Definition 3. System (16) with a properly chosen output
(17) is said to be passive with respect to the supply rate
s(u(k),y(k)) = u(k)Ty(k) € R (k > 0), if there exists
a positive definite function V' with V' (0) = 0, regarded as the
storage function, such that the following inequality is satisfied
for all z(0), and Vk € ZT :=0,1,2, ...

Vi(z(k+1)) = V(z(k)) < s(u(k), y(k)),
Vi (k), Vu(k), Yk

Applying the definition of passivity in the discrete case to the
controller:

+ ea(k)(®(e1(k), e2(k)) — ®(er(k), 0))
> e2(k)®(e(k), 0)
= (e1(k) — ex(k — 1))®(e1(k), 0)

1(k)
= c1(l)2(e1(4),0) = ex(k = 1(es (.0
(e1(k +1)) = V(er(k))

Corollary 2. The memoryless function y = h(k,u(k))
where h [0,00) x R — R is said to be input-
output strictly passive with respect to the supply rate
s(u(k),y(k)) = u(k)Ty(k)—eru(k)? —eay(k)? for €1, €5 > 0,
if s(u(k),y(k)) >0, Vk,Vu(-) [37] [32].

Applying Corollary 2. with the discrete plant, y(k) = u(k),
input-output strict passivity was determined via:

u(k)Ty(k) — exu(k)? — eay(k)? >0
u(k)? — equ(k)? — equ(k)? >
(1— €1 —ex)u(k)? >

,—A dE Line(t), A dE Target(t))

Hence, the sufficient condition of Theorem 1. for the asymp-
totic stability of the discrete fuzzy control closed-loop was
met.

Including delays in the discrete system, the state space form
of the controller became

z(k+1) = f(z(k),wk)) + f(z(k —Tp),u(k))  (18)
y(k) = b (k) u(k)) + h(e(k — T),u(k))  (19)

where
z(k) € R", u(k) € R™, y(k) € R™, and T}, was some

delay s.t. 0 < T,,, < d for d € ZT. The supply rate from
Definition 3. remained s(u,y) = u(k)?y(k). However, x(k+
1) and y(k) changed in accordance with equations (18) and
(19) respectively. As a result, the passivity of the controller
was demonstrated via,

e2(k)ui (k)

= ea(k)(P1(e1(k), e2(k)) + P1(e1(k — T3), e2(k)))

= ea(k)(®(e1(k),0) + P(e1(k —13),0))
e2(k)(®(e1(k), e2(k)) + @(e1(k — T3), e2(k))
®(e1(k),0) — ®(er(k — T3),0))

>€2(/€)(‘I>( 1(k),0) + ®(e1(k — T3),0))

+
= ((er(k) —er(k—1)+ (er(k—T3) —er(k—T5 — 1)

* (P(e1(k),0) + ®(er(k —T3),0))

=(e1(k)+ei(k—T3)—er(k—1)—e1(k—T3—1))

% (®(eq(k),0) + ®(e1(k — T3),0))

=V(ei(k+1)) = V(ew(k))

The discrete plant could not integrate a delay as it was a
memoryless function and thus could only act on the current
input. As such, the input-out-strict passivity of the plant shown
in the delay-free case would carry over. Thus, the sufficient
condition of Theorem 1. for the asymptotic stability of the
discrete fuzzy control closed-loop with delays was met.

IV. EXPERIMENTAL STUDIES
A. Test Courses

The methodology presented in [38] for validating controller
performance was used for both the fuzzy and pure pursuit
controllers. The approach validated controller performance
by testing controllers under a set of path conditions that
emphasized the effects of disturbance rejection, phase lag,
overshoot, etc.

There are no figures in this section associated with blank
versions of each of these test courses. However, each course
is shown in Section V with plots of the vehicle performance
overlayed.

