References
- Barton, L. L.,
& Northup, D. E.
(2011). Microbial ecology. John Wiley & Sons.
- Arda, H. E., & Walhout, A. J.
(2010). Gene-centered regulatory networks. Briefings in
functional genomics, 9(1), 4-12.
- Hansen, T. F. (2006). The
evolution of genetic architecture. Annu. Rev. Ecol. Evol.
Syst., 37, 123-157.
- Haque, S., Ahmad, J. S., Clark,
N. M., Williams, C. M., & Sozzani, R. (2019). Computational
prediction of gene regulatory networks in plant growth and
development. Current opinion in plant biology, 47,
96-105.
- Deng, Y., Jiang, Y. H., Yang,
Y., He, Z., Luo, F., & Zhou, J. (2012). Molecular ecological network
analyses. BMC bioinformatics, 13, 1-20.
- Martínez-Espinosa, R. M.
(2020). Microorganisms and their metabolic capabilities in the context
of the biogeochemical nitrogen cycle at extreme
environments. International journal of molecular
sciences, 21(12), 4228.
- Berg, G., Köberl, M., Rybakova,
D., Müller, H., Grosch, R., & Smalla, K. (2017). Plant microbial
diversity is suggested as the key to future biocontrol and health
trends. FEMS microbiology ecology, 93(5).
- Abram, F. (2015). Systems-based
approaches to unravel multi-species microbial community
functioning. Computational and structural biotechnology
journal, 13, 24-32.
- Rastogi, G., & Sani, R. K.
(2011). Molecular techniques to assess microbial community structure,
function, and dynamics in the environment. Microbes and
microbial technology: agricultural and environmental applications,
29-57.
- Reuter, J. A., Spacek, D. V.,
& Snyder, M. P. (2015). High-throughput sequencing
technologies. Molecular cell, 58(4), 586-597.
- Wu, G., Fanzo, J., Miller, D.
D., Pingali, P., Post, M., Steiner, J. L., & Thalacker‐Mercer, A. E.
(2014). Production and supply of high‐quality food protein for human
consumption: sustainability, challenges, and innovations. Annals
of the New York Academy of Sciences, 1321(1), 1-19.
- MacNeil, L. T., & Walhout, A.
J. (2011). Gene regulatory networks and the role of robustness and
stochasticity in the control of gene expression. Genome
research, 21(5), 645-657.
- Erickson, B., & Winters, P.
(2012). Perspective on opportunities in industrial biotechnology in
renewable chemicals. Biotechnology journal, 7(2),
176-185.
- Pande, V., Pandey, S. C., Sati,
D., Pande, V., & Samant, M. (2020). Bioremediation: an emerging
effective approach towards environment
restoration. Environmental Sustainability, 3, 91-103.
- Urem, M., Świątek‐Połatyńska, M. A., Rigali, S., & van Wezel, G. P.
(2016). Intertwining nutrient‐sensory networks and the control of
antibiotic production in Streptomyces. Molecular
Microbiology, 102(2), 183-195.
- Epihov, D. Z., Saltonstall, K., Batterman, S. A., Hedin, L. O., Hall,
J. S., van Breugel, M., … & Beerling, D. J. (2021).
Legume–microbiome interactions unlock mineral nutrients in regrowing
tropical forests. Proceedings of the National Academy of
Sciences, 118(11), e2022241118.
- Dombrowski, N., Donaho, J. A., Gutierrez, T., Seitz, K. W., Teske, A.
P., & Baker, B. J. (2016). Reconstructing metabolic pathways of
hydrocarbon-degrading bacteria from the Deepwater Horizon oil
spill. Nature microbiology, 1(7), 1-7.
- Mooshammer, M., Wanek, W., Hämmerle, I., Fuchslueger, L., Hofhansl,
F., Knoltsch, A., … & Richter, A. (2014). Adjustment of microbial
nitrogen use efficiency to carbon: nitrogen imbalances regulates soil
nitrogen cycling. Nature communications, 5(1), 3694.
- Babu, M. M., Teichmann, S. A., & Aravind, L. (2006). Evolutionary
dynamics of prokaryotic transcriptional regulatory
networks. Journal of molecular biology, 358(2), 614-633.
