References
Alam, N. M., Mills, W. C., 4th, Wong, A. A., Douglas, R. M., Szeto, H.
H., & Prusky, G. T. (2015). A mitochondrial therapeutic reverses visual
decline in mouse models of diabetes. Disease models &
mechanisms , 8 (7), 701–710.
https://doi.org/10.1242/dmm.020248
Allen, M. E., Pennington, E. R., Perry, J. B., Dadoo, S., Makrecka-Kuka,
M., Dambrova, M., Moukdar, F., Patel, H. D., Han, X., Kidd, G. K.,
Benson, E. K., Raisch, T. B., Poelzing, S., Brown, D. A., & Shaikh, S.
R. (2020). The cardiolipin-binding peptide elamipretide mitigates
fragmentation of cristae networks following cardiac ischemia reperfusion
in rats. Communications biology , 3 (1), 389.
https://doi.org/10.1038/s42003-020-1101-3
Birk, A. V., Chao, W. M., Bracken, C., Warren, J. D., & Szeto, H. H.
(2014). Targeting mitochondrial cardiolipin and the cytochrome
c/cardiolipin complex to promote electron transport and optimize
mitochondrial ATP synthesis. British journal of
pharmacology , 171 (8), 2017–2028.
https://doi.org/10.1111/bph.12468
Birk, A. V., Liu, S., Soong, Y., Mills, W., Singh, P., Warren, J. D.,
Seshan, S. V., Pardee, J. D., & Szeto, H. H. (2013). The
mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria
by interacting with cardiolipin. Journal of the American Society
of Nephrology : JASN , 24 (8), 1250–1261.
https://doi.org/10.1681/ASN.2012121216
Brown, D. A., Hale, S. L., Baines, C. P., del Rio, C. L., Hamlin, R. L.,
Yueyama, Y., Kijtawornrat, A., Yeh, S. T., Frasier, C. R., Stewart, L.
M., Moukdar, F., Shaikh, S. R., Fisher-Wellman, K. H., Neufer, P. D., &
Kloner, R. A. (2014). Reduction of early reperfusion injury with the
mitochondria-targeting peptide bendavia. Journal of cardiovascular
pharmacology and therapeutics , 19 (1), 121–132.
https://doi.org/10.1177/1074248413508003
Dai, D. F., Hsieh, E. J., Chen, T., Menendez, L. G., Basisty, N. B.,
Tsai, L., Beyer, R. P., Crispin, D. A., Shulman, N. J., Szeto, H. H.,
Tian, R., MacCoss, M. J., & Rabinovitch, P. S. (2013). Global
proteomics and pathway analysis of pressure-overload-induced heart
failure and its attenuation by mitochondrial-targeted
peptides. Circulation. Heart failure , 6 (5), 1067–1076.
https://doi.org/10.1161/CIRCHEARTFAILURE.113.000406
Daubert, M. A., Yow, E., Dunn, G., Marchev, S., Barnhart, H., Douglas,
P. S., O’Connor, C., Goldstein, S., Udelson, J. E., & Sabbah, H. N.
(2017). Novel Mitochondria-Targeting Peptide in Heart Failure Treatment:
A Randomized, Placebo-Controlled Trial of
Elamipretide. Circulation. Heart failure , 10 (12), e004389.
https://doi.org/10.1161/CIRCHEARTFAILURE.117.004389
Ding, Y., Che, D., Li, C., Cao, J., Wang, J., Ma, P., Zhao, T., An, H.,
& Zhang, T. (2019). Quercetin inhibits Mrgprx2-induced pseudo-allergic
reaction via PLCγ-IP3R related
Ca2+fluctuations. International
immunopharmacology , 66 , 185–197.
https://doi.org/10.1016/j.intimp.2018.11.025
Eirin, A., Ebrahimi, B., Zhang, X., Zhu, X. Y., Woollard, J. R., He, Q.,
Textor, S. C., Lerman, A., & Lerman, L. O. (2014). Mitochondrial
protection restores renal function in swine atherosclerotic renovascular
disease. Cardiovascular research , 103 (4), 461–472.
https://doi.org/10.1093/cvr/cvu157
ELOCON® (mometasone furoate) Cream, 0.1% for topical
use. Prescribing Information. Merck & Co., Inc., May 2018. Available
at:
https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/019625s026lbl.pdf
(accessed 23 Sept 2022).
Gabros, S., Nessel, T. A., & Zito, P. M. (2023). Topical
Corticosteroids. In StatPearls . Treasure Island, Florida:
StatPearls Publishing. Retrieved from
https://www.ncbi.nlm.nih.gov/books/NBK532940/
Grazioli, S., & Pugin, J. (2018). Mitochondrial Damage-Associated
Molecular Patterns: From Inflammatory Signaling to Human
Diseases. Frontiers in immunology , 9 , 832.
https://doi.org/10.3389/fimmu.2018.00832
Grimes, J., Desai, S., Charter, N. W., Lodge, J., Moita Santos, R.,
Isidro-Llobet, A., Mason, A. M., Wu, Z., Wolfe, L. A., 3rd,
Anantharaman, L., Green, A., Bridges, A. M., Dalmas Wilk, D. A., &
Brown, A. J. (2019). MrgX2 is a promiscuous receptor for basic peptides
causing mast cell pseudo-allergic and anaphylactoid
reactions. Pharmacology research & perspectives , 7 (6),
e00547. https://doi.org/10.1002/prp2.547
Hasbak, P., Eskesen, K., Lind, H., Holst, J., & Edvinsson, L. (2006).
