References
1. Bossé, J. T., Janson, H., Sheehan, B. J., Beddek, A. J., Rycroft, A.
N., Simon Kroll, J., & Langford, P. R. (2002). Actinobacillus
pleuropneumoniae : pathobiology and pathogenesis of infection.Microbes and Infection , 4 (2), 225–235.
https://doi.org/10.1016/S1286-4579(01)01534-9
2. Haesebrouck, F., Chiers, K., Van Overbeke, I., & Ducatelle, R.
(1997). Actinobacillus pleuropneumoniae infections in pigs: the
role of virulence factors in pathogenesis and protection.Veterinary Microbiology , 58 (4), 239–249.
https://doi.org/10.1016/S0378-1135(97)00162-4
3. Archambault, M., Harel, J., Gouré, J., Tremblay, Y. D. N., &
Jacques, M. (2012). Antimicrobial susceptibilities and resistance genes
of Canadian isolates of Actinobacillus pleuropneumoniae .Microbial Drug Resistance , 18 (2), 198–206.
https://doi.org/10.1089/mdr.2011.0150
4. Loera-Muro, A., & Angulo, C. (2018). New trends in innovative
vaccine development against Actinobacillus pleuropneumoniae .Veterinary Microbiology , 217 , 66–75.
https://doi.org/10.1016/j.vetmic.2018.02.028
5. Ramjeet, M., Deslandes, V., Gouré, J., & Jacques, M. (2008).Actinobacillus pleuropneumoniae vaccines: from bacterins to new
insights into vaccination strategies. Animal Health Research
Reviews , 9 (1), 25–45. https://doi.org/10.1017/S1466252307001338
6. Frey, J. (1995). Virulence in Actinobacillus pleuropneumoniaeand RTX toxins. Trends in Microbiology , 3 (7), 257–261.
https://doi.org/10.1016/S0966-842X(00)88939-8
7. Tascón, R. I., Vázquez‐Boland, J. A., Gutiérrez‐Martín, C. B.,
Rodríguez‐Barbosa, I., & Rodríguez‐Ferri, E. Z. F. (1994). The RTX
haemolysins ApxI and ApxII are major virulence factors of the swine
pathogen Actinobacillus pleuropneumoniae : evidence from
mutational analysis. Molecular Microbiology , 14 (2),
207–216. https://doi.org/10.1111/j.1365-2958.1994.tb01282.x
8. Gerlach, G. F., Anderson, C., Klashinsky, S., Rossi-Campos, A.,
Potter, A. A., & Willson, P. J. (1993). Molecular characterization of a
protective outer membrane lipoprotein (OmlA) from Actinobacillus
pleuropneumoniae serotype 1. Infection and Immunity ,61 (2), 565–572. https://doi.org/10.1128/iai.61.2.565-572.1993
9. Bunka, S., Christensen, C., Potter, A. A., Willson, P. J., &
Gerlach, G. F. (1995). Cloning and characterization of a protective
outer membrane lipoprotein of Actinobacillus pleuropneumoniaeserotype 5. Infection and Immunity , 63 (7), 2797–2800.
https://doi.org/10.1128/iai.63.7.2797-2800.1995
10. Seo, K.-W., Kim, D.-H., Kim, A. H., Yoo, H.-S., Lee, K.-Y., & Jang,
Y.-S. (2011). Characterization of antigenic determinants in ApxIIA
exotoxin capable of inducing protective immunity to Actinobacillus
pleuropneumoniae challenge. Immunological Investigations ,40 (5), 465–480. https://doi.org/10.3109/08820139.2011.558151
11. Shin, M. K., Kang, M. L., Jung, M. H., Cha, S. Bin, Lee, W. J., Kim,
J. M., Kim, D. H., & Yoo, H. S. (2013). Induction of protective immune
responses against challenge of Actinobacillus pleuropneumoniae by
oral administration with Saccharomyces cerevisiae expressing Apx toxins
in pigs. Veterinary Immunology and Immunopathology ,151 (2), 132–139. https://doi.org/10.1016/j.vetimm.2012.11.003
12. Sun, M., Gao, A. X., Ledesma-Amaro, R., Li, A., Wang, R., Nie, J.,
Zheng, P., Yang, Y., Bai, Z., & Liu, X. (2022). Hypersecretion of OmlA
antigen in Corynebacterium glutamicum through high-throughput
based development process. Applied Microbiology and
Biotechnology , 106 (8), 2953–2967.
