authorea.com/81707

Convergent sequences of real numbers

\[p(1)=1\]

\[p(n)=1-\frac{p(n-1)}{2}\]

Compute and plot p(n) for \(n=1,2,\ldots , 20\). What inference do you draw about the terms p(n)?

\[a(1)=1\]

\[a(n)=\frac{1+1}{(1+a(n-1))}\]

Compute a(n) and \(a(n)^2-2\) for \(n=1,2,\ldots , 20\). What inference do you draw about the terms \(a(n)^2-2\)?

The graph is different with points that are increasing and decreasing. \(a(n)=\frac{1+1}{(1+a(n-1))} \) is a horizontal line while \(a(n)^2-2\) is a more complex solution with a different inf(a(n)) and sup(a(n)).

From the recursive definition of p(n) find an equation for, and so evaluate, a possible limit p for p(n) as n increases without bound. \(p(1)=1\)

\(p(n)=1-\frac{p(n-1)}{2}\)

\[\lim_{n\to\infty} p(n) = p\]

exists then p satisfies \[p = 1 - \frac{p}{2}\] \[p+\frac{p}{2} = 1\] \[\frac{3p}{2} = 1\] \[\frac{2}{3}*\frac{3p}{2} = 1*\frac{2}{3}\] \[p = \frac{2}{3}\]

Show, from the recursive definition of p(n) that \(\vert p(n) - p\vert = \frac{1}{2}\vert p(n-1) - p\vert\) for all \(n \geq 1\). \[p(n)=1-\frac{p(n-1)}{2}\]

\[p(n)-\frac{2}{3} = 1 - \frac{p(n-1)}{2} - \frac{2}{3}\]

\[\frac{1}{3} - \frac{p(n-1)}{2} = -\frac{1}{2}(p(n-1)-\frac{2}{3})\]

Hence \[\vert p(n) - p \vert = \frac{1}{2} \vert p(n-1) - p \vert\]

So show that \(\vert p(n) - p\vert \leq (\frac{1}{2})^{n-1}\) for all \(n \geq\) 1.

We have \[p(1) - p = \frac{1}{3}\] so its true for n = 1

Assume that, for some \(n \geq 1\) \(\vert p(n) -p \vert \leq (\frac{1}{2})^{n-1}\) is true

Then \[\vert p(n+1) - p \vert = \frac{1}{2}\vert p(n-1) - p \vert \leq \frac{1}{2}^{n}\]

Then we have \[\vert p(n) - p \vert \leq \frac{1}{2}^{n-1}\] for all \(n \geq 1 \).

Prove that \(2^{n-1} \geq n\) for all \(n\geq 1\).

This is true fr n = 1.

Assume it’s true for some n.Then \(2^n = 2 * 2^{n-1} \geq 2n \geq n+1\) since \(n \geq 1.\)

Therefore, by induction, \(2^{n-1} \geq n\) for all \(n \geq 1\)Prove that the sequence p(n) converges to p.

Notice that for all \(n \geq 1\), \[\vert p(n) - p \vert \leq \frac{1}{3}(\frac{1}{2})^{n-1} \leq \frac{1}{3n}\]

so given \(\varepsilon > 0\) if we choose \(N > \frac{1}{3\varepsilon}\) then \(\vert p(n) -p\vert \leq\) all \(n \geq N\)

which means that

\[\lim_{n\to\infty} p(n) = p= \frac{2}{3}\]

## Share on Social Media