Test Course 1 incorporated above minimum radius turns
that were still relatively sharp. These above minimum radius
turns allowed for a more accurate assessment of RMSE as
a vehicle that could not turn in place could still have zero
error. Accordingly, straightaways were paired with these above
minimum radius turns to evaluate overshoot. This distinction
is more important than it would initially seem, as squaring the
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error term amplifies the errors associated with overshooting.
Test Courses 1 also had both right and left-handed turns,
thus verifying that the vehicle operated identically in both
directions.

Test Course 2 was a figure-eight-like path. The at or above
minimal turn radii of the circles were used to evaluate the
ability of a controller to accommodate the associated steering
disturbances as present in the Maximum Error (ME). Mean-
while, the curvature of this design was useful in evaluating
path phase lag about the curves which could lead to distance
error and thus higher Root Mean Squared Error (RMSE).

Test Course 3 incorporated both oscillatory turning that
invoked phase lag similar to Test Course 2 and the above min-
imum radius turns paired with straightaways of Test Course 1.
Thus, the course allowed for a more holistic examination of
the controllers, given the factors associated with RMSE and
ME discussed above.

B. Pure Pursuit

On each course, the fuzzy controller’s performance was
compared to that of the classical pure pursuit algorithm
implemented in [39]. This choice was made as pure pursuit is
one of the most commonly used waypoint navigation control
algorithms and thus made for an ideal baseline controller.
For that reason and those discussed in the Introduction, the
controller used was the default MATLAB pure pursuit control
block [40]. The geometric structure of the controller is pre-
sented in Figure 6 with: D being the lookahead distance from
the vehicle to the path, a being the angle between the vehicle’s
orientation and D, and r being the radius of the curve that the
vehicle R travels along. Moreover, r is computed using D and
« with the equation r = %@

The lookahead distance was chosen to be 0.5 meters by
sweeping through potential lookahead values while converging
to a straight line with an initial offset. The results of this
experiment were run in simulation. The lookahead value of
0.5 meters was selected because it appeared to have reasonably

Fig. 6. Geometry Used by Pure Pursuit to Determinate Trajectories

small overshoots while also having acceptably fast rise times
and settling distances.

C. Experimental Setup

The experimental results were acquired by running the
Clearpath Jackal on a lightly worn concrete parking lot. An
instance of the Robot Operating System (ROS) ran on the
Clearpath Jackal. Using ROS allowed for both sensor data to
be sent to and commands to be received from an external
laptop. To enable such communication/control, the laptop ran
MATLAB, the MATLAB ROS Toolbox [41], the MATLAB
Fuzzy Logic Toolbox [42], and Simulink. In Simulink, a
subscriber block subscribed to the position and orientation
wheel encoder dead reckoning data from the ROS topic
"jackal_velocity_controller/odom’. Next, these inputs were
converted into vehicle states and a target trajectory. Those were
then fed into the fuzzy controller. The controller proceeded
to determine the angular velocity and linear speed setpoints.
Both the angular velocity and linear speed setpoints were then
published to the ROS topic */emd_vel’ using a publish block.
At the same time, the X position, y position, angular velocity,
and distErr Line were saved to a matrix in MATLAB.

Due to variability in the ROS time, the Course Completion
Times (CCT) were calculated by taking the sum of each
time step’s distance traveled divided by its overall Cartesian
velocity.

The Clearpath Jackal ran at an angular velocity setpoint
ranging between -4 rad/s and 4 rad/s across all three courses.
Meanwhile, the linear speed setpoint ranged between O m/s
and 2 m/s on all courses. This gave the vehicle a theoretical
minimum turn radius of 0.5 m at its top speed.

V. RESULTS

A tabulated set of results for all test courses can be found
in Table X and Table XI. For brevity, exact RMSEs, MEs, and
CCTs are not discussed as the Percent Change (PC) is most
relevant when comparing controllers.

Test Course 1, as seen in Figure 7, and as discussed in
Section IV-A, was designed to examine overshoot on turns
when the vehicle’s turn radius was no longer a factor. In
Figure 7, the VLSF controller outperformed the pure pursuit
controller in terms of overshoot for the first turn while seeing
more overshoot than the pure pursuit on the second turn.

The associated angular control efforts are in Figure 8. The
angular velocity control efforts of the VLSF were remarkably
similar to the CLSF with a fraction of a second more time
used to settle on the end waypoint. Meanwhile, the linear
speed control effort, Figure 8, of the VLSF had dips in speed
associated with each turn and the return to the endpoint.

Numerically, the controller saw an experimental RMSE PC
of —77.6865%. Likewise, the ME PC came out to —74.2644%,
and the CCT PC saw a larger increase than other courses to
7.59544% when compared to the pure pursuit.

Similar trends were seen against the CLSF. Experimen-
tally, values of RMSE PC were at —70.8799%, ME PC at
—68.6296%, and CCT PC at 11.242%.



Time (s)

Fig. 8. Controller Angular Velocity (Bottom, Left Y-Axis) and Linear
Speed (Top, Right Y-Axis) Setpoints on Test Course 1
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TABLE X
CONTROLLER PERFORMANCE RESULTS: PURE PURSUIT AND VARIABLE LINEAR SPEED Fuzzy
Course Pure Pursuit Variable Linear Speed Fuzzy Percent Change
RMSE (m) | Max Error (m) | Time (s) | RMSE (m) | Max Error (m) | Time (s) | RMSE (%) | Max Error (%) | Time (%)
1 0.2922 0.5506 3.5021 0.0652 0.1417 3.7681 -77.687 -74.264 7.5954
2 1.6373 2.6778 14.3836 0.1367 0.2568 10.3042 -91.651 -90.410 N/A
3 0.0901 0.2765 30.2438 0.0736 0.1423 31.6682 -18.313 -48.535 4.7097
TABLE XI
CONTROLLER PERFORMANCE RESULTS: CONSTANT AND VARIABLE LINEAR SPEED FUuzzYy
Course Constant Linear Speed Fuzzy Variable Linear Speed Fuzzy Percent Change
RMSE (m) | Max Error (m) | Time (s) | RMSE (m) | Max Error (m) | Time (s) | RMSE (%) | Max Error (%) | Time (%)
1 0.2239 0.4517 3.3873 0.0652 0.1417 3.768 -70.880 -68.630 11.242
0.2289 0.3039 9.4269 0.1367 0.2568 10.304 -40.280 -15.499 9.3064
3 0.1205 0.2235 29.9869 0.0736 0.1423 31.668 -38.921 -36.331 5.6068
Pure PUrsuit =s=-= Constant LSF Variable LSF | Pure Pursuit --=-- Constant LSF Variable LSF|
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——PPANg === CLSF Ang e VLSF Ang PP Ang  ===-— CLSF Ang «w=\/LSF Ang
Const. Lin VLSF Lin Const. Lin VLSF Lin
: . ; . 4 22
ar J
41.8 3k .8
w - @ 11.6 —
T 6f 1164 T 2} 2
i I £ = 114 E
£ e 5 5
£ 112 € 5 5
w w — —
S i B S £
S 108 8 D - S
[ . o 8
2 106 Bh- £
o £ g —
s ) 10.4 - )
10.2

Time (s)

Fig. 10. Controller Angular Velocity (Bottom, Left Y-Axis) and Linear
Speed (Top, Right Y-Axis) Setpoints on Test Course 2
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Test Course 2, as depicted in Figure 9, and as discussed in
Section IV-A, was designed to assess whether the controllers
experienced non-minimum phase lag due to layout-related
steering disturbance.

The associated angular control efforts can be seen in Figure
10 with the VLSF besting both the pure pursuit and CLSF in
terms of overshoot. As in Test Course 1, the angular velocity
control effort of the VLSF mimicked that of the constant linear
speed fuzzy controller. However, in Figure 10, a moderate
phase lag from the CLSF to the VLSF is present. This was
due to the VLSF slowing down to account for the tight turns
of the course.

