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Key Points:

¢ In midlatitudes summer, future CAPE increases show distributional structure and
it is insufficient to be described with mean changes

+ CAPE shows a strong dependence on “MSE surplus” and this dependence holds
across climate states

« The CAPE distributional shift is well captured by adjusting current climate pro-
files with 3 parameters: surface T and RH, and upper-level T
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Abstract

Convective available potential energy (CAPE), a metric associated with severe weather,

is expected to increase with warming, but we have lacked a framework that describes its
changes in the populated midlatitudes. In the tropics, theory suggests mean CAPE should
rise following the Clausius—Clapeyron (C—-C) relationship at ~6%/K. In the heteroge-
neous midlatitudes, where the mean change is less relevant, we show that CAPE changes
are larger and can be well-described by a simple framework based on moist static energy
(MSE) surplus, which is robust across climate states. This effect is highly general and
holds across both high-resolution nudged regional simulations and free-running global
climate models. The simplicity of this framework means that complex distributional changes
in future CAPE can be well-captured by a simple scaling of present-day data using only
three parameters.

Plain Language Summary

Severe thunderstorms cause substantial damage and may become more destructive
in the future. Because these events are associated with conditions of high “Convective
Available Potential Energy” (CAPE), it is important to understand how CAPE might
increase in a future warmer climate, but existing theories designed for the tropics are not
suitable for the U.S. and similar areas. We find that future changes in CAPE are com-
plex and cannot be predicted based on surface temperature alone, but can be using three
factors: temperature and moisture at the surface and temperature at a higher level. A
single simple framework is able to explain CAPE differences between present and future,
warm and cold regions, or daytime and nighttime.

1 Introduction

Convective Available Potential Energy (CAPE), loosely defined as the vertically
integrated buoyancy of a near-surface air parcel, is a metric closely associated with ex-
treme convective weather events that can cause substantial socioeconomic damages (e.g.,
Johns & Doswell, 1992). CAPE is derived from the difference between the temperature
profile of a parcel rising pseudo-adiabatically from the surface and that of the background
environment (Moncrieff & Miller, 1976), which determines the maximum possible up-
draft velocity during undiluted ascent. In meteorology, CAPE is used to predict thun-
derstorm events and in particular hail (Groenemeijer & van Delden, 2007; Kunz, 2007;
Kaltenbock et al., 2009). Studies have also used the covariate of CAPE and wind shear
to explain differences in thunderstorm frequency across locations (Brooks et al., 2003,
2007) or across climate states (Trapp et al., 2009; Diffenbaugh et al., 2013).

Early efforts to understand CAPE in observations sought to characterize it as a func-
tion of near-surface temperature and moisture (Williams & Renno, 1993; Ye et al., 1998).
More recent studies of CAPE in observations have tended to focus on decadal-scale trends,
often finding large increases. For example, (Gettelman et al., 2002) found trends equiv-
alent to ~50%/K in 15 tropical radiosonde stations. Model studies of CAPE under cli-
mate change have tended to produce smaller effects. Several recent studies that simu-
late the tropics using convection-permitting models (0.2—4 km resolution) without ad-
vection, i.e. approximating radiative-convective equilibrium, find CAPE increases of 8%/K
(Muller et al., 2011), 8%/K (Romps, 2011), 12%/K (Singh & O’Gorman, 2013), 7% /K
(Seeley & Romps, 2015), and 6-7%/K from theory (Romps, 2016). In the midlatitudes,
changes may be larger: both Diffenbaugh et al. (2013) and Chen et al. (2020) show ~10%/K
over the Eastern part of the continental United States. The representation of CAPE changes
is extensively evaluated across CMIP6 models by Lepore et al. (2021), finding 10-14%/K
changes for U.S. and 6-8%/K changes for regions including Europe, India and South-
east Asia.
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Theoretical frameworks to explain climatological CAPE fall into two groups. One
approach assumes that background environmental profiles are fully determined by sur-
face temperature, and predicts them by considering the effects of convective entrainment.
Singh and O’Gorman (2013) proposed a “zero-buoyancy model” based on the assump-
tion that entrainment makes actual buoyancy in an ascending convective plume small
relative to CAPE (with column RH considered fixed). Singh and O’Gorman (2015) and

Zhou and Xie (2019) extended the work and validated the approach under radiative-convective

equilibrium (RCE). However, the theory is not expected to work for midlatitudes land,
which has strong spatial and temporal variations, even though its climatological mean
profile is close to RCE (Miyawaki et al., 2022).

A second approach treats surface and mid-tropospheric conditions as independent
variables. Emanuel and Bister (1996) (henceforth EB96) drew on heat engine theory and
described the relationship as

CAPE = A-(hy — hn) (1)

where hy and h,, are moist static energy (MSE) near the surface (boundary layer) and
in the mid-troposphere, respectively. In this perspective, CAPE represents the maximum
possible kinetic energy that can be released given a heat transfer of (hs—h,,), and CAPE
is generated only when surface MSE exceeds that of a mid-tropospheric threshold. Agard
and Emanuel (2017), Li and Chavas (2021) (hereafter, AE17 and LC21) and Chavas and
Li (2022) modified the approach to use a different threshold term, dry static energy, and
showed that results captured aspects of CAPE variations in the midlatitudes.

We modify the framework based on Emanuel (1994) and use as the threshold term
the minimum “saturation MSE” A} in the mid-troposphere, the moist static energy a
parcel would have if saturated:

CAPE = A - (hs — h*)) (2)

We term the difference hs—h}, the ‘MSE surplus’. The integral form of this expression
can be derived from the definition of CAPE given the assumption that the effect of wa-
ter vapor on buoyancy is negligible. (See Supporting Information Text S1.) We then sim-
plify to a linear dependence (as in e.g. AE17) by replacing the integral with a difference
at a single location. This assumption is valid as long as the shape of the environmen-
tal temperature profile does not vary strongly with hs and can be folded into the slope
A. The rationale for A, as the threshold term can also be expressed intuitively: CAPE
depends only on temperature differences, and above the level of free convection, the ris-
ing parcel is saturated and conserves h*, so its difference with the environment should
be taken with a comparable quantity. Zhang and Boos (2023) used h}, as a threshold
for convective instability over summertime mid-latitude land, but Equation (2) has not
yet been evaluated as a framework for CAPE.

A sufficiently general framework should explain not only average CAPE, or CAPE
in the average profile, but its variations across space and time in the highly heteroge-
neous midlatitudes. This generality is required for any application to extreme weather,
since only the high tail of CAPE is associated with the severe thunderstorms that pro-
duce large socioeconomic impacts. Although no prior work has addressed future changes
in midlatitudes CAPE distributions, studies suggest they may shift in complex ways. For
example, Chen et al. (2020) show that spatial patterns of CAPE changes over North Amer-
ica differ from those of present-day CAPE.

In this work, we use observations and model simulations to evaluate how CAPE
changes under COs-induced warming, and to test whether the relationship of Equation
(2) captures these changes. That is, we ask whether it robustly applies to current and
future CAPE distributions across climate states. Furthermore, we ask whether robust-
ness means that complex distributional changes can be reproduced by as few as three
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parameters derived from regional means. Our goal is to quantify changes in CAPE dis-
tributions in the midlatitudes and to provide a simple framework that explains them.

2 Data and Methods
2.1 Model output

Most analysis here uses high-resolution model output: a paired set of present and
future dynamically downscaled simulations over continental North America from the Weather
Research and Forecasting model (WRF, version 3.4.1) run at 4 km resolution. Both runs
are described in Liu et al. (2017) and are acquired from NCAR RDA (Rasmussen & Liu,
2017). The present-day simulation (CTRL) uses ERA-Interim reanalysis for initial and
boundary conditions and for a large-scale spectral nudging (scales >2000 km) applied
to levels above the planetary boundary layer, to match planetary-scale weather patterns.
Small-scale processes can still evolve freely. The future simulation is a pseudo-global-warming
(PGW) scenario, treated identically but with reanalysis adjusted by a spatially- and temporally-
varying offset derived from the CMIP5 multi-model mean projection under RCP8.5, to
reflect large-scale changes under increased CO2. These runs have been validated against
observations (Wang et al., 2021) and used in studies of future CAPE changes (Sun et
al., 2016; K. L. Rasmussen et al., 2017). In this work, we use the years 2001-2012 and
the equivalent future period.

To test whether results apply generally to a diverse set of free-running models, we
use 11 CMIP6 models, selected based on the availability of the 6-hourly output needed
for CAPE calculation. Model biases range from -60—+1700 J/kg, with the best perfor-
mance (MPI-ESM1-2-LR) comparable to WRF, at ~30 vs. 14 J/kg (Wang et al., 2021;
Chavas & Li, 2022). We use pairs of historical (2005-2014) and ssp585 (2091-2100) sim-
ulations (Eyring et al., 2016). To allow comparison with observations, we subset all model
output to 80 grid points that match International Global Radiosonde Archive (IGRA)
weather stations in North America, as in Wang et al. (2021). For consistency, we cal-
culate surface-based CAPE in all runs using the same python package. For ‘paired’ com-
parisons, we match each profile in CTRL/historical with its equivalent in PGW /ssp585.
As in prior studies, most analyses here use only the summertime (MJJA or JJA), when
convection is most active.

2.2 Methods: regressions and subsetting

All linear fits in this work are made using binned median data, to homogenize CAPE
sampling. All fits are computed using orthogonal distance regression (ODR), which is
most appropriate in conditions where errors in both dependent and independent vari-
ables matter. See Schwarzwald et al. (2021) for discussion of ODR. When fitting to es-
timate the fractional change in CAPE between climate states, we use the entire dataset,
and we divide by the overall mean temperature change (4.65 K in WRF runs) when giv-
ing values in % /K. However, many comparisons focus on convective conditions and there-
fore involve a subset of the data. For regressions of CAPE against MSE surplus, we im-
pose an absolute cut at CAPE >1000 J/kg. In other cases we compute values for pro-
files above the 73rd quantile in CAPE, which corresponds to CAPE >1000 J/kg in the
WRF CTRL run. When constructing synthetic profiles, we apply a temperature offset
derived from profiles with CAPE >73rd percentile in each climate state (3.92 K in WRF
runs), to best capture the change in convective conditions.
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2.3 Synthetic profiles

To help understand the minimal information needed to reproduce future CAPE changes,
we construct three synthetic CAPE distributions based on the WRF CTRL profiles.

1. For Clausius-Clapeyron scaling, shown for illustrative purposes only, we simply mul-
tiply each CTRL CAPE value by 1.33 (= €%061'465 where 6.1%/K is C—C for the
mean temperature of high-CAPE profiles, 301.8 K). We neglect several factors whose
systematic effects on CAPE would largely cancel: the projected rise in the Level
of Neutral Buoyancy (LNB) (40.6%/K); the reduction in surface RH (-0.4%/K),
and treating profiles separately (-0.1%/K).

2. For the constant offset case, we add a fixed temperature offset of 3.92 K to each
CTRL profile at each level from surface to 200 hPa (near the LNB in the mean
CTRL profile), then linearly interpolate to zero change at 75 hPa. We show cases
with and without a surface RH adjustment of -0.9%, the mean change for profiles
with CAPE >73rd quantile.

3. For the lapse rate adjustment case, we modify the constant offset procedure to also
include a change in lapse rate I' = (Ts — T200)/2200. That is, we linearly inter-
polate between a warming of 3.92 K at the surface and a similarly-derived 4.94
K at 200 hPa. We apply the -0.9% surface RH adjustment.

For context, we also show predictions of the SO13 theory under a 4.65 K temperature
rise. We derive entrainment rate parameters of 0.67 and 0.68 for the WRF CTRL and
PGW runs, and use LNB values for each profile. (Singh and O’Gorman (2013) used a
fixed entrainment parameter of 0.75 and a fixed LNB temperature of 200 K.)

3 Results
3.1 Changes in CAPE distributions

We begin our analysis by asking: in midlatitudes model projections, how much and
how does CAPE change with warming? In the WRF model runs, average summertime
CAPE rises by 10% per degree of warming (a 61% increase, from 684 to 1103 J/kg with
a mean surface temperature rise of 4.65 K). However, an alternate approach that em-
phasizes changes in higher-CAPE conditions may be more appropriate, and we use it through-
out this work. We perform an orthogonal regression on the density distributions of paired
profiles in present and future runs, which yields a clear shift upwards even though weather
systems are not identical in the two runs and the scatter is therefore large (Figure 1, left).
The slope yields a CAPE increase of 8.0%/K (45% total). With either method, the change
is larger than in Clausius Clapeyron (6.1%/K) or in the SO13 theory developed for the
tropics (6.0%/K), but smaller than would result from simply changing surface values while
leaving atmospheric profiles unchanged (11.7%/K in the constant offset synthetic, which
adds a single AT to all levels in all profiles). (See Figure S2.) Midlatitudes atmospheric
lapse rates have therefore lessened slightly in the future simulation, as expected.

Distributional effects in future CAPE changes can be readily seen by comparing
values for individual quantiles to the overall regression line (Figure 1, left, dots). The
lower quantiles lie above the regression line and the extreme high-CAPE quantiles (>~3000
J/kg) below it, meaning the future CAPE distribution is narrower than that produced
by a simple mean shift. This relative narrowing manifests as a downward slope in a quan-
tile regression plot, which shows the ratio of individual quantiles of future vs. present-
day CAPE (Figure 1, right). The effect is a necessary result of the nonlinear CAPE -
temperature relationship: a given temperature rise produces a greater effect in low-CAPE
conditions. For this reason, relative narrowing occurs even when surface temperature in-
creases are uniform and environmental profiles do not change (constant offset, green) or
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Figure 1. (Left) Comparison of CAPE in present (CTRL) and future (PGW) model runs as
a density plot of paired profiles (see Methods), showing also the 1:1 line (dashed); the orthogonal
regression (solid); and quantiles of the distribution (large dots, 1% increments from 0-0.99; small
dots 0.1% increments above 0.99). (Right) Quantile ratio plot, constructed by taking the ratio
of future to present CAPE quantiles, showing WRF output (black, same dots as L. panel), the
synthetic datasets C-C' scaling (light blue) and constant offset (green), and for reference SO13
(purple, with changes computed relative to its own CTRL distribution). Gray horizontal line
marks the +45% mean change from the orthogonal regression. Four vertical tick bars mark the
percentiles matching 1000, 2000, 3000, and 4000 J/kg (73.2%, 86.5%, 95.1%, and 98.9%, respec-
tively). The x-axis is truncated to omit quantiles where CTRL CAPE is zero. Changes in WRF

are smaller than those in constant offset, implying some lapse rate adjustment.

in a theoretical approach that does not use observed environmental profiles (SO13, pur-
ple).

3.2 The effect of changes in environmental profiles

We found in section 3.1 that environmental adjustments appear to reduce future
CAPE increases. To isolate this effect, we examine mean CAPE in surface temperature
and humidity (T-H) space, following Wang et al. (2021) (Figure 2). Since surface T and
H uniquely define the moist adiabat on which a parcel rises, a change in CAPE for a given
T—-H is due only to an altered environmental profile. This approach effectively decom-
poses CAPE changes into a sampling effect and a partially compensating lapse rate ef-
fect. In the WRF model runs used here, increased sampling of hot and humid surface
conditions in PGW would more than double CAPE from its CTRL values if environmen-
tal profiles remained constant (Figure 2, top), but environmental changes nearly halve
that increase (Figure 2, bottom). This environmental damping makes future CAPE smaller
for each T—H bin, so that hotter or wetter surface conditions are needed to achieve the
same CAPE.
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Figure 2. Density heatmaps of (top) sampling of T-H bins and (bottom) mean CAPE in
each T-H bin, in CTRL (left) and PGW (right) WRF runs during summer (MJJA). Bins shown
are all those with 3 or more observations. Solid and dashed lines mark RH of 100 and 50%. In
the bottom row, dashed/dotted lines mark CAPE contours at 2000 and 4000 J/kg, with CTRL
contours repeated in PGW panel as gray lines. Although conditions sampled in PGW are hotter
than in CTRL (top), each given T ,H bin is associated with smaller CAPE (bottom).

Most of this damping results from subtle changes in environmental profiles. Lapse
rates across the domain lessen by 3% between CTRL and PGW, from -6.56 to -6.35 K/km
(for the CAPE >73rd quantile subset). However, some damping also occurs even if the
lapse rate distribution remains fixed (Figure S3). Because lapse rates in our domain are
correlated with temperature — binned averages range from -5 K/km at 270 K to over -

7 K/km at 320 K — then as the surface warms, each given temperature become associ-
ated with more stable conditions (Figure S4). The combined result is that CAPE con-
tours in T-H space shift substantially between CTRL and PGW.

We can immediately make two inferences about CAPE changes in our model runs.
First, because CAPE contours align with those of MSE (Figure S5), CAPE in our dataset
must be strongly related to surface MSE. Second, because CAPE contours in T-H space
shift while MSE by definition cannot, this relationship must shift in future simulations.
Both effects are consistent with Equation (2).
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3.3 CAPE-MSE surplus framework

As predicted, the relationship between CAPE and surface MSE is reasonably lin-
ear in each climate state and shifts as the climate warms (Figure 3, top left). That is,
CAPE on average does not develop unless surface MSE (hg) exceeds some threshold, which
changes between present and future simulations. This threshold, the x-intercept of the
fitted regression, matches the mean minimum saturation MSE (h},) in each climate state
to within < 0.3%. When CAPE is plotted against MSE surplus (hs — h},) instead, as
in Equation (2), the relationship becomes robust across climate states and the residual
variance becomes smaller, suggesting that this is a fundamental physical relationship (Fig-
ure 3, top right). On both measures, variance and robustness, the CAPE-MSE surplus
relationship of Equation (2) outperforms the expression based on dry static energy used
in Agard and Emanuel (2017) and Li and Chavas (2021) (Figure S6, which shows both
WRF runs and observations). Fitted slopes are nearly identical in WRF CTRL and PGW
runs and in observations (0.27 in all), and intercepts are nearly zero (0.7, 1.1, and 1.6
kJ/kg for CTRL, PGW, and observations, respectively). In this perspective, the effects
of climate change reduce to a greater sampling of conditions with high MSE surplus.

The relationship described by Equation (2) applies across all models tested and ap-
pears remarkably robust not only across climate states but across locations and times.
It holds in 11 free-running climate models from the CMIP6 archive (Figure 3, bottom),
though they differ strongly in their CAPE distributions and projected changes: mean
values over present-day summertime N. America range from 704 to over 2461 J/kg, and
future changes range from 5-10%/K. Their CAPE-MSE surplus relationships also dif-
fer, with slopes of 0.22 to 0.29. Nevertheless, in each model that relationship remains
constant across climate states. In the WRF model output, fitted slopes to CAPE vs. MSE
surplus remain similar when the dataset is divided by latitude (northern vs. southern
stations), by time of day (daytime vs. nighttime profiles), by interannual variations (anoma-
lously warm vs. cold years), or even by season (winter vs. summer) (Figure S7).

3.4 A 3-parameter transformation

The robustness of Equation (2) across climate states suggests that model-projected
CAPE changes result from relatively simple adjustments. The fitted slope for each model,
A, is a function of the shape of the environmental profile; for A to remain constant, that
shape must not alter much. Changes in CAPE in Equation (2) can then result only from
changes in surface conditions (hs, which depends on surface temperature and humidity),
or in a single metric of temperature in the free troposphere (hZ ). While the quantile ra-
tio plot in Figure 1 shows that transformations based on 1 or 2 parameters are insuffi-
cient for describing CAPE distributional changes, it appears that 3 parameters may be
sufficient.

To construct our scaling, we use the two effects that produce the shift in CAPE
contours in T—H space seen in Section 3.2 — an overall surface warming and a small de-
crease in mean lapse rates — and add the small but significant change in surface relative
humidity in our WRF runs (-0.9%). As described in Methods, we calculate mean changes
in these three parameters across our domain and apply them to the CTRL profiles. This
simple adjustment correctly produces the shifting CAPE-MSE relationship, matching
its slope and x-intercept (Figure 4, left). It also reproduces both the distributional nar-
rowing and the magnitude of CAPE change for the high-CAPE conditions of interest (Fig-
ure 4, right). While midlatitudes CAPE is highly heterogeneous, a relatively straight-
forward transformation can capture its full distributional change in a future warmer cli-
mate.
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>1000 J/kg (CTRL = blue, dotted; PGW = red, solid). Lines are fitted orthogonal regressions.
Color shading increments are 1.5% for the left panel and 0.75% for the right. The CAPE-MSE

surplus relationship is robust across climate states. (Bottom) CAPE-MSE surplus relation-

ships in 11 free-running CMIP6 models and WRF for N. American summertime (JJA), using

all cases where CAPE >500 J/kg. Color shading increments are 0.5% for all models except