https://doi.org/10.1007/s00253-022-11918-x
13. Hemamalini, N., Ezhilmathi, S., & Mercy, A. A. (2020). Recombinant
protein expression optimization in Escherichia coli : A review.Indian Journal of Animal Research , 54 (6), 653–660.
https://doi.org/10.18805/ijar.B-3808
14. Kaur, J., Kumar, A., & Kaur, J. (2018). Strategies for optimization
of heterologous protein expression in E. coli : Roadblocks and
reinforcements. International Journal of Biological
Macromolecules , 106 , 803–822.
https://doi.org/10.1016/j.ijbiomac.2017.08.080
15. Ahmad, I., Nawaz, N., Darwesh, N. M., ur Rahman, S., Mustafa, M. Z.,
Khan, S. B., & Patching, S. G. (2018). Overcoming challenges for
amplified expression of recombinant proteins using Escherichia
coli . Protein Expression and Purification , 144 , 12–18.
https://doi.org/10.1016/j.pep.2017.11.005
16. Rosano, G. L., & Ceccarelli, E. A. (2014). Recombinant protein
expression in Escherichia coli : advances and challenges.Frontiers in Microbiology , 5 , 172.
https://doi.org/10.3389/fmicb.2014.00172
17. Sørensen, H. P., & Mortensen, K. K. (2005). Advanced genetic
strategies for recombinant protein expression in Escherichia
coli . Journal of Biotechnology , 115 (2), 113–128.
https://doi.org/10.1016/j.jbiotec.2004.08.004
18. Seo, S. W., Yang, J. S., Kim, I., Yang, J., Min, B. E., Kim, S., &
Jung, G. Y. (2013). Predictive design of mRNA translation initiation
region to control prokaryotic translation efficiency. Metabolic
Engineering , 15 (1), 67–74.
https://doi.org/10.1016/j.ymben.2012.10.006
19. Sun, M., Gao, X., Zhao, Z., Li, A., Wang, Y., Yang, Y., Liu, X., &
Bai, Z. (2020). Enhanced production of recombinant proteins inCorynebacterium glutamicum by constructing a bicistronic gene
expression system. Microbial Cell Factories , 19 (1), 113.
https://doi.org/10.1186/s12934-020-01370-9
20. Sun, M., Gao, A. X., Li, A., Liu, X., Wang, R., Yang, Y., Li, Y.,
Liu, C., & Bai, Z. (2021). Bicistronic design as recombinant expression
enhancer: characteristics, applications, and structural optimization.Applied Microbiology and Biotechnology , 105 (20),
7709–7720. https://doi.org/10.1007/s00253-021-11611-5
21. Takyar, S., Hickerson, R. P., & Noller, H. F. (2005). mRNA helicase
activity of the ribosome. Cell , 120 (1), 49–58.
https://doi.org/10.1016/j.cell.2004.11.042
22. Liu, X., Zhao, Z., Zhang, W., Sun, Y., Yang, Y., & Bai, Z. (2017).
Bicistronic expression strategy for high-level expression of recombinant
proteins in Corynebacterium glutamicum . Engineering in Life
Sciences , 17 (10), 1118–1125.
https://doi.org/10.1002/elsc.201700087
23. Mukhopadhyay, U. K., & Sahni, G. (2002). An insight into the
possible mechanism of working of two-cistronic gene expression systems
and rational designing of newer systems. Journal of Biosciences ,27 (3), 219–231. https://doi.org/10.1007/BF02704911
24. Zhao, Z., Liu, X., Zhang, W., Yang, Y., Dai, X., & Bai, Z. (2016).
Construction of genetic parts from the Corynebacterium glutamicumgenome with high expression activities. Biotechnology Letters ,38 (12), 2119–2126. https://doi.org/10.1007/s10529-016-2196-y
25. Mutalik, V. K., Guimaraes, J. C., Cambray, G., Lam, C.,
Christoffersen, M. J., Mai, Q. A., Tran, A. B., Paull, M., Keasling, J.