In terms of metrics, the VLSF experimentally demonstrated
a large improvement against the pure pursuit. The results
were much larger than Test Course 1 with an RMSE PC
of —91.6509% and an ME PC of —90.41%. The CCT PC
was N/A as the experimental pure pursuit was stopped as it
appeared to be in a loop and thus would be unable to complete
the course in a timely manner.

The experimental errors were smaller when compared to
the CLSF with an RMSE PC of —40.2796%, ME PC of
—15.4985%, and CCT PC of 9.30635%.

A downside of this controller was visible in the poor experi-
mental CCTs mentioned above; that being that on courses near
the scale of the minimum turn radius of a vehicle, the VLSF
controller would see large delays due to the controller’s goal of
improving accuracy at the cost of linear speed, predominately
when turning. As such, this course presented the worst-case
scenario for the controller as the VLSF was encouraged to
reduce its linear speed for the duration of the test course.

Test Course 3, as seen in Figure 11, and as discussed in
Section IV-A, was designed to examine both phase lag and
overshoot, as well as if the two combine to create instability
in the controller.

The associated angular control efforts can be seen in Figure
12 with the variable linear speed fuzzy controller outperform-
ing the pure pursuit controller in terms of both phase lag and
overshoot.

In terms of metrics, the variable linear speed fuzzy con-
troller again had a favorable showing in experiment with an
RMSE PC of —18.313%. The ME PC was also favorable at
—48.5353%, and the CCT PC of 4.70973% remained at a
small positive value.

The variable linear speed fuzzy controller similarly out-
performed the constant linear speed fuzzy controller. The
experimental values were still commendable with an RMSE
PC at —38.9212%, ME PC at —36.3311%, and CCT PC at
5.60678%.

For the pure pursuit controller, the phase lag appeared to
compound linearly on top of the overshoot as compared to the
constant speed fuzzy controller. There was a similar degree
of overshoot observed between the pure pursuit and CLSF.
Although, as demonstrated in Figure 12, the VLSF’s angular
control effort was both lower on turns, Os - 15s, and less
volatile. As well, all three controllers remained stable despite
the increased stress on the pure pursuit, and they all could be
said to perform adequately.
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-15
5 0 5 10 15
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Fig. 11. Vehicle Trajectories on Test Course 3
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Fig. 12. Controller Angular Velocity (Bottom, Left Y-Axis) and Linear
Speed (Top, Right Y-Axis) Setpoints on Test Course 3

VI. CONCLUSION

In this paper, a novel waypoint navigation control algorithm
for a skid-steer vehicle that used an HRBR methodology
with an FRCS was presented. This methodology was used
to reduce the rule-base of the controller and, as a result, the
algorithm’s computational complexity, while simultaneously
increasing the number of input membership functions that
the controller could reasonably accept from two or three
to five plus. This was a substantial improvement that better
allowed the controller to emulate an expert human operator as
it more accurately modeled the complex nonlinear decision-
making that a human uses. The controller also used trape-
zoidal membership functions to mitigate the bang-bang effects
that traditional controllers, especially fuzzy controllers, can
encounter near the zero error state. The symmetric nature
of the rule-base further simplified both the rule-base and
tuning. Additionally, the asymptotic stability of the controller
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and vehicle in series with a well-defined negative feedback
connection was proven in both the continuous and discrete
cases. As a result of all of the above, the Variable Linear
Speed Fuzzy controller was seen in the Results section to
have outperformed the pure pursuit and Constant Linear Speed
Fuzzy controllers in terms of RMSE (avg. 72% and 50%), ME
(avg. 71% and 40%), overshoot, and phase lag with minimal
increases in CCT (6.2% and 8.7%). This is noteworthy as pure
pursuit controllers are a common baseline for waypoint path
following [43].

Future work should include examining optimal tuning meth-
ods while including obstacle avoidance protocols and dynam-
ically adjusting the K values depending on the current speed
of the vehicle.
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