References
  1. Barton, L. L., & Northup, D. E. (2011). Microbial ecology. John Wiley & Sons.
  2. Arda, H. E., & Walhout, A. J. (2010). Gene-centered regulatory networks. Briefings in functional genomics9(1), 4-12.
  3. Hansen, T. F. (2006). The evolution of genetic architecture. Annu. Rev. Ecol. Evol. Syst.37, 123-157.
  4. Haque, S., Ahmad, J. S., Clark, N. M., Williams, C. M., & Sozzani, R. (2019). Computational prediction of gene regulatory networks in plant growth and development. Current opinion in plant biology47, 96-105.
  5. Deng, Y., Jiang, Y. H., Yang, Y., He, Z., Luo, F., & Zhou, J. (2012). Molecular ecological network analyses. BMC bioinformatics13, 1-20.
  6. Martínez-Espinosa, R. M. (2020). Microorganisms and their metabolic capabilities in the context of the biogeochemical nitrogen cycle at extreme environments. International journal of molecular sciences21(12), 4228.
  7. Berg, G., Köberl, M., Rybakova, D., Müller, H., Grosch, R., & Smalla, K. (2017). Plant microbial diversity is suggested as the key to future biocontrol and health trends. FEMS microbiology ecology93(5).
  8. Abram, F. (2015). Systems-based approaches to unravel multi-species microbial community functioning. Computational and structural biotechnology journal13, 24-32.
  9. Rastogi, G., & Sani, R. K. (2011). Molecular techniques to assess microbial community structure, function, and dynamics in the environment. Microbes and microbial technology: agricultural and environmental applications, 29-57.
  10. Reuter, J. A., Spacek, D. V., & Snyder, M. P. (2015). High-throughput sequencing technologies. Molecular cell58(4), 586-597.
  11. Wu, G., Fanzo, J., Miller, D. D., Pingali, P., Post, M., Steiner, J. L., & Thalacker‐Mercer, A. E. (2014). Production and supply of high‐quality food protein for human consumption: sustainability, challenges, and innovations. Annals of the New York Academy of Sciences1321(1), 1-19.
  12. MacNeil, L. T., & Walhout, A. J. (2011). Gene regulatory networks and the role of robustness and stochasticity in the control of gene expression. Genome research21(5), 645-657.
  13. Erickson, B., & Winters, P. (2012). Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnology journal7(2), 176-185.
  14. Pande, V., Pandey, S. C., Sati, D., Pande, V., & Samant, M. (2020). Bioremediation: an emerging effective approach towards environment restoration. Environmental Sustainability, 3, 91-103.
  15. Urem, M., Świątek‐Połatyńska, M. A., Rigali, S., & van Wezel, G. P. (2016). Intertwining nutrient‐sensory networks and the control of antibiotic production in Streptomyces. Molecular Microbiology102(2), 183-195.
  16. Epihov, D. Z., Saltonstall, K., Batterman, S. A., Hedin, L. O., Hall, J. S., van Breugel, M., … & Beerling, D. J. (2021). Legume–microbiome interactions unlock mineral nutrients in regrowing tropical forests. Proceedings of the National Academy of Sciences118(11), e2022241118.
  17. Dombrowski, N., Donaho, J. A., Gutierrez, T., Seitz, K. W., Teske, A. P., & Baker, B. J. (2016). Reconstructing metabolic pathways of hydrocarbon-degrading bacteria from the Deepwater Horizon oil spill. Nature microbiology1(7), 1-7.
  18. Mooshammer, M., Wanek, W., Hämmerle, I., Fuchslueger, L., Hofhansl, F., Knoltsch, A., … & Richter, A. (2014). Adjustment of microbial nitrogen use efficiency to carbon: nitrogen imbalances regulates soil nitrogen cycling. Nature communications5(1), 3694.
  19. Babu, M. M., Teichmann, S. A., & Aravind, L. (2006). Evolutionary dynamics of prokaryotic transcriptional regulatory networks. Journal of molecular biology358(2), 614-633.