D., Arkin, A. P., & Endy, D. (2013). Precise and reliable gene
expression via standard transcription and translation initiation
elements. Nature Methods , 10 (4), 354–360.
https://doi.org/10.1038/nmeth.2404
26. Baltes, N., Hennig-Pauka, I., & Gerlach, G.-F. (2002). Both
transferrin binding proteins are virulence factors inActinobacillus pleuropneumoniae serotype 7 infection. FEMS
Microbiology Letters , 209 (2), 283–287.
https://doi.org/10.1111/j.1574-6968.2002.tb11145.x
27. Sohoni, S. V., Nelapati, D., Sathe, S., Javadekar-Subhedar, V.,
Gaikaiwari, R. P., & Wangikar, P. P. (2015). Optimization of high cell
density fermentation process for recombinant nitrilase production inE. coli . Bioresource Technology , 188 , 202–208.
https://doi.org/10.1016/j.biortech.2015.02.038
28. Han, S. O., Inui, M., & Yukawa, H. (2008). Effect of carbon source
availability and growth phase on expression of Corynebacterium
glutamicum genes involved in the tricarboxylic acid cycle and
glyoxylate bypass. Microbiology , 154 (10), 3073–3083.
https://doi.org/10.1099/mic.0.2008/019828-0
29. Islam, R. S., Tisi, D., Levy, M. S., & Lye, G. J. (2007). Framework
for the rapid optimization of soluble protein expression inEscherichia coli combining microscale experiments and statistical
experimental design. Biotechnology Progress , 23 (4),
785–793. https://doi.org/10.1021/bp070059a
30. Marx, C. K., Hertel, T. C., & Pietzsch, M. (2007). Soluble
expression of a pro-transglutaminase from Streptomyces mobaraensis inEscherichia coli . Enzyme and Microbial Technology ,40 (6), 1543–1550.
https://doi.org/10.1016/j.enzmictec.2006.10.036
31. Semba, H., Ichige, E., Imanaka, T., Atomi, H., & Aoyagi, H. (2008).
Efficient production of active form of recombinant cassava
hydroxynitrile lyase using Escherichia coli in low-temperature
culture. Applied Microbiology and Biotechnology , 79 (4),
563–569. https://doi.org/10.1007/s00253-008-1464-8
32. Zhang, W., Yang, Y., Liu, X., Liu, C., & Bai, Z. (2019).
Development of a secretory expression system with high compatibility
between expression elements and an optimized host for endoxylanase
production in Corynebacterium glutamicum . Microbial Cell
Factories , 18 (1), 72. https://doi.org/10.1186/s12934-019-1116-y
33. Hunt, I. (2005). From gene to protein: a review of new and enabling
technologies for multi-parallel protein expression. Protein Expr.
Purif. , 40 (1), 1–22. https://doi.org/10.1016/j.pep.2004.10.018
34. Freudl, R. (2017). Beyond amino acids: Use of theCorynebacterium glutamicum cell factory for the secretion of
heterologous proteins. Journal of Biotechnology , 258 ,
101–109. https://doi.org/10.1016/j.jbiotec.2017.02.023
35. Sharifi-Rad, J., Soufi, L., Hoseini-Alfatemi, S. M., Sharifi-Rad,
M., Iriti, M., Sharifi-Rad, M., & Hoseini, M. (2015). Recombinant
Proteins in Escherichia coli : Optimizing Production Strategies.American-Eurasian Journal of Agricultural & Enviroment ,15 (11), 2149–2159.
https://doi.org/10.5829/idosi.aejaes.2015.15.11.96100
36. Sivashanmugam, A., Murray, V., Cui, C., Zhang, Y., Wang, J., & Li,
Q. (2009). Practical protocols for production of very high yields of
recombinant proteins using Escherichia coli . Protein
Science , 18 (5), 936–948. https://doi.org/10.1002/pro.102
37. Schümperli, D., Mckenney, K., Sobieski, D. A., & Rosenberg, M.
(1982). Translational coupling at an intercistronic boundary of theEscherichia coli galactose operon. Cell , 30 (3),
865–871.https://doi.org/10.1016/0092-8674(82)90291-4
38. Duan, Y., Zhai, W., Liu, W., Zhang, X., Shi, J. S., Zhang, X., &
Xu, Z. (2021). Fine-tuning multi-gene clusters via well-characterized
gene expression regulatory elements: case study of the arginine
synthesis pathway in C. glutamicum . ACS Synthetic Biology ,10 (1), 38–48. https://doi.org/10.1021/acssynbio.0c00405