- Velvizhi, G., Goswami, C., Shetti, N. P., Ahmad, E., Pant, K. K.,
& Aminabhavi, T. M. (2022). Valorisation of lignocellulosic biomass
to value-added products: Paving the pathway towards low-carbon
footprint. Fuel, 313, 122678.
- Saraiva, J. P., Worrich, A., Karakoç, C., Kallies, R., Chatzinotas,
A., Centler, F., & Nunes da Rocha, U. (2021). Mining synergistic
microbial interactions: a roadmap on how to integrate multi-omics
data. Microorganisms, 9(4), 840.
- Yarwood, J. M., McCormick, J. K., & Schlievert, P. M. (2001).
Identification of a novel two-component regulatory system that acts in
global regulation of virulence factors of Staphylococcus
aureus. Journal of bacteriology, 183(4), 1113-1123.
- Abraham, W. R., Nogales, B., Golyshin, P. N., Pieper, D. H.,
& Timmis, K. N. (2002). Polychlorinated biphenyl-degrading microbial
communities in soils and sediments. Current opinion in
microbiology, 5(3), 246-253.
- Kreikemeyer, B., McIver, K. S., & Podbielski, A. (2003). Virulence
factor regulation and regulatory networks in Streptococcus pyogenes
and their impact on pathogen–host interactions. Trends in
microbiology, 11(5), 224-232.
- Wallenstein, M. D., & Hall, E. K. (2012). A trait-based framework for
predicting when and where microbial adaptation to climate change will
affect ecosystem functioning. Biogeochemistry, 109, 35-47.
- Hawe, J. S., Theis, F. J.,
& Heinig, M. (2019). Inferring interaction networks from multi-omics
data. Frontiers in genetics, 10, 535.
- Bonneau, R., Facciotti, M. T.,
Reiss, D. J., Schmid, A. K., Pan, M., Kaur, A., … & Baliga, N. S.
(2007). A predictive model for transcriptional control of physiology
in a free living cell. Cell, 131(7), 1354-1365.
- Hecker, M., Lambeck,
S., Toepfer, S., Van Someren, E., & Guthke, R. (2009). Gene
regulatory network inference: data integration in dynamic models—a
review. Biosystems, 96(1), 86-103.
- Trivedi, P., Mattupalli, C.,
Eversole, K., & Leach, J. E. (2021). Enabling sustainable agriculture
through understanding and enhancement of microbiomes. New
Phytologist, 230(6), 2129-2147.
- Kuramitsu, H. K., He, X., Lux,
R., Anderson, M. H., & Shi, W. (2007). Interspecies interactions
within oral microbial communities. Microbiology and molecular
biology reviews, 71(4), 653-670.
- Lähnemann, D., Köster,
J., Szczurek, E., McCarthy, D. J., Hicks, S. C., Robinson, M. D., …
& Schönhuth, A. (2020). Eleven grand challenges in single-cell data
science. Genome biology, 21(1), 1-35.
- Chan, T. E., Stumpf, M. P.,
& Babtie, A. C. (2017). Gene regulatory network inference from
single-cell data using multivariate information measures. Cell
systems, 5(3), 251-267.
- Wakelin, S. A., Colloff, M. J.,
Harvey, P. R., Marschner, P., Gregg, A. L., & Rogers, S. L. (2007).
The effects of stubble retention and nitrogen application on soil
microbial community structure and functional gene abundance under
irrigated maize. FEMS microbiology ecology, 59(3),
661-670.
- Mardis, E. R. (2008). The
impact of next-generation sequencing technology on
genetics. Trends in genetics, 24(3), 133-141.
- Castrillo, G., Teixeira, P. J.
P. L., Paredes, S. H., Law, T. F., De Lorenzo, L., Feltcher, M. E.,
… & Dangl, J. L. (2017). Root microbiota drive direct integration
of phosphate stress and immunity. Nature, 543(7646),
513-518.
- Sun, W., Xiao, E., Häggblom,
M., Krumins, V., Dong, Y., Sun, X., … & Yan, B. (2018). Bacterial
survival strategies in an alkaline tailing site and the physiological
mechanisms of dominant phylotypes as revealed by metagenomic
analyses. Environmental science & technology, 52(22),
13370-13380.
- Alegbeleye, O. O., Opeolu, B.
O., & Jackson, V. A. (2017). Polycyclic aromatic hydrocarbons: a
critical review of environmental occurrence and
bioremediation. Environmental management, 60, 758-783.
- Karig, D. K. (2017). Cell-free
synthetic biology for environmental sensing and
remediation. Current opinion in biotechnology, 45,
69-75.
- Subramanian, N., Torabi‐Parizi,
P., Gottschalk, R. A., Germain, R. N., & Dutta, B. (2015). Network
representations of immune system complexity. Wiley
Interdisciplinary Reviews: Systems Biology and Medicine, 7(1),
13-38.
- Retanal, C., Ball, B., &
Geddes-McAlister, J. (2021). Post-translational modifications drive
success and failure of fungal–host interactions. Journal of
Fungi, 7(2), 124.
- Yang, Y. X., J Ahammed, G., Wu,
C., Fan, S. Y., & Zhou, Y. H. (2015). Crosstalk among jasmonate,
salicylate and ethylene signaling pathways in plant disease and immune
responses. Current Protein and Peptide Science, 16(5),
450-461.
- Kumar, V., Singh, K., Shah, M.
P., Singh, A. K., Kumar, A., & Kumar, Y. (2021). Application of omics
technologies for microbial community structure and function analysis
in contaminated environment. In Wastewater treatment (pp.
1-40). Elsevier.
- Mochida, K., Koda, S., Inoue,
K., & Nishii, R. (2018). Statistical and machine learning approaches
to predict gene regulatory networks from transcriptome
datasets. Frontiers in Plant Science, 9, 1770.
- Ni, Y., Aghamirzaie,
D., Elmarakeby, H., Collakova, E., Li, S., Grene, R., & Heath, L. S.
(2016). A machine learning approach to predict gene regulatory
networks in seed development in Arabidopsis. Frontiers in plant
science, 7, 1936.
- Angelini, C., & Costa, V.
(2014). Understanding gene regulatory mechanisms by
integrating ChIP-seq and RNA-seq data: statistical solutions to
biological problems. Frontiers in cell and developmental
biology, 2, 51.
- Lowe, E. K., Cuomo, C., &
Arnone, M. I. (2017). Omics approaches to study gene regulatory
networks for development in echinoderms. Briefings in Functional
Genomics, 16(5), 299-308.
- Przybyla, L., & Gilbert, L. A.
(2022). A new era in functional genomics screens. Nature Reviews
Genetics, 23(2), 89-103.
- Junker, B. H., Klukas, C., &
Schreiber, F. (2006). VANTED: a system for advanced data analysis and
visualization in the context of biological networks. BMC
bioinformatics, 7(1), 1-13.
- Eloe-Fadrosh, E. A., Ahmed, F.,
Babinski, M., Baumes, J., Borkum, M., Bramer, L., … & Fagnan, K.
(2022). The National Microbiome Data Collaborative Data Portal: an
integrated multi-omics microbiome data resource. Nucleic Acids
Research, 50(D1), D828-D836.
- Akers, K., & Murali, T. M.
(2021). Gene regulatory network inference in single-cell
biology. Current Opinion in Systems Biology, 26, 87-97.
- Katebi, A., Ramirez, D., & Lu,
M. (2021). Computational systems‐biology approaches for modeling gene
networks driving epithelial–mesenchymal
transitions. Computational and systems oncology, 1(2),
e1021.
- Thomas, S. A., & Jin, Y.
(2014). Reconstructing biological gene regulatory networks: where
optimization meets big data. Evolutionary
Intelligence, 7, 29-47.
- Derry, S. J., Pea, R. D.,
Barron, B., Engle, R. A., Erickson, F., Goldman, R., … & Sherin, B.
L. (2010). Conducting video research in the learning sciences:
Guidance on selection, analysis, technology, and ethics. The
journal of the learning sciences, 19(1), 3-53.
- Sevimoglu,
T., & Arga, K. Y. (2014). The role of protein interaction networks in
systems biomedicine. Computational and structural biotechnology
journal, 11(18), 22-27.
- Van Der Wijst, M. G., de Vries, D. H., Brugge, H., Westra, H. J., &
Franke, L. (2018). An integrative approach for building personalized
gene regulatory networks for precision medicine. Genome
medicine, 10(1), 1-15.