References
Alam, N. M., Mills, W. C., 4th, Wong, A. A., Douglas, R. M., Szeto, H. H., & Prusky, G. T. (2015). A mitochondrial therapeutic reverses visual decline in mouse models of diabetes. Disease models & mechanisms8 (7), 701–710. https://doi.org/10.1242/dmm.020248
Allen, M. E., Pennington, E. R., Perry, J. B., Dadoo, S., Makrecka-Kuka, M., Dambrova, M., Moukdar, F., Patel, H. D., Han, X., Kidd, G. K., Benson, E. K., Raisch, T. B., Poelzing, S., Brown, D. A., & Shaikh, S. R. (2020). The cardiolipin-binding peptide elamipretide mitigates fragmentation of cristae networks following cardiac ischemia reperfusion in rats. Communications biology3 (1), 389. https://doi.org/10.1038/s42003-020-1101-3
Birk, A. V., Chao, W. M., Bracken, C., Warren, J. D., & Szeto, H. H. (2014). Targeting mitochondrial cardiolipin and the cytochrome c/cardiolipin complex to promote electron transport and optimize mitochondrial ATP synthesis. British journal of pharmacology171 (8), 2017–2028. https://doi.org/10.1111/bph.12468
Birk, A. V., Liu, S., Soong, Y., Mills, W., Singh, P., Warren, J. D., Seshan, S. V., Pardee, J. D., & Szeto, H. H. (2013). The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. Journal of the American Society of Nephrology : JASN24 (8), 1250–1261. https://doi.org/10.1681/ASN.2012121216
Brown, D. A., Hale, S. L., Baines, C. P., del Rio, C. L., Hamlin, R. L., Yueyama, Y., Kijtawornrat, A., Yeh, S. T., Frasier, C. R., Stewart, L. M., Moukdar, F., Shaikh, S. R., Fisher-Wellman, K. H., Neufer, P. D., & Kloner, R. A. (2014). Reduction of early reperfusion injury with the mitochondria-targeting peptide bendavia. Journal of cardiovascular pharmacology and therapeutics19 (1), 121–132. https://doi.org/10.1177/1074248413508003
Dai, D. F., Hsieh, E. J., Chen, T., Menendez, L. G., Basisty, N. B., Tsai, L., Beyer, R. P., Crispin, D. A., Shulman, N. J., Szeto, H. H., Tian, R., MacCoss, M. J., & Rabinovitch, P. S. (2013). Global proteomics and pathway analysis of pressure-overload-induced heart failure and its attenuation by mitochondrial-targeted peptides. Circulation. Heart failure6 (5), 1067–1076. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000406
Daubert, M. A., Yow, E., Dunn, G., Marchev, S., Barnhart, H., Douglas, P. S., O’Connor, C., Goldstein, S., Udelson, J. E., & Sabbah, H. N. (2017). Novel Mitochondria-Targeting Peptide in Heart Failure Treatment: A Randomized, Placebo-Controlled Trial of Elamipretide. Circulation. Heart failure10 (12), e004389. https://doi.org/10.1161/CIRCHEARTFAILURE.117.004389
Ding, Y., Che, D., Li, C., Cao, J., Wang, J., Ma, P., Zhao, T., An, H., & Zhang, T. (2019). Quercetin inhibits Mrgprx2-induced pseudo-allergic reaction via PLCγ-IP3R related Ca2+fluctuations. International immunopharmacology66 , 185–197. https://doi.org/10.1016/j.intimp.2018.11.025
Eirin, A., Ebrahimi, B., Zhang, X., Zhu, X. Y., Woollard, J. R., He, Q., Textor, S. C., Lerman, A., & Lