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Key Points: 20 

• The study proposed the integration of GA Algorithm with EPANET hydraulic model. 21 

• The roughness can be optimized by considering pipe’s material and spatial distributions. 22 

• Simulation with the optimized roughness was highly correlated (0.9) with the field data. 23 
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Abstract 33 

The process of calibrating hydraulic models for water distribution systems (WDS) is 34 
crucial during the model-building process, particularly when determining the roughness 35 
coefficients of pipes. However, using a single roughness coefficient based solely on pipe 36 
material can lead to significant variations in frictional head losses. To address this issue and 37 
enhance computational efficiency, this study proposes a single-objective procedure that utilizes 38 
Genetic Algorithm (GA) for optimizing roughness coefficients in the EPANET hydraulic model. 39 
EPANET-GA incorporates an automated calibration process and a User Graphic Interface (GUI) 40 
to analyze the water head pressures of WDS nodes. Notably, the proposed method not only 41 
optimizes roughness coefficients based on pipe material but also spatial characteristics of pipes. 42 
To demonstrate the effectiveness of this method, the study builds a hydraulic analysis model for 43 
the Zhonghe and Yonghe district of the Taipei Water Department, integrating graph theory's 44 
connectivity and the GIS database. The model was optimized with 34,783 node items, 30,940 45 
pipes, and 140 field measurements. Results show that the optimized roughness coefficient 46 
produces a high correlation coefficient (0.9) with the measured data in a certain time slot. 47 
Furthermore, a low standard error (8.93%) was acheived compared to 24-hour monitoring data. 48 
The proposed method was further compared to WaterGEMs, and the study concludes that the 49 
proposed model provides a reliable reference for the design and routing scenario of WDS. 50 
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1 Introduction 55 

In the present day, hydraulic simulation models have become widely utilized for 56 
analyzing the behavior of water distribution systems (WDS), as noted by Zanfei et al. (2020) and 57 
Sitzenfrei et al. (2020). The calibration of water distribution models involves adjusting network 58 
parameters, such as pipe roughness and nodal demand (Savic et al., 2009), to minimize the 59 
disparities between simulated results and real measurements. Over the last thirty years, 60 
calibration has been a popular research topic among WDS analysts, and there have been 61 
numerous publications on this subject in scientific and engineering literature. In their work, 62 
Savic et al. (2009) conducted a comprehensive review of the calibration of water distribution 63 
network models and classified the calibration methods into three categories. 64 

The first category involves iterative procedure models, where unknown parameters are 65 
updated at each iteration by solving the set of steady-state mass balance and energy equations 66 
using obtained water heads and/or flows at nodes (Rahal et al., 1980; Walski, 1983, 1986 & 67 
Bhave, 1988). However, this approach tends to have a slow convergence rate and is only suitable 68 
for handling small-scale problems (Bhave, 1988). 69 

The second category includes explicit models, also known as hydraulic simulation 70 
models, which rely on solving an extended set of steady-state equations that include initial 71 
equations and additional ones derived from available measurements (Zanfei et al., 2020). An 72 
objective function or cost function is typically applied to minimize the disparities between 73 
measured and model-predicted variables (Savic et al., 2009). However, this method requires a  74 



 

large quantity of observation data to accurately estimate calibration parameters (Walski, 2000). 75 
Nevertheless, simplifications of the model should be made to find a reasonable solution. 76 

The third category of calibration methods involves implicit models that are generally 77 
based on optimization techniques. The calibration variables for these models encompass a broad 78 
range of parameters, such as nodal demand and pipe roughness (Wu et al., 2002), or valve status 79 
and leak parameters (Laucelli et al., 2011). A variety of optimization methods have been 80 
employed to address the relevant calibration problem, including the general reduced gradient 81 
method (Shamir, 1974; Lansey & Basnet, 1991), the Gauss-Newton method (Reddy et al., 1996), 82 
the Levenberg-Marquardt method (Liggett & Chen, 1994), the extended complex method of box 83 
(Ormsbee, 1989), linear and non-linear programming (Greco & Del Giudice, 1999), the Kalman 84 
filtering method (Todini, 1999), and the simulated annealing method (Tucciarelli et al., 1999). 85 
However, there are trade-offs and no general guidance exists regarding which optimization 86 
technique is preferable for a specific calibration problem. 87 

