References
- Underhill, G.H., Peter, G., Chen, C.S. and Bhatia, S.N., (2012).
Bioengineering methods for analysis of cells in vitro. Annual
review of cell and developmental biology , 28 , p.385.
- Mehling, M., (2014). Tay S. Microfluidic cell culture. Curr Opin
Biotechnol , 25 , pp.95-102.
- Esch, E.W., Bahinski, A. and Huh, D., (2015). Organs-on-chips at the
frontiers of drug discovery. Nature reviews Drug discovery ,14 (4), pp.248-260.
- Kimura, H., Yamamoto, T., Sakai, H., Sakai, Y. and Fujii, T., (2008).
An integrated microfluidic system for long-term perfusion culture and
on-line monitoring of intestinal tissue models. Lab on a Chip ,8 (5), pp.741-746.
- Kim, H.J., Huh, D., Hamilton, G. and Ingber, D.E., (2012). Human
gut-on-a-chip inhabited by microbial flora that experiences intestinal
peristalsis-like motions and flow. Lab on a Chip ,12 (12), pp.2165-2174.
- Wu, M.H., Huang, S.B. and Lee, G.B., (2010). Microfluidic cell culture
systems for drug research. Lab on a Chip , 10 (8),
pp.939-956.
- Huh, D., Hamilton, G.A. and Ingber, D.E., (2011). From 3D cell culture
to organs-on-chips. Trends in cell biology , 21 (12),
pp.745-754.
- Marx, U., Andersson, T.B., Bahinski, A., Beilmann, M., Beken, S.,
Cassee, F.R., Cirit, M., Daneshian, M., Fitzpatrick, S., Frey, O. and
Gaertner, C., (2016). Biology-inspired microphysiological system
approaches to solve the prediction dilemma of substance testing.Altex , 33 (3), p.272.
- Morgan, S.J., Elangbam, C.S., Berens, S., Janovitz, E., Vitsky, A.,
Zabka, T. and Conour, L., (2013). Use of animal models of human
disease for nonclinical safety assessment of novel pharmaceuticals.Toxicologic pathology , 41 (3), pp.508-518.
- Vinci, M., Gowan, S., Boxall, F., Patterson, L., Zimmermann, M.,
Lomas, C., Mendiola, M., Hardisson, D. and Eccles, S.A., (2012).
Advances in establishment and analysis of three-dimensional tumor
spheroid-based functional assays for target validation and drug
evaluation. BMC biology , 10 (1), pp.1-21.
- Cheah, L.T., Dou, Y.H., Seymour, A.M.L., Dyer, C.E., Haswell, S.J.,
Wadhawan, J.D. and Greenman, J., (2010). Microfluidic perfusion system
for maintaining viable heart tissue with real-time electrochemical
monitoring of reactive oxygen species. Lab on a Chip ,10 (20), pp.2720-2726.
- Kieninger, J., Weltin, A., Flamm, H. and Urban, G.A., (2018).
Microsensor systems for cell metabolism–from 2D culture to
organ-on-chip. Lab on a Chip , 18 (9), pp.1274-1291.
- Probst, C., Schneider, S. and Loskill, P., (2018). High-throughput
organ-on-a-chip systems: Current status and remaining challenges.Current Opinion in Biomedical Engineering , 6 , pp.33-41.
- Rogal, J., Probst, C. and Loskill, P., (2017). Integration concepts
for multi-organ chips: how to maintain flexibility?!. Future
science OA , 3 (2), p.FSO180.
- Oomen, P.E., Skolimowski, M.D. and Verpoorte, E., (2016). Implementing
oxygen control in chip-based cell and tissue culture systems.Lab on a chip , 16 (18), pp.3394-3414.
- Brennan, M.D., Rexius-Hall, M.L., Elgass, L.J. and Eddington, D.T.,
(2014). Oxygen control with microfluidics. Lab on a Chip ,14 (22), pp.4305-4318.
- Polini, A., Prodanov, L., Bhise, N.S., Manoharan, V., Dokmeci, M.R.
and Khademhosseini, A., (2014). Organs-on-a-chip: a new tool for drug
discovery. Expert opinion on drug discovery , 9 (4),
pp.335-352.
- Weise, F., Fernekorn, U., Hampl, J., Klett, M. and Schober, A.,
(2013). Analysis and comparison of oxygen consumption of HepG2 cells
in a monolayer and three‐dimensional high density cell culture by use
of a matrigrid®. Biotechnology and Bioengineering ,110 (9), pp.2504-2512.
- Zhang, Y.S., Aleman, J., Shin, S.R., Kilic, T., Kim, D., Mousavi
Shaegh, S.A., Massa, S., Riahi, R., Chae, S., Hu, N. and Avci, H.,
(2017). Multisensor-integrated Organs-On-Chips Platform for Automated
and Continual. Situ .