EC-Earth3 (0.25%). The CAPE-MSE surplus is robust in all models, even those with with unre-

alistic CAPE.
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Figure 4. Comparison of present and future CAPE in model output (black) and synthetics:
C-C scaling (light blue), constant offset including an RH adjustment (orange), and lapse rate
adjustment (green). (Left) Fitted regression lines of the future CAPE-MSE relationship as in
Figure 3. See Table S1 for slopes and x-intercepts. (Right) Future changes in CAPE as quantile
ratio plots, as in Figure 1. The simple lapse rate adjustment effectively reproduces CAPE distri-

butional changes.

4 Discussion

Increases in severe weather events, which are associated with high CAPE, are a sub-
stantial societal concern under global warming. Their understanding has been hindered
by lack of a widely accepted theory or framework to describe midlatitudes CAPE changes.
Theories developed for the convective tropics (e.g. Singh & O’Gorman, 2013), are not
appropriate for midlatitudes land, where advection and a strong diurnal cycle mean that
the mid-troposphere is often decoupled from the surface (Figure S9). In this work, we
show that Equation (2), a modified version of the heat-engine theory originally proposed
in 1996 (EB96) and of its later extensions (AE17, LC21), provides a compact represen-
tation of midlatitudes CAPE that is robust across space, over diurnal and seasonal cy-
cles, and across climate states.

We term the work developed here a framework rather than a theory because the
transformation requires empirical values and we do not predict the slope A, which ac-
counts for the shape of the environmental profile and is empirically fit. Similarly, AE17
would require an empirical correction to their slope In(T;/T,,) for a realistic moist at-
mosphere. In EB96, by contrast, A is based on thermodynamics and is effectively the
Carnot efficiency of the atmosphere. In our WRF runs, the empirical slope of the CAPE-
MSE relationship is larger than Carnot (0.24, vs. 0.14 for Carnot as defined by EB96),
but this is not a violation of the 2nd Law given our focus on highly convective conditions.

Any transformation that describes changes in midlatitudes CAPE will necessar-
ily require at least three parameters, one more than SO13, because the midlatitudes free
troposphere cannot be predicted from surface T and RH even on average. In this work
we find that only three parameters are required: three regional mean values across our
domain are sufficient to capture the full distributional change in the CAPE >73rd quan-
tile. This result may seem counterintuitive, since present-day North America encompasses
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a wide range of environmental conditions, future climate changes are spatially variable,
and the response of CAPE is highly nonlinear. However, CAPE develops appreciably only
in a relatively restricted subset of T-H space, where changes are more uniform.

The CAPE changes projected in our WRF runs and in most CMIP6 models are
higher than Clausius-Clapeyron, the expectation under RCE. This difference matters for
occurrence of extreme conditions. Incidences of summertime CAPE >2000 J/kg, a commonly-
used threshold for severe weather, rise half again as much in our WRF projections as un-
der C—C scaling (14% in CTRL; >24% in PGW, 20% in C-C). Predicting how these ex-
treme values will affect future severe weather requires also understanding how they will
map to convective updraft velocities, but understanding CAPE changes under COs-induced
warming is a necessary first step. The dependence of CAPE on MSE surplus provides
a simple but robust framework for predicting and understanding that response.

Data Availability Statement

The 4-km WRF Convection-permitting model output is downloaded from NCAR
RDA (https://rda.ucar.edu/datasets/ds612.0/). The IGRA radiosonde data is down-
loaded from NOAA (https://www.ncei.noaa.gov/products/weather-balloon/integrated
-global-radiosonde-archive). CMIP6 model output are acquired from Earth System
Grid Federation (ESGF, https://esgf-node.11lnl.gov/projects/cmip6/).
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