The vasorelaxant effect of adrenomedullin, proadrenomedullin N-terminal
20 peptide and amylin in human skin. Basic & clinical
pharmacology & toxicology , 99 (2), 162–167.
https://doi.org/10.1111/j.1742-7843.2006.pto_465.x
Karaa, A., Haas, R., Goldstein, A., Vockley, J., & Cohen, B. H. (2020).
A randomized crossover trial of elamipretide in adults with primary
mitochondrial myopathy. Journal of cachexia, sarcopenia and
muscle , 11 (4), 909–918.
https://doi.org/10.1002/jcsm.12559
Karaa, A., Haas, R., Goldstein, A., Vockley, J., Weaver, W. D., &
Cohen, B. H. (2018). Randomized dose-escalation trial of elamipretide in
adults with primary mitochondrial
myopathy. Neurology , 90 (14), e1212–e1221.
https://doi.org/10.1212/WNL.0000000000005255
Manczak, M., Mao, P., Calkins, M. J., Cornea, A., Reddy, A. P., Murphy,
M. P., Szeto, H. H., Park, B., & Reddy, P. H. (2010).
Mitochondria-targeted antioxidants protect against amyloid-beta toxicity
in Alzheimer’s disease neurons. Journal of Alzheimer’s disease :
JAD , 20 Suppl 2 (Suppl 2), S609–S631.
https://doi.org/10.3233/JAD-2010-100564
McNeil B. D. (2021). Minireview: Mas-related G protein-coupled receptor
X2 activation by therapeutic drugs. Neuroscience
letters , 751 , 135746.
https://doi.org/10.1016/j.neulet.2021.135746
McNeil B. D. (2021). MRGPRX2 and Adverse Drug Reactions. Frontiers
in immunology , 12 , 676354.
https://doi.org/10.3389/fimmu.2021.676354
McNeil, B. D., Pundir, P., Meeker, S., Han, L., Undem, B. J., Kulka, M.,
& Dong, X. (2015). Identification of a mast-cell-specific receptor
crucial for pseudo-allergic drug
reactions. Nature , 519 (7542), 237–241.
https://doi.org/10.1038/nature14022
Mettu, P. S., Allingham, M. J., & Cousins, S. W. (2021). Phase 1
Clinical Trial of Elamipretide in Dry Age-Related Macular Degeneration
and Noncentral Geographic Atrophy: ReCLAIM NCGA
Study. Ophthalmology science , 2 (1), 100086.
https://doi.org/10.1016/j.xops.2021.100086
Mitchell, W., Ng, E. A., Tamucci, J. D., Boyd, K. J., Sathappa, M.,
Coscia, A., Pan, M., Han, X., Eddy, N. A., May, E. R., Szeto, H. H., &
Alder, N. N. (2020). The mitochondria-targeted peptide SS-31 binds lipid
bilayers and modulates surface electrostatics as a key component of its
mechanism of action. The Journal of biological
chemistry , 295 (21), 7452–7469.
https://doi.org/10.1074/jbc.RA119.012094
Motakis, E., Guhl, S., Ishizu, Y., Itoh, M., Kawaji, H., de Hoon, M.,
Lassmann, T., Carninci, P., Hayashizaki, Y., Zuberbier, T., Forrest, A.
R., Babina, M., & FANTOM consortium (2014). Redefinition of the human
mast cell transcriptome by deep-CAGE
sequencing. Blood , 123 (17), e58–e67.
https://doi.org/10.1182/blood-2013-02-483792
Nickel, A., Kohlhaas, M., & Maack, C. (2014). Mitochondrial reactive
oxygen species production and elimination. Journal of molecular
and cellular cardiology , 73 , 26–33.
https://doi.org/10.1016/j.yjmcc.2014.03.011
Roshanravan, B., Liu, S. Z., Ali, A. S., Shankland, E. G., Goss, C.,
Amory, J. K., Robertson, H. T., Marcinek, D. J., & Conley, K. E.
(2021). In vivo mitochondrial ATP production is improved in older adult
skeletal muscle after a single dose of elamipretide in a randomized
trial. PloS one , 16 (7), e0253849.
https://doi.org/10.1371/journal.pone.0253849
Saad, A., Herrmann, S. M. S., Eirin, A., Ferguson, C. M., Glockner, J.
F., Bjarnason, H., McKusick, M. A., Misra, S., Lerman, L. O., & Textor,
S. C. (2017). Phase 2a Clinical Trial of Mitochondrial Protection
(Elamipretide) During Stent Revascularization in Patients With
Atherosclerotic Renal Artery Stenosis. Circulation. Cardiovascular
interventions , 10 (9), e005487.
https://doi.org/10.1161/CIRCINTERVENTIONS.117.005487
Sabbah, H. N., Gupta, R. C., Singh-Gupta, V., & Zhang, K. (2019).