  20. Velvizhi, G., Goswami, C., Shetti, N. P., Ahmad, E., Pant, K. K., & Aminabhavi, T. M. (2022). Valorisation of lignocellulosic biomass to value-added products: Paving the pathway towards low-carbon footprint. Fuel313, 122678.
  21. Saraiva, J. P., Worrich, A., Karakoç, C., Kallies, R., Chatzinotas, A., Centler, F., & Nunes da Rocha, U. (2021). Mining synergistic microbial interactions: a roadmap on how to integrate multi-omics data. Microorganisms9(4), 840.
  22. Yarwood, J. M., McCormick, J. K., & Schlievert, P. M. (2001). Identification of a novel two-component regulatory system that acts in global regulation of virulence factors of Staphylococcus aureus. Journal of bacteriology183(4), 1113-1123.
  23. Abraham, W. R., Nogales, B., Golyshin, P. N., Pieper, D. H., & Timmis, K. N. (2002). Polychlorinated biphenyl-degrading microbial communities in soils and sediments. Current opinion in microbiology5(3), 246-253.
  24. Kreikemeyer, B., McIver, K. S., & Podbielski, A. (2003). Virulence factor regulation and regulatory networks in Streptococcus pyogenes and their impact on pathogen–host interactions. Trends in microbiology11(5), 224-232.
  25. Wallenstein, M. D., & Hall, E. K. (2012). A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry, 109, 35-47.
  26. Hawe, J. S., Theis, F. J., & Heinig, M. (2019). Inferring interaction networks from multi-omics data. Frontiers in genetics10, 535.
  27. Bonneau, R., Facciotti, M. T., Reiss, D. J., Schmid, A. K., Pan, M., Kaur, A., … & Baliga, N. S. (2007). A predictive model for transcriptional control of physiology in a free living cell. Cell131(7), 1354-1365.
  28. Hecker, M., Lambeck, S., Toepfer, S., Van Someren, E., & Guthke, R. (2009). Gene regulatory network inference: data integration in dynamic models—a review. Biosystems96(1), 86-103.
  29. Trivedi, P., Mattupalli, C., Eversole, K., & Leach, J. E. (2021). Enabling sustainable agriculture through understanding and enhancement of microbiomes. New Phytologist230(6), 2129-2147.
  30. Kuramitsu, H. K., He, X., Lux, R., Anderson, M. H., & Shi, W. (2007). Interspecies interactions within oral microbial communities. Microbiology and molecular biology reviews71(4), 653-670.
  31. Lähnemann, D., Köster, J., Szczurek, E., McCarthy, D. J., Hicks, S. C., Robinson, M. D., … & Schönhuth, A. (2020). Eleven grand challenges in single-cell data science. Genome biology21(1), 1-35.
  32. Chan, T. E., Stumpf, M. P., & Babtie, A. C. (2017). Gene regulatory network inference from single-cell data using multivariate information measures. Cell systems5(3), 251-267.
  33. Wakelin, S. A., Colloff, M. J., Harvey, P. R., Marschner, P., Gregg, A. L., & Rogers, S. L. (2007). The effects of stubble retention and nitrogen application on soil microbial community structure and functional gene abundance under irrigated maize. FEMS microbiology ecology59(3), 661-670.
  34. Mardis, E. R. (2008). The impact of next-generation sequencing technology on genetics. Trends in genetics24(3), 133-141.
  35. Castrillo, G., Teixeira, P. J. P. L., Paredes, S. H., Law, T. F., De Lorenzo, L., Feltcher, M. E., … & Dangl, J. L. (2017). Root microbiota drive direct integration of phosphate stress and immunity. Nature543(7646), 513-518.
  36. Sun, W., Xiao, E., Häggblom, M., Krumins, V., Dong, Y., Sun, X., … & Yan, B. (2018). Bacterial survival strategies in an alkaline tailing site and the physiological mechanisms of dominant phylotypes as revealed by metagenomic analyses. Environmental science & technology52(22), 13370-13380.
  37. Alegbeleye, O. O., Opeolu, B. O., & Jackson, V. A. (2017). Polycyclic aromatic hydrocarbons: a critical review of environmental occurrence and bioremediation. Environmental management60, 758-783.
  38. Karig, D. K. (2017). Cell-free synthetic biology for environmental sensing and remediation. Current opinion in biotechnology45, 69-75.
  39. Subramanian, N., Torabi‐Parizi, P., Gottschalk, R. A., Germain, R. N., & Dutta, B. (2015). Network representations of immune system complexity. Wiley Interdisciplinary Reviews: Systems Biology and Medicine7(1), 13-38.
  40. Retanal, C., Ball, B., & Geddes-McAlister, J. (2021). Post-translational modifications drive success and failure of fungal–host interactions. Journal of Fungi7(2), 124.
  41. Yang, Y. X., J Ahammed, G., Wu, C., Fan, S. Y., & Zhou, Y. H. (2015). Crosstalk among jasmonate, salicylate and ethylene signaling pathways in plant disease and immune responses. Current Protein and Peptide Science16(5), 450-461.
  42. Kumar, V., Singh, K., Shah, M. P., Singh, A. K., Kumar, A., & Kumar, Y. (2021). Application of omics technologies for microbial community structure and function analysis in contaminated environment. In Wastewater treatment (pp. 1-40). Elsevier.
  43. Mochida, K., Koda, S., Inoue, K., & Nishii, R. (2018). Statistical and machine learning approaches to predict gene regulatory networks from transcriptome datasets. Frontiers in Plant Science9, 1770.
  44. Ni, Y., Aghamirzaie, D., Elmarakeby, H., Collakova, E., Li, S., Grene, R., & Heath, L. S. (2016). A machine learning approach to predict gene regulatory networks in seed development in Arabidopsis. Frontiers in plant science7, 1936.
  45. Angelini, C., & Costa, V. (2014). Understanding gene regulatory mechanisms by integrating ChIP-seq and RNA-seq data: statistical solutions to biological problems. Frontiers in cell and developmental biology2, 51.
  46. Lowe, E. K., Cuomo, C., & Arnone, M. I. (2017). Omics approaches to study gene regulatory networks for development in echinoderms. Briefings in Functional Genomics16(5), 299-308.
  47. Przybyla, L., & Gilbert, L. A. (2022). A new era in functional genomics screens. Nature Reviews Genetics23(2), 89-103.
  48. Junker, B. H., Klukas, C., & Schreiber, F. (2006). VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC bioinformatics7(1), 1-13.
  49. Eloe-Fadrosh, E. A., Ahmed, F., Babinski, M., Baumes, J., Borkum, M., Bramer, L., … & Fagnan, K. (2022). The National Microbiome Data Collaborative Data Portal: an integrated multi-omics microbiome data resource. Nucleic Acids Research50(D1), D828-D836.
  50. Akers, K., & Murali, T. M. (2021). Gene regulatory network inference in single-cell biology. Current Opinion in Systems Biology26, 87-97.
  51. Katebi, A., Ramirez, D., & Lu, M. (2021). Computational systems‐biology approaches for modeling gene networks driving epithelial–mesenchymal transitions. Computational and systems oncology1(2), e1021.
  52. Thomas, S. A., & Jin, Y. (2014). Reconstructing biological gene regulatory networks: where optimization meets big data. Evolutionary Intelligence7, 29-47.
  53. Derry, S. J., Pea, R. D., Barron, B., Engle, R. A., Erickson, F., Goldman, R., … & Sherin, B. L. (2010). Conducting video research in the learning sciences: Guidance on selection, analysis, technology, and ethics. The journal of the learning sciences19(1), 3-53.
  54. Sevimoglu, T., & Arga, K. Y. (2014). The role of protein interaction networks in systems biomedicine. Computational and structural biotechnology journal11(18), 22-27.
  55. Van Der Wijst, M. G., de Vries, D. H., Brugge, H., Westra, H. J., & Franke, L. (2018). An integrative approach for building personalized gene regulatory networks for precision medicine. Genome medicine10(1), 1-15.