- Shah, P., Fritz, J.V., Glaab, E., Desai, M.S., Greenhalgh, K.,
Frachet, A., Niegowska, M., Estes, M., Jäger, C., Seguin-Devaux, C.
and Zenhausern, F., (2016). A microfluidics-based in vitro model of
the gastrointestinal human–microbe interface. Nature
communications , 7 (1), pp.1-15.
- Domansky, K., Inman, W., Serdy, J., Dash, A., Lim, M.H. and Griffith,
L.G., (2010). Perfused multiwell plate for 3D liver tissue
engineering. Lab on a Chip , 10 (1), pp.51-58.
- McKenzie, J.R., Cognata, A.C., Davis, A.N., Wikswo, J.P. and Cliffel,
D.E., (2015). Real-time monitoring of cellular bioenergetics with a
multianalyte screen-printed electrode. Analytical chemistry ,87 (15), pp.7857-7864.
- Curto, V.F., Marchiori, B., Hama, A., Pappa, A.M., Ferro, M.P.,
Braendlein, M., Rivnay, J., Fiocchi, M., Malliaras, G.G., Ramuz, M.
and Owens, R.M., (2017). Organic transistor platform with integrated
microfluidics for in-line multi-parametric in vitro cell monitoring.Microsystems & nanoengineering , 3 (1), pp.1-12.
- Pohanka, M., (2016). Three-dimensional printing in analytical
chemistry: principles and applications. Analytical Letters ,49 (18), pp.2865-2882.
- Palenzuela, C.L.M. and Pumera, M., (2018). (Bio) Analytical chemistry
enabled by 3D printing: Sensors and biosensors. TrAC Trends in
Analytical Chemistry , 103 , pp.110-118.
- Ambrosi, A. and Pumera, M., (2016). 3D-printing technologies for
electrochemical applications. Chemical Society Reviews ,45 (10), pp.2740-2755.
- Cardoso, R.M., Mendonça, D.M., Silva, W.P., Silva, M.N., Nossol, E.,
da Silva, R.A., Richter, E.M. and Muñoz, R.A., (2018). 3D printing for
electroanalysis: From multiuse electrochemical cells to sensors.Analytica chimica acta , 1033 , pp.49-57.
- Honeychurch, K.C., Rymansaib, Z. and Iravani, P., (2018). Anodic
stripping voltammetric determination of zinc at a 3-D printed carbon
nanofiber–graphite–polystyrene electrode using a carbon
pseudo-reference electrode. Sensors and Actuators B: Chemical ,267 , pp.476-482.
- Rymansaib, Z., Iravani, P., Emslie, E., Medvidović‐Kosanović, M.,
Sak‐Bosnar, M., Verdejo, R. and Marken, F., (2016). All‐polystyrene
3D‐printed electrochemical device with embedded carbon
nanofiber‐graphite‐polystyrene composite conductor.Electroanalysis , 28 (7), pp.1517-1523.
- Manzanares Palenzuela, C.L., Novotný, F., Krupička, P., Sofer, Z. and
Pumera, M., (2018). 3D-printed graphene/polylactic acid electrodes
promise high sensitivity in electroanalysis. Analytical
chemistry , 90 (9), pp.5753-5757.
- O’Neil, G.D., Ahmed, S., Halloran, K., Janusz, J.N., Rodríguez, A. and
Rodríguez, I.M.T., (2019). Single-step fabrication of electrochemical
flow cells utilizing multi-material 3D printing.Electrochemistry Communications , 99 , pp.56-60
- Katseli, V., Economou, A., & Kokkinos, C., (2019). Single-step
fabrication of an integrated 3D-printed device for electrochemical
sensing applications. Electrochemistry Communications, 103 ,
pp.100-103
- Balasubramanian, K., & Burghard, M., (2006). Biosensors based on
carbon nanotubes. Analytical and Bioanalytical
Chemistry, 385 (3), pp.452-468
- Katz, E., & Willner, I., (2004). Biomolecule-functionalized carbon
nanotubes: Applications in
nanobioelectronics. ChemPhysChem, 5 (8), pp.1084-1104.
- Guiseppi-Elie, A., Lei, C., & Baughman, R. H., (2002). Direct
electron transfer of glucose oxidase on carbon nanotubes.Nanotechnology , 13 (5), 559.
- Lee, H., Hong, Y. J., Baik, S., Hyeon, T., & Kim, D. H., (2018).
Enzyme‐based glucose sensor: from invasive to wearable device.Advanced healthcare materials , 7 (8), 1701150.
- Wang, J., (2008). Electrochemical glucose biosensors. Chemical
reviews , 108 (2), pp.814-825.
- Bruen, D., Delaney, C., Florea, L., & Diamond, D., (2017). Glucose
sensing for diabetes monitoring: recent developments. Sensors ,17 (8), 1866.
- Kammerer, S. and Küpper, J.H., (2018). Human hepatocyte systems for in
vitro toxicology analysis. Journal of Cellular Biotechnology ,3 (2), pp.85-93.