Various optimization techniques have been proposed for model calibration utilizing 88 
genetic algorithms (GAs) (Dandy et al., 1996; Savic & Walters, 1995; Vítkovský & Simpson, 89 
1997; Tang et al., 1999; Kapelan, 2002; Vítkovský et al., 2000, 2003; Lingireddy & Ormsbee, 90 
1998; Meirelles et al., 2017; Zanfei et al., 2020). GAs have been shown to be efficient in 91 
assessing sensitivities, managing extensive calibrations, and integrating additional calibration 92 
parameter types and constraints into the optimization process. Recently, researchers have 93 
explored the use of evolutionary computer techniques to calibrate hydraulic models, with a focus 94 
on leakage estimation (Di Nardo et al., 2014; Covelli et al., 2015) and water demand (Do et al., 95 
2016). 96 

However, the roughness coefficient is a primary parameter that contributes to uncertainty 97 
in model outputs, and different equations may yield vastly different estimates of frictional head 98 
losses, depending on the pipe size and water flow rate (Rehan Jamil, 2019; Hashemi et al., 2020). 99 
The Darwin Calibrator in the commercial WaterGEMs has been developed utilizing GA to 100 
enable the adjustment of model parameters and modification of the roughness of pipe groups and 101 
junction demand during the calibration process (Wu, 2004). However, WaterGEM did not 102 
account for the spatial characteristics of pipes in WDS calibration.  103 

Regarding the previous requirements and limitations, this study proposes an enhanced 104 
method that employs Genetic Algorithm to optimize the roughness coefficient while 105 
incorporating the spatial factor and actual junction demand in the EPANET hydraulic model. 106 
Notably, EPANET is a freely available software that models the water quality and hydraulic 107 
behavior of water distribution piping systems (Nallanathel et al., 2018). Furthermore, a case 108 
analysis is carried out in the study to illustrate how the proposed technique can enhance the 109 
operational effectiveness by minimizing the difference between the simulated and observed 110 
values. The proposed method is further compared to WaterGEMs to provides a reliable reference 111 
for the design and routing scenario of WDS. 112 

 113 
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2 Materials and Methods 117 

2.1 Overall concept 118 

This study aims to collaborate with an EPANET-based hydraulic model 119 
algorithm (Shiu et al., 2022), which is a useful and accessible tool for users to build 120 
automated processes and handle critical system parameters, such as nodes, links, 121 
demand, properties, pumps, reservoirs, and roughness. The study presents a modified 122 
approach for calibrating the roughness coefficient in a hydraulic model using a Graphic 123 
User Interface (GUI) and a Genetic Algorithm (GA). GA approach is applied in the field 124 
to reduce the difference between the observed and predicted values, and it can be used as 125 
a valuable reference for future water supply deployment in emergency situations or for 126 
adjusting water supply at monitoring centers. Moreover, the water analysis model can 127 
identify leaking pipe sections in the network, thereby improving the maintenance 128 
efficiency of the pipe network for the adiministation. 129 

Genetic Algorithms (GAs) are biologically motivated adaptive computer 130 
techniques based on natural selection and genetic operators (Wang, 1991; Babovic et al., 131 
1994). These algorithms are often used to solve complex optimization problems (Di 132 
Nardo et al., 2014; Do et al., 2016; Mambretti, S. & E. Orsi, 2016; Meirelles et al., 2017; 133 
Zanfei et al., 2020). The computing framework in this study begins with data 134 
preprocessing, transforming the spatial database of the study area into the initial model, 135 
which includes a set of initial roughness coefficients denoted as C. These coefficients are 136 
estimated using theoretical or empirical formula, such as the Hazen-Williams equation 137 
shown in Equation (1) (Williams et al., 1909), which is an empirical relationship 138 
between the flow of water in a pipe and the physical properties of the pipe, as well as the 139 
pressure drop caused by friction:  140 𝑉 = 𝑘 𝐶 𝑅଴.଺ଷ𝑆଴.ହସ                                                          (1) 141 

where V is velocity (in ft/s for US units, in m/s for SI units), k is a conversion 142 
factor for the unit system (k = 1.318 for US units, k = 0.849 for SI units), R is the 143 
hydraulic radius (in ft for US units, in m for SI units), and S is the slope of the energy 144 
line (head loss per length of pipe or hf/L). 145 

The roughness coefficient C of a pipe is a dimensionless number that depends on 146 
the pipe material, and in this study, the pipe roughness is categorized based on the 147 
fabrication material, including cast iron, plastic, and stainless steel. The roughness of 148 
new cast iron pipes is 130, while the roughness of 20-year-old pipes is 95, and 30-year-149 
old pipes are 82.5. For plastic pipes, regardless of the age, the roughness is set at 150. 150 
For stainless steel pipes, the roughness of new riveted steel pipes is 110. The roughness 151 
of other pipelines is 100 (Williams et al., 1909). 152 

The process of calibration involves adjusting the roughness coefficient value C 153 
through EPANET and optimization techniques to minimize the difference between 154 
predicted pressures P and measured pressures, resulting in the creation of a corrected 155 
INP file for EPANET. Figure 1 illustrates the overall concept, while Equation (2) 156 
represents the objective function used for genetic algorithm correction: 157 



 

F(x) = min ( ∑ (𝑃 − ∆𝑃)ଶ௡ଵ )                                                           (2) 158 

The objective function, F(x), is defined as the minimized sum of nth water 159 
pressure difference squared, where ∆P represents the actual measured value and P 160 
represents the model predicted value. The model predicted value is obtained by adjusting 161 
the C value of each pipeline and substituted into EPANET.dll for calculation. 162 

 163 

2.2 The modified GA operation process 164 

This research developed a modified GA operation, which consists of three stages 165 
as depicted in Figure 2: Data preparation, GA analysis, and Data output. These stages 166 
are further explained below: 167 

1. Data Preparation: 168 

The first stage involves reading the config.ini file to retrieve the initial settings, 169 
followed by inputting the water distribution system (WDS) initialized model (input.inp) 170 
and water pressure measurements (observation.csv) data for the calculation process. The 171 
data is then checked for accuracy before proceeding to the next step. If an error is 172 
detected, the calculation process is terminated. The INP file is then read to obtain 173 
information of the material types of the pipelines, pipeline diameters, pipeline roughness 174 
coefficient (C), and setting the group by diameter and roughness coefficient. 175 

2. GA analysis: 176 

The GA is initialized, and the roughness coefficient (C) of the pipeline in the 177 
input.inp file is automatically imported to the EPANET.dll to perform the analysis. The 178 
percentage of pressure difference is then calculated. If new entities are presented, the 179 
process calculates fitness, performs selection, crossover, mutation, creates a new 180 
generation, and stores the optimized solution in the INP file. 181 

3. Data Output: 182 

The results include three types: reports in TXT format, fitting curves in PNG 183 
format, and statistical charts in PNG format. 184 

2.3 GA Graphic User Interface Design 185 

To enhance the efficiency and ease of use of the calibration software, a graphic 186 
user interface (GUI) was developed using a GA, called WaterCali in this study. The 187 
interface is divided into six sections: the input area, GA parameter settings area, upper 188 
and lower limits of roughness, pipeline grouping settings area (with a focus on the 189 
spatial area), calibration result display area, and function key area. The WaterCali 190 
interface is illustrated in Figure 3 and offers a simple and intuitive user experience. 191 

 192 

 193 

 194 



 

This study proposes four group methods for setting groups in WaterCali, 195 
particularly in spatial groups. In Taipei, for example, the elevation ranges from 0 to 1177 196 
meters. The user can input a GeoJSON file that contains area geometry to restrict the 197 
roughness coefficient (C) to the same area as follows. 198 

 199 

“{ "type": "FeatureCollection", 200 

"name": "A", 201 

"crs": { "type": "name", "properties": { "name": "urn:ogc:def:crs:EPSG::3826" } }, 202 

"features": [ 203 

{ "type": "Feature", "properties": { "id": 0, "area": 131874.60656700001, "perimeter": 204 
1367.29384 }, "geometry": { "type": "Polygon", "coordinates": [ [ [ 300076.488, 2773317.927 ], 205 
[ 299863.84, 2773330.234 ], [ 299770.886, 2773347.906 ], [ 299716.224, 2773429.392 ], [ 206 
299843.986, 2773650.023 ], [ 300018.272, 2773651.079 ], [ 300122.724, 2773642.446 ], [ 207 
300163.252, 2773613.56699999981 ], [ 300200.169, 2773517.413 ], [ 300207.555, 2773403.838 208 
], [ 300185.121, 2773370.367 ], [ 300076.488, 2773317.927 ] ] ] } } ] 209 

} ” 210 

 211 

Once the calibration process is finished, the outcomes are saved in the output 212 
folder located in the data directory, depicted in Figure 4. These outcomes encompass 213 
pressure data, illustrated in Figure 5, INP files for each generation, pipeline groups, and 214 
statistical charts and implementation reports presenting the results of each iteration. 215 

 216 

3 Introduction of case area 217 

 3.1 Introduction of case area 218 

The case study was conducted at Taipei Water Department's Zhonghe and 219 
Yonghe Division. The Zhonghe Booster Station is the primary water supply facility for 220 
the Zhonghe District and Yonghe Division, where the northern side is a relatively low-221 
pressure area, and the water source is derived from two branch lines of the Zhitan Water 222 
Treatment Plant, as illustrated in Figure 6. Table 1 provides some essential details of 223 
Taipei Water Department's Zhonghe and Yonghe Division. 224 

 225 

Table 1. Basic information of study area 226 

Division 
Pipe Length (Km) 

Valve Hydrant Meter Booster 
Station 

Tank 
Volume(t) 

Monitoring 
Point Water-

Distribution  
Water-
Service 

Zhonghe 256 156 3,690 2,542 20,943 1 30,222 5 

Yonghe 143 108 2,552 1,421 15,554 5 



 

3.2 Model establishment 227 

The WISE (Water Intelligent System of Enterprise) platform of the Taipei Water 228 
Department is currently in use, which allows users to select an area on the map and 229 
choose the water demand distribution model, then export the model for further analysis. 230 
The resulting model can be opened in EPANET for analysis, as demonstrated in Figure 231 
7. Following the aforementioned processing and calculations, the input parameter table 232 
for the selected area can be generated, resulting in an EPANET 2.X input file (*.inp). 233 
The INP file for the Zhonghe and Yonghe Division was used to compare the collected 234 
station and equipment data.  235 

 236 

3.3 SCADA data for pre-processing 237 

Hydraulic model calibration is required to process a large amount of Supervisory 238 
Control and Data Acquisition (SCADA) data, including the pressure and flow 239 
measuremens from field pump stations. The SCADA procedures in this study was 240 
organized as follows:  241 

1. Collecting pump station data: collecting pump station data manually according to the 242 
target area for the calibration. To facilitate subsequent data selection and organization, 243 
the recommended data collection interval is once per minute.  244 

2. Calculate the actual water requirement of the pipe network: using Microsoft Excel 245 
(Microsoft, Redmond, WA, USA) for data calculation and organization. The data 246 
required for organization and calculation are inputted into the EPANET to use its 247 
built-in formulas for calculation.  248 

3. Determine the time slot of the maximum water requirement: From the previous 249 
calculation results, the maximum value of water amount is identified, then the 250 
corresponding time slot is used for EPANET at single time period simulation.  251 

4. Obtain the data of all pump stations and monitoring points of the corresponding time 252 
slot: because the basis for single time period simulation has been identified and data of 253 
all pump stations can be established in the EPANET, including the inflows and 254 
outflows, and pressures. Thus, the pressure values of the monitoring points at the 255 
corresponding time slot are listed for comparison and model modification, as shown in 256 
Figure 8.  257 

 258 

3.4 Water Pressure Measurements 259 

According to suggestion of Shiu et al. (2022), the total measured points of this 260 
study is set to 140 to satisfy the measured quantity which is at least 30% of the model 261 
length(km) as following Equation (3): 262 

Pipe length(km) of the Model * 0.3 ≤ Measured Points (∆P)         (3) 263 

In addition, the 140 measured points should be uniformly located in the water 264 
supply zone to understand the distribution of the water supply pressure. In order to 265 



 

prevent the measured error by unexpected valve closing, the measured points were 266 
randomly separated into two groups, red and green triangulars as shown in Figure 9. 267 
Each point was then installed with a pressure sensor to retrieve data more than 48 hours, 268 
the frequency of pressure measurement data recorded once per minute , as shown in 269 
Figure 10. 270 

The time series display the pattern of two groups, as shown in Figure 11(A) and 271 
Figure 11(B). In this case study, the high peak of measured data was about 23:00 and the 272 
low peak is about 22:00. Measuring point No. 058 and 065 have a sharp drop in pressure 273 
at 2021/12/28 at 22:00, as shown in Figure 12, because of the large water consumption 274 
at the same time. It came back to normal suddenly. The water consumption recorded by 275 
the water meter at 22:00 on 2021/12/28 was 51~73% higher than the water consumption 276 
at 22:00 on 2021/12/29. 277 

 278 

3.5 Parametric results for GA 279 

The validated paramters in GA are categorized into three types, as shown in 280 
Table 2 below. For the first type, the generation has been set as 100 and the Roughness 281 
Coefficient C as between 35 and 300 for testing the water head loss being reduced and 282 
reflected in C. In the second type, the generation was 50 and lies between 50 and 150 for 283 
testing the GA performance. In the third type, the generation is set 50 and C between 70 284 
and 150 for imiting the value of  C to get better results.  Type I and II were used to 285 
compare the generation and GA performance, and Type II and III were used for a C 286 
comparison. It reflects that imiting the value of  C can not get better results. 287 

Figure 13 shows that Type I is fit in 45 generations and the mean error rate is 288 
about 11.759%. For Type II, the fitness is shown in 20 generations and the mean error 289 
rate is about 11.765%. In Type III, the result is also fit in 20 generations and the mean 290 
error rate is about 11.844%, as shown in Figure 13. The qualified point in Type I with 291 
113, Type II with 114, and Type III with 110. After comparing with Type I and II, 50 292 
generation is enough for using and comparing with Type II and III shows that the C 293 
between 50 and 150 is better. 294 

Table 2. Scenerio settings for GA 295 

Variable Type I Type II Type III 
Population 1,000 1,000 1,000 
Generation 100 50 50 
Rate Of Crossover 0.8 0.8 0.8 
Rate Of Mutation 0.08 0.08 0.08 
Proportion Of Optimal 0.1 0.1 0.1 
Roughness Coefficient 35 ≤ C ≤ 300 50 ≤ C ≤ 150 70 ≤ C ≤ 150 
Qualified Point 113 114 110 
* If the initial Roughness Coefficient (C) > 140, it will not be modify in GA model. 

 296 



 

4 Results 297 

4.1 Simulation Results before GA Roughness Optimization  298 

Figure 14 shows the distribution of the simulated water pressure with the 299 
previous SCADA pre-processing before the Roughness Coefficient C optimization. 300 
According to the statistical results shown in Table 3, out of the 140 water pressure 301 
measurement points in the Zhonghe and Yonghe Divisions, 64 points have a pressure 302 
difference of less than 0.1 kg/cm2, 44 points have a difference between 0.1 to 0.2 303 
kg/cm2, 18 points are between 0.2 to 0.3 kg/cm2, 8 points are between 0.3 to 0.4 kg/cm2, 304 
and 6 points have a difference greater than 0.4 kg/cm2.  305 

Out of the total, 112 points have a pressure error within ±20%, which accounts 306 
for 80% of the total. The area with the largest difference from the actual measured 307 
pressure is primarily located at the end of the pipeline, as shown in Figure 15. The 308 
pressure at the end of the pipeline is typically lower than in other areas, which causes an 309 
obvious difference error.  310 

Table 3. Statistics of pressure difference before calibration 311 
Water pressure 
Difference 
 (kg/cm

2
) 

Count Percentage 
(%) 

Error 
(%) Count Percentage 

(%) 

< 0.1 64 45.7 10 57 40.7 
0.1～0.2 44 31.4 10-20 55 39.3 
0.2～0.3 18 12.9 More than 20 28 20.0 
0.3～0.4 8 5.7 
More than 0.4 6 4.3 

 312 

4.2 Simulation Results after Roughness Optimization  313 

Table 4 displays the simulation results roughness optimization. Among the 140 314 
water pressure measurement points, 75 points have a pressure difference of less than 0.1 315 
kg/cm2, 39 points are between 0.1~0.2 kg/cm2, 18 points are between 0.2~0.3 kg/cm2, 1 316 
point is between 0.3~0.4 kg/cm2, and 7 points are above 0.4 kg/cm2. 317 

The error within 20% is observed in 114 points, accounting for 81.4% of the 318 
total, and the error of less than 10% increased from 57 points to 70 points, which 319 
suggests a significant improvement in overall pressure difference, as shown in Figure 15. 320 
The points with a larger error are primarily located at the end of the pipeline.  321 

The absolute value of the pressure difference and the error at each point are 322 
closer to the lower range. The calculated correlation coefficient between the mean value 323 
observed and the simulated pressure was 0.9, which is considered good compared to the 324 
research by Kepa (2021). Based on the calibration, the developed EPANET-GA model 325 
was deemed acceptable and represented a reliable representation of the tested water 326 
supply network. 327 



 

Table 4. Statistics of pressure difference after roughness optimization  328 
Water pressure 
Difference 
 (kg/cm2) 

Count Percentage 
(%) 

Error 
(%) Count Percentage 

(%) 

< 0.1 75 53.6 10 70 50 
0.1～0.2 39 27.9 10-20 44 31.4 

0.2～0.3 18 12.8 More than 20 26 81.4 

0.3～0.4 1 0.7 
> 0.4 7 5.0 

 329 

4.3 Comparison with WaterGEMs 330 

To assess the reliability and effectiveness of the proposed method, this study 331 
used both the EPANET-GA and WaterGEMs simulation results with those obtained 332 
from actual measured water pressures. WaterGEMs is a comprehensive and user-333 
friendly decision-support tool for water distribution networks provided by Bentley. This 334 
commercial software is well known to improve the operational strategies of decision 335 
makers, enhance the model-building process, and effectively manage local models (Wu 336 
et al., 2004). Table 5 shows the pressure difference between EPANET-GA after 337 
calibration and WaterGEMs. The results indicate that 112 points have an error within 338 
20%, which accounts for 80% of the total, and 57 points have an error less than 10%. 339 
EPANET-GA outperformed WaterGEMs in terms of accuracy. 340 

Table 5. Comparison of prediction errors of WaterGEMs and EPANET-GA 341 

WaterGEMs EPANET-GA 

Error(%) Count Percentage(%)  Error(%) Count Percentage(%
) 

<10 64 45.7  <10 71 50.0 
10~20 48 34.3  10~20 45 31.4 
> 20 28 20.0  > 20 24 18.6 

 342 

4.4 Assessment of longterm simulation 343 

Based on the previous section's analysis, it was found that the areas with 344 
significant pressure differences before model calibration were mainly located at the end 345 
of the pipeline, as indicated in Figure 17. To assess the reliability of the EPANET-GA 346 
model for long-term simulation, the simulation results were compared with the 347 
monitoring points using 24-hour data, as shown in Figure 18. The EPANET-GA model's 348 
mean error rate after calibration for all monitoring points in 24 hours was 8.93%. 349 

Figure 19 shows a comparison of the pressure difference between EPANET-GA 350 
after calibration with WaterGEMs, with 10 monitoring points used for comparison. The 351 
results indicate that the EPANET-GA method has slightly better performance with an 352 



 

error rate of 8.93%, compared to WaterGEMs with an error rate of 9.00%. When the 353 
monitoring points are near the Pump Station, they tend to yield better simulation results 354 
with an error rate of less than 10%. However, larger error values can still be observed at 355 
the end of the pipe network. 356 

 357 

5 Discussion 358 

This technical article presents three primary topics of discussion. Firstly, EPANET-GA 359 
highlights the importance of adjusting the valve setting for calibrating the water distribution 360 
network model. It is crucial to match the local settings and measurement conditions obtained 361 
from SCADA before initiating GA optimization to achieve optimal simulation results and 362 
streamline the model checking process. Failure to do so may lead to significant effort being 363 
expended to identify problems in the simulation, resulting in mismatched outcomes. 364 

Secondly, measurement points should be randomly selected in a normal distribution 365 
within the pipe network and divided into at least two groups to mitigate the impact of the pipe 366 
network's operations, as previously mentioned. The measurement duration must be at least 48 367 
consecutive hours. 368 

Thirdly, the GA process varies between WaterCali and WaterGEMs. While WaterCali 369 
employs random crossover and mutation techniques, WaterGEMs limits user control of the 370 
random variable and transforms it using Fast Messy Genetic Algorithm. WaterCali also 371 
incorporates the spatial factor in the calibration process, making it better suited for real-world 372 
scenarios and simulations. 373 

6 Conclusions and Suggestions 374 

The proposed methodology involves combining the genetic algorithm (GA) with the 375 
EPANET.dll water analysis library to create EPANET-GA, which enables identification of the 376 
optimal solution that aligns with measured data. The roughness coefficient is adjusted by the GA 377 
through iterations of selection, crossover, and constant mutation. To validate the efficiency of the 378 
pipeline network model and calibration process, results were compared with SCADA monitoring 379 
points at Zhonghe and Yonghe Division. The hydraulic model's preliminary analysis results 380 
indicate a reasonable distribution of water pressure calculated by the Zhonghe and Yonghe 381 
Division model. The results demonstrate a strong correlation coefficient of 0.9 between the 382 
simulated and measured data, a mean error rate of only 8.93% compared to 24-hour monitoring 383 
data, and superior performance compared to WaterGEMs. EPANET-GA can rapidly identify a 384 
range of solutions, not just a single optimal solution. 385 

The case of  the water pressure calculated by EPANET-GA in Zhonghe and Yonghe 386 
Division model indicates that the analysis model could be used in future work programs, such as 387 
Taipei Water Department’s Shilin and Beitou Division, aiding engineers in decision-making and 388 
providing cost-effective solutions. However, the traditional EPANET software currently lacks 389 
model calibration functions, and a plug-in solver is required for operation, which is inconvenient 390 
for ordinary users. Given that commercial software can be expensive, this study provide 391 
WaterCali plugin to share with interested parties requiring reliable water distribution network 392 
calibration. Users can refer to the proposed processes and procedures to quickly construct a 393 
preliminary hydraulic analysis model and adjust parameters as required for future models. 394 
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Figure 1. The proposed EPANET-GA model calibration work flow.





Figure 2. The proposed calibration procedures with GA and EPANET.





Figure 3. WaterCali graphic user interface (GUI).





Figure 4. WaterCali output files.





Figure 5. WaterCali water pressure calculations in an output Excel file.





Figure 6. Water supply and pipeline distribution of the Zhonghe and Yonghe Divisions.





Figure 7. INP network of the Zhonghe and Yonghe Divisions.





Figure 8. Setting Variables and links of Pump in EPANET.





Figure 9. Distribution of measurement points in the Zhonghe and Yonghe Divisions.





Figure 10. Work flow of installing a pressure sensor.





Figure 11. (A)1st Pressure measurement pattern and (B) 2nd Pressure measurement pattern.





Figure 12. 2nd Obnormal point of pressure measurement.





Figure 13. The Fitting Curve With Different GA Types.





Figure 14. Simulated pressure distribution map before roughness optimization.





Figure 15. Pressure difference distribution before roughness optimization.





Figure 16. Pressure difference distribution after roughness optimization.





Figure 17. Specified monitoring points located at the end of the pipeline.





Figure 18. 24-hours pressure comparison between monitoring points and EPANET-GA simulations.





Figure 19. Comparison bewteen WaterGEMs and EPANET-GA.
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