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Abstract17

Evidence from field-scale simulations and on-site observations suggests that multi-scale rock het-18

erogeneities control subsurface fluid flow, and these must be characterised for accurate predictions19

of fluid migration, such as during CO2 sequestration. Recent efforts have focused on continuum20

simulation-based inversion of laboratory observations with X-ray imaging, but models produced in21

this way have been limited in their predictive ability for highly heterogeneous rocks. We address the22

main challenges in this approach through the development of an algorithm that combines a number of23

significant advancements: the use of a 3-parameter capillary pressure model fitting, the implementa-24

tion of spatial heterogeneity in absolute permeability, the constraint of history match iterations based25

on marginal error improvement, and more sophisticated image processing incorporating more of the26

experimental data in the calibration. We demonstrate the major improvement resulting from this27

workflow on five rocks (two sandstones and three carbonates), representing a range of heterogeneous28

properties, some of which could not be previously modeled. The algorithm results in physically29

representative 3D models of all the rock cores, reducing non-systematic error in both calibration and30

prediction of flow properties to a level comparable to the experimental uncertainty.31

Plain Summary32

Porous materials, both natural and man-made, exhibit spatial heterogeneity ranging from rock33

pores to the scales of geological units. Accurately characterising the impact of rock heterogeneity34

on hydrodynamic properties has been extensively studied but remains an open scientific question,35

particularly at the core scale of a few decimeters. This study demonstrates a new approach to36

effectively characterising the flow properties of highly heterogeneous rocks, including sandstone and37

carbonate rocks. This approach overcomes major barriers that previously prevented the succesful38

modelling of highly heterogeneous rocks. As a result, it is now possible to characterise multiphase39

flow property heterogeneity in a wide range of rock types.40
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1 Introduction41

Accurately characterising subsurface multiphase flow in permeable rocks is critical for analysing42

a wide range of natural and engineering phenomena, such as environmental contaminant remediation,43

subsurface energy resource development, and carbon geosequestration for climate change mitigation.44

Difficulties in modeling the physical processes governing fluid flow can lead to inaccurate field-scale45

flow simulations. This issue is prominent at CO2 storage sites, where scientific pilot and industrial46

demonstration projects have demonstrated unexpectedly rapid CO2 migration in directions that are47

difficult to forecast and history match [Halladay et al., 2018]. Heterogeneity in the multiphase48

flow properties, relative permeability and capillary pressure, has been identified as one cause of the49

unexpected flow phenomena observed at field sites [Jackson and Krevor, 2020; Benham et al., 2021].50

However, there are no established workflows to characterise these heterogeneities.51

Core analysis techniques have been developed to characterise the flow properties of subsur-52

face rocks, including porosity, absolute permeability, capillary pressure, and relative permeability53

[Calhoun et al., 1949; Jones and Roszelle, 1978; Ali, 1997; McPhee et al., 2015]. Since the 1970s,54

medical X-ray computed tomography has been used to image multiphase flow experiments, pro-55

viding direct observations of the 3D distribution of porosity and fluid saturation at controlled flow56

conditions [Withjack, 1988]. Computer-based inverse modelling is standard practice to account for57

the effects of boundary conditions on the interpretation of relative permeability from core-flooding58

tests [Archer and Wong, 1973; Nordtvedt et al., 1999; Berg et al., 2021].59

Inverse modeling using X-ray imagery of fluid saturation distributions in core floods has also60

been used to parameterise heterogeneous capillary pressure characteristics in one-dimensional and61

three-dimensional models [Huang et al., 1995; Egermann and Lenormand, 2005; Krause et al.,62

2011, 2013; Kong et al., 2015; Oh et al., 2015; Jackson et al., 2018; Hejazi et al., 2019; Anto-63

Darkwah et al., 2023]. In these approaches, a model is calibrated by scaling spatially varying64

capillary pressure characteristic curves until observed and simulated saturations are matched within65

experimental uncertainty. These models were initially used for the interpretation of core flood tests66

[Huang et al., 1995; Egermann and Lenormand, 2005]. A number of developments have improved67

the history match of models to observed saturation distributions, including multi-parameter fitting68

of capillary pressure curves [Kurotori and Pini, 2021; Anto-Darkwah et al., 2023], the inclusion of69

variation in absolute permeability [Krause et al., 2011], and the extension of the approach to hysteretic70

drainage and imbibition cycles [Anto-Darkwah and Rabinovich, 2022]. Expanding the focus beyond71

history matching observations, Krause et al. [2011, 2013] introduced an iterative history match72
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procedure that resulted in models with predictive capability for estimating upscaled flow properties.73

This was further developed and confirmed to result in physically representative models of sandstone74

rocks with modest heterogeneities [Krause and Benson, 2015; Jackson et al., 2018; Wenck et al.,75

2021]. These predictions can be important for identifying flow properties of heterogeneous rocks in76

the capillary-dominated flow regimes typical of subsurface reservoirs [Jackson and Krevor, 2020].77

However, Wenck et al. [2021] showed that the iterative approach may fail to predict upscaled flow78

properties when applied to highly heterogeneous rocks. More heterogeneous rocks may exhibit strong79

variation in the form of local capillary pressure curves, and competing control of viscous and capillary80

forces on the fluid saturation distribution. Thus the iterative approach for more heterogeneous rocks81

may benefit from the inclusion of multi-parameter capillary pressure fitting, e.g., Kurotori and Pini82

[2021] and spatial variation in absolute permeability, e.g., Krause et al. [2013]. At the same time,83

the introduction of more model parameters brings with it an increased risk of overfitting that must84

be balanced against the systematic errors arising from underparameterisation.85

In this work, we demonstrate that addressing these issues collectively results in a model con-86

struction workflow that can predict upscaled flow properties for sandstone and carbonate rocks with87

a broad range of heterogeneities. We build on the iterative approaches described in Jackson et al.88

[2018] and Wenck et al. [2021], while introducing flexibility in the capillary pressure characteristic89

curve, incorporating a third parameter to control the model curvature following the work of Kurotori90

and Pini [2021]. We reintroduce spatial variation in absolute permeability by utilizing a correlation91

with the capillary pressure. To mitigate potential model overfitting, we introduce a constraint on92

iterations, controlled by the marginal error reduction in the calibration. The resulting algorithm93

minimizes systematic errors to the extent that they are comparable to experimental uncertainty, both94

in model calibration (history match) and predictive capability of upscaled relative permeability.95

Analysis of the fit parameter distribution provides insights into the nature of the model calibrations96

concerning non-uniqueness and over-determination issues.97

2 Methodology98

2.1 Experimental datasets99

Five experimental datasets were studied in this work. They were derived from two sandstone100

and three carbonate rock cores representing a range of heterogeneous properties. The datasets101

comprise observations from steady state core-flooding experiments that were previously performed102

and reported in Reynolds and Krevor [2015]; Reynolds et al. [2018]; Manoorkar et al. [2021]; Wenck103
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et al. [2021]. The experiments co-injected nitrogen and water or CO2 and brine at high (HR) and104

low (LR) flow rates to obtain flow parameters in the viscous-limit (VL) and capillary-limit (CL) flow105

regimes, with capillary number in Table S6 of Wenck et al. [2021]. A medical X-ray CT scanner was106

used to take 3D X-ray images of the cores. Permeability and porosity of the rock cores were measured107

either or with both a permeameter and the core-flooding rig. Mercury intrusion porosimetry (MICP)108

experiments were conducted to obtain the capillary pressure characteristic curves.109

The X-ray imagery obtained from each sample includes dry, water and gas saturated scans, as110

well as scans taken during the co-injection of fluids at ratios, or fractional flows. Each X-ray scan111

was repeated several (5-10) times to enable averaging and reduction of image noise. Both porosity112

(𝜙𝑖) and saturation (𝑆𝑖
𝑓
) in each image voxel in the experiments were calculated in the standard way113

for medical X-ray CT imagery. The average grey values of the X-ray scans of the dry rock (P𝑑),114

single phase saturated scans (P𝑤 and P𝑛𝑤 for wetting and non-wetting phases, respectively), as well115

as partially saturated scans (P 𝑓 , with subscript 𝑓 for fractional flow) were recorded. The greyscale116

values of the CT scans were used to estimate the saturation of each phase at each grid block (𝑖) using117

Equations 1,118

𝜙𝑖 = (P𝑤 − P𝑑)/P0 , 𝑆𝑖𝑓 = (P 𝑓 − P𝑛𝑤)/(P𝑤 − P𝑛𝑤), (1)

where P0 is the difference in grey value between a fluid phase and air.119

2.2 Model calibration120

The first stage in the generation of the numerical model of the rock cores from X-ray imagery121

involves pre-processing the images. The images of the rock core are made of stacks of image slices.122

In each slice, we extracted the section comprising the rock core with a circle pattern by detecting123

the boundary of the core and rubber sleeve, as shown in Figure 1(a). The structural similarity index124

from Wang et al. [2003] was also calculated for different scans to further adjust the core extraction125

locations before averaging the images yielded from repeated scans to reduce the noise.126

Next, numerical continuum models of the rock cores were created from the images. The grid of130

the models was created by meshing the raw X-ray CT imagery to element-based models by applying131

a 3D convolution matrix with a specified element size, Figure 1(b). The size of the element volume,132

Figure 1(c), chosen for the models was guided by combined consideration of the apparent length133

scales of rock heterogeneity, the experimental saturation precision, and the computational cost. The134

element volume must be large enough such that the assumption of a continuum property such as135

permeability is valid, while sufficiently small so that heterogeneities in these properties are captured136
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Figure 1. The upscaled core-scale structure. (a) Raw image from CT scanning with effective domain in the

red circle. (b) 3D porosity field and the cross-sectional map. (c) The upscaled element volume concept (red

square) and the meshed grey image. (d) The cross-sectional average porosity profile from inlet to outlet.

127

128

129

(See Jackson et al. [2018]). The size of the element volume for this work was chosen to be 2 mm137

[Manoorkar et al., 2021; Wenck et al., 2021].138

The initial setup, depicted in Algorithm 1 and Figure S1 of Supplementary Information (S1),139

is followed by the image processing and upscaling of experimental parameters. The porosity field140

obtained from the X-ray imagery (Equation 1) was used to parameterise the model. The inlet141

flux and outlet pressure conditions of the simulation were intended to represent the experiments142

by using two buffer layers with high permeability and zero capillary pressure. To initialise the143

model, the hydrodynamic properties (e.g., permeability, capillary pressure) of local grid blocks were144

approximated based on the parameters of host and neighbouring grids, which we refer to as a cell145

unit in this work. As an alteration, the cell unit can also be implicitly assumed to be a slice of the rock146

core (especially layers perpendicular to the flow direction) through the assumption that the capillary147

pressure in each slice was constant. In the initial model setup, a prior measured capillary pressure148

curve (usually from MICP measurements) was assumed to represent the core-average parameter. The149
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experimental saturation (𝑆𝑖
𝑓
) of the cell unit (rock core slice) is an observed parameter. Therefore,150

in each cell unit, the capillary pressures at distinct fractional flows can be estimated using the whole151

core capillary pressure curve and the phase saturation of the cell unit. Then, experimentally observed152

saturation fields within a cell unit at distinct fractional flows were used to estimate an initial capillary153

pressure - saturation relationship for each grid block. In summary, the initial parameterisation of154

heterogeneous capillary pressure characteristics is based on three observations: an apriori measured155

capillary pressure characteristic curve assumed to represent the rock core as a whole, the average156

saturation within each cell unit to constrain the capillary pressure in that cell unit, and the saturation157

distribution within the cell units to generate the various 𝑃𝑐 − 𝑆𝑤 pairings comprising the capillary158

pressure characteristic curves. Subsequently, the capillary pressure characteristic curves were used159

as matching parameters in a sequential algorithm, described in detail below. We minimise the160

mismatch in observed and simulated local saturation using a capillary pressure function as the tuning161

parameter.162

One of the main advancements highlighted in this work is the introduction of a multi-parameter163

fitting approach for local capillary pressure relationships. The model used in this work was proposed164

by Li [2004] based on the classic Brooks and Corey capillary pressure model [Brooks and Corey,165

1966],166

𝑃𝑐 = 𝑃max

(
1 −

(
1 − 𝛼−𝜆

)
𝑆∗
)− 1

𝜆

, (2)

where 𝛼 = 𝑃𝑒/𝑃max is the ratio of entry capillary pressure to the maximum capillary pressure, 𝜆 is a167

parameter related to the pore throat size distribution, and the wetting phase saturation normalised to168

an irreducible saturation, 𝑆𝑤𝑖 , is 𝑆∗ = (𝑆𝑤 − 𝑆𝑤𝑖)/(1 − 𝑆𝑤𝑖) ∈ [0, 1].169

The parameters used in the fitting are the entry pressure, 𝑃𝑒, the maximum capillary pressure,170

𝑃max, which is the capillary pressure at the residual non-wetting phase saturation, and the model171

curvature 𝜆 which is related to the pore throat size distribution. We use a sequential approach172

in varying these parameters to fit the data to avoid non-uniqueness arising from the simultaneous173

coupling of multiple parameters. We first fit the entry capillary pressure while limiting any variation174

of the other parameters as an initial estimation. Then the maximum capillary pressure and curvature175

are subsequently varied by gradually increasing the range constraint. To mitigate the risk of over-176

fitting, a range limit is implemented when expanding the boundary conditions of fitting parameters177

does not improve the fitting accuracy. The first loop of Algorithm 1 in the SI iterates until the tuning178

results in a saturation distribution achieving the preset tolerance.179
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Subsequently, a second loop is carried out which is the same as the first loop, except that the180

absolute permeability is also varied for each grid block. Permeability is estimated for each grid block181

using a correlation with the porosity and capillary pressure curve developed by Li et al. [2021]. The182

correlation was based on a bundle of tubes and the classic Purcell-Burdine model [Purcell, 1949;183

Burdine, 1953; Nakornthap and Evans, 1986], Equation 3.184

𝑘 = 10.66
𝛽

2𝑛
(𝜎 cos 𝜃)2 𝜙3 (1 − 𝑆𝑤𝑖)3

∫ 1

0

1
𝑃2
𝑐

𝑑𝑆∗. (3)

Combining Equations 2 and 3, results in the basic form of the correlation for absolute perme-185

ability,186

𝑘 = 10.66
𝛽

2𝑛
(𝜎 cos 𝜃)2 𝜙3 (1 − 𝑆𝑤𝑖)3 1

𝑃2
𝑚𝑎𝑥

𝜆

𝜆 + 2
1 − 𝛼−(𝜆+2)

1 − 𝛼−𝜆 . (4)

A more general form of the function was then given by,187

𝑘 = 𝑎1𝜙
𝑎2 (1 − 𝑆𝑤𝑖)𝑎3 1

𝑃
𝑎4
𝑚𝑎𝑥

(
𝜆

𝜆 + 2
1 − 𝛼−(𝜆+2)

1 − 𝛼−𝜆

)𝑎5

. (5)

Li et al. [2021] empirically fit the coefficients in Equation 5 using measurements made on 151188

rock samples across a range of lithologies. In this work, the coefficients 𝑎2 · · ·5 were adopted from189

Li et al. [2021]. The value of 𝑎1 for all grid blocks is shifted such that the absolute permeability of190

the whole core remains equal to the measured value. The updated absolute permeability is utilized191

in subsequent simulations and further affects the sequential capillary pressure fitting.192

While considering relative permeability heterogeneity is a possibility, doing so would necessitate193

the imposition of more experimental constraints. Although models have been developed to correlate194

relative permeability to other properties, particularly the capillary pressure characteristics [Li, 2004],195

these models are less well validated relative to the capillary pressure - permeability relationships. In196

this work, the input relative permeability is the same for all grid blocks throughout the model.197

3 Results and discussions198

The results for the Estaillades Limestone sample are described in detail, followed by a discussion199

of the results for the other rocks. The properties of the sample (absolute permeability, open-source200

image data, MICP data, relative permeability, etc.) can be found in Manoorkar et al. [2021]; Wenck201

et al. [2021]. Using the modified X-ray image processing algorithm, about 82% of the sample202

volume is included in the numerical model, Figure 1. The experimental MICP data was fitted using203

Equation 2 to obtain the whole core reperesentative capillary pressure curve. The viscous limit204
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relative permeability curve was obtained by fitting a Chierici function [Chierici, 1984] to the high205

flow rate (20 mL/min) experimental data and used as input to the simulation.206

After initialising the numerical model, iterations were carried out to match the saturation field207

from low flow rate experiments (0.5 mL/min). The matching results are shown in Figure 2 by visual208

comparison of saturation distributions in 1D and 3D, and by plot of simulated and observed saturation209

values for corresponding locations in the rock and model, respectively. The 3D distribution patterns210

of N2 saturation are visually similar between the experiment and simulations, particularly the larger211

scale features. The slice averaged N2 saturation profile at the final state is shown in Figure 2(b),212

and further shows that the fitting result is able to accurately capture the saturation distribution. The213

goodness of fit is quantified in the graph of Figure 2(a), showing the location by location comparison214

of simulated and observed saturations at all fractional flow stages. The data mostly falls within the215

experimental uncertainty. Experimental N2 saturation and numerical values have a linear dependence216

with a Pearson correlation coefficient of 0.95.217

The saturation distribution is the fitting target to construct the numerical model. The validation218

of the calibrated model comes from its use in predicting the observed relative permeability data for219

the experiment data at the low flow rate, and this is shown in Figure 2 (d). The experimentally derived220

datapoints are direct observations of the average saturation and relative permeability calculated from221

the observed pressure differential using Darcy’s law, and do not use any correction for capillary222

end effects. We are, in essence, predicting the observables of the experiment with the simulation223

to validate our model. The deviation of the data and curves at low fluid flow rates from the data224

and corresponding simulation input obtained at high flow rate (black points and curve in Figure 2225

(d) reflects the combined impact of heterogeneities in the rock, and capillary end effects. From the226

comparison, we can conclude that the low flow rate relative permeability is successfully predicted227

with a correlation coefficient of 0.98.228

The proposed algorithm provides a way to characterise the absolute permeability and capillary229

pressure distribution in the decimeter-scale rock sample, and these results are shown in Figures 2(c),230

(e), and (f). Comparing Figures 2(c) and 1(b), we can observe the entry capillary pressure field231

has a positive relation with porosity distribution in this instance, although this is not imposed by232

the models. There is an imposed correlation between absolute permeability, capillary pressure, and233

porosity from Equation 5, and this can be seen in Figures 2(e) and (f).234
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Figure 2. The results of the history matching, characterisation, and prediction for Estaillades Limestone

sample. (a) The voxel saturation correlation plot comparing the experiment and the simulation based saturations.

The grey bar shows the experimental uncertainty in the estimate of saturation from the imaging. (b) The cross-

sectional average saturation from inlet to outlet at the final state, with 3D saturation distribution from CT

scanning and simulation. (c) The characterisation of capillary heterogeneity using 𝜅, with slice average porosity

embedded. (d) The fitted relative permeability curves at a high flow rate for simulation input, and the comparison

of simulation results and experimental curves at a low flow rate to estimate the prediction. (e) The 3D absolute

permeability field in the characterisation domain. (g) The slice averaged entry capillary pressure (left y axial)

and absolute permeability (right y axial) from inlet to outlet.
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244

245

The algorithm in this study is a multi-parameter non-linear fitting process. To diagnose the246

potential for over-fitting, the cross correlation between porosity, absolute permeability, and capillary247

pressure parameters is calculated using GGally Schloerke et al. [2018]. These are shown in Figure 3.248

As expected, the entry capillary pressure is negatively correlated with porosity. Additionally, among249

all the correlations, the absolute permeability has stronger correlations with porosity, entry capillary,250

and even the curvature characterisation parameter (𝜆), as we derived the values using Equation 5.251

The few systematic errors (Figure 2(a)) and low cross correlations between parameters (Figure 3),252

other than the ones that are imposed, indicate that the model has high fidelity.253
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The results for the other four rocks, two sandstone (Bentheimer and Bunter) rocks and two254

carbonate (Edwards and Indiana) cores, are shown in Figure 4. The 3D porosity, capillary pressure255

and absolute permeability distributions are shown in Figure 5. The calibrated saturation distribution256

and the validating predictions of relative permeability indicate that the constructed models are able257

to represent the salient flow properties of the rocks.258

We now describe the improvements made using this approach relative to past approaches. The259

sandstone rocks in this study were already successfully modelled using the approach of Jackson260

et al. [2018]; Wenck et al. [2021], and benefit marginally from the developments in this work. The261

Bentheimer sandstone is a shallow marine deposit, composed of ∼95% fine to medium-grained262

quartz [Peksa et al., 2015]. The sample is characterised by a layer parallel to the flow direction.263

The modelling of the Bentheimer benefit mostly from the improved image processing algorithm, i.e.,264

incorporating a larger fraction of the imaged sample into the modelling. We successfully characterised265

the laminated structure parallel to the flow direction. The heterogeneity was also reflected in the266

capillary pressure and absolute permeability distribution. The other utilised sandstone, the Bunter267

sandstone, is composed mainly of subangular to subrounded quartz grains with a minor component268

of detrital K-feldspar, clay, as well as carbonate clasts, and exhibits characteristics of early diagenetic269

processes [Brook et al., 2003]. From the characterisation, the chosen Bunter sample shows lamination270

perpendicular to the flow direction. Compared with other carbonate rocks, the two sandstone samples271

have orders of magnitude larger absolute permeability, and smaller variations in the capillary pressure272

characteristics.273

In contrast to the sandstone rocks, modelling of the carbonate rocks was significantly improved274

relative to Wenck et al. [2021]. The Edwards Brown - from the Upper Cretaceous in Texas, USA275

- is mainly composed of ∼90% dolomite and calcite, as well as ∼10% quartz [Lai et al., 2015].276

The sample has decimeter-scale correlated porosity, with low-porosity regions near the outlet of the277

sample, as shown in Figure 5. This is the largest scale correlation among all samples. The capillary278

pressure and absolute permeability field also exhibit strong heterogeneity. The Estaillades rock from279

the Estaillades quarry (SE, France) is a Cretaceous bioclastic limestone with ∼98% calcite, as well280

as ∼2% dolomite, silica and other minerals [Le Guen et al., 2007; Manoorkar et al., 2021]. The281

characterisation (Figures 1 and 2) indicates that the Estaillades sample has centimeter-scale spatial282

correlation lengths in petrophysical parameters. Another carbonate sample (Indiana limestone)283

contains ∼97% calcite, ∼1.2% magnesium carbonate, and other minor components [Churcher et al.,284

1991]. The porosity of the Indiana limestone rock has a millimeter-scale correlation length and the285

smallest variation among three carbonate samples.286
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Figure 4. Rows from top to bottom represent Bentheimer sandstone, Bunter sandstone, Edwards carbonate,

and Indiana carbonate rocks, respectively. Left column: The voxel saturation correlation plot comparing

the experiment and simulated saturations from the calibration stage. Middle column: The fitted relative

permeability curves at a high flow rate for simulation input, and the comparison of predicted simulation results

and experimental curves at a low flow rate. Right column: the cross-sectional average saturation from inlet to

outlet at the final fractional flow.
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Porosity

0.1 ~ 0.27

0.1 ~ 0.18
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0 ~ 190

Absolute permeability (D)
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Figure 5. Rows from top to bottom represent Bentheimer sandstone, Bunter sandstone, Edwards carbonate,

and Indiana carbonate rocks, respectively. Columns from left to right represent the 3D porosity, capillary entry

pressure, and absolute permeability fields.

293

294

295

The improvements in generating physically representative models arose from all of the modi-296

fications introduced in this work. Through changes to the image processing algorithm, the size of297

the characterised domain for the rocks used in this study has been increased from ∼50% to ∼80%,298

compared to previously published results [Jackson et al., 2018; Wenck et al., 2021]. Although the299

expanded domain may lead to more numerical errors, the aligned images more accurately depict the300

experimental situation. A more general capillary pressure model with three fitting parameters was301

used to fit the capillary pressure curve in each local element. Figure S2 in SI illustrates that the local302

capillary pressure property was more reasonably fitted using a combination of entry capillary pres-303

sure, curvature, as well as maximum capillary. The correlation coefficient (𝑅2) increased from 0.75304

to 0.92 for the example cell. The heterogeneous absolute permeability field also led to improvements305

in the relative permeability prediction. Finally, constraints on the number of iterations mitigated306

the potential for over fitting. At this stage, the proposed algorithm represents a versatile approach307
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to creating the physically representative models of a wide range of rock types needed for accurate308

modelling of field scale fluid migration processes.309
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