Effects of elamipretide on skeletal muscle in dogs with experimentally
induced heart failure. ESC heart failure , 6 (2), 328–335.
https://doi.org/10.1002/ehf2.12408
Sicari, V., & Zabbo, C. P. (2022). Diphenhydramine.
In StatPearls . Treasure Island, Florida: StatPearls Publishing.
Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK526010/.
Siegel, M. P., Kruse, S. E., Percival, J. M., Goh, J., White, C. C.,
Hopkins, H. C., Kavanagh, T. J., Szeto, H. H., Rabinovitch, P. S., &
Marcinek, D. J. (2013). Mitochondrial-targeted peptide rapidly improves
mitochondrial energetics and skeletal muscle performance in aged
mice. Aging cell , 12 (5), 763–771.
https://doi.org/10.1111/acel.12102
Spada, F., Barnes, T. M., & Greive, K. A. (2018). Comparative safety
and efficacy of topical mometasone furoate with other topical
corticosteroids. The Australasian journal of
dermatology , 59 (3), e168–e174.
https://doi.org/10.1111/ajd.12762
Stauffer, B., Sparagna, G., Chau, S, Rodegheri-Brito, J., Ambardekar,
A., Korst, A., Miyamoto, S., Sucharov, C., Chatfield, K. (2016). MTP131,
a cardiolipin targeting peptide, improves mitochondrial activity in the
failing human heart. European Journal of Heart Failure, 18(S1),
289.
Szeto H. H. (2008). Mitochondria-targeted cytoprotective peptides for
ischemia-reperfusion injury. Antioxidants & redox
signaling , 10 (3), 601–619.
https://doi.org/10.1089/ars.2007.1892
Szeto, H. H., & Birk, A. V. (2014). Serendipity and the discovery of
novel compounds that restore mitochondrial plasticity. Clinical
pharmacology and therapeutics , 96 (6), 672–683.
https://doi.org/10.1038/clpt.2014.174
Szeto, H. H., & Schiller, P. W. (2011). Novel therapies targeting inner
mitochondrial membrane–from discovery to clinical
development. Pharmaceutical research , 28 (11), 2669–2679.
https://doi.org/10.1007/s11095-011-0476-8
Tatemoto, K., Nozaki, Y., Tsuda, R., Konno, S., Tomura, K., Furuno, M.,
Ogasawara, H., Edamura, K., Takagi, H., Iwamura, H., Noguchi, M., &
Naito, T. (2006). Immunoglobulin E-independent activation of mast cell
is mediated by Mrg receptors. Biochemical and biophysical research
communications , 349 (4), 1322–1328.
https://doi.org/10.1016/j.bbrc.2006.08.177
Thompson, W. R., Hornby, B., Manuel, R., Bradley, E., Laux, J., Carr,
J., & Vernon, H. J. (2021). A phase 2/3 randomized clinical trial
followed by an open-label extension to evaluate the effectiveness of
elamipretide in Barth syndrome, a genetic disorder of mitochondrial
cardiolipin metabolism. Genetics in medicine : official journal of
the American College of Medical Genetics , 23 (3), 471–478.
https://doi.org/10.1038/s41436-020-01006-8
Zhao, K., Luo, G., Giannelli, S., & Szeto, H. H. (2005).
Mitochondria-targeted peptide prevents mitochondrial depolarization and
apoptosis induced by tert-butyl hydroperoxide in neuronal cell
lines. Biochemical pharmacology , 70 (12), 1796–1806.
https://doi.org/10.1016/j.bcp.2005.08.022
Zuberbier, T., Aberer, W., Asero, R., Abdul Latiff, A. H., Baker, D.,
Ballmer-Weber, B., Bernstein, J. A., Bindslev-Jensen, C., Brzoza, Z.,
Buense Bedrikow, R., Canonica, G. W., Church, M. K., Craig, T.,
Danilycheva, I. V., Dressler, C., Ensina, L. F., Giménez-Arnau, A.,
Godse, K., Gonçalo, M., Grattan, C., … Endorsed by the following
societies: AAAAI, AAD, AAIITO, ACAAI, AEDV, APAAACI, ASBAI, ASCIA, BAD,
BSACI, CDA, CMICA, CSACI, DDG, DDS, DGAKI, DSA, DST, EAACI, EIAS, EDF,
EMBRN, ESCD, GA²LEN, IAACI, IADVL, JDA, NVvA, MSAI, ÖGDV, PSA, RAACI,
SBD, SFD, SGAI, SGDV, SIAAIC, SIDeMaST, SPDV, TSD, UNBB, UNEV and WAO
(2018). The EAACI/GA²LEN/EDF/WAO guideline for the definition,
classification, diagnosis and management of
urticaria. Allergy , 73 (7), 1393–1414.
https://doi.org/10.1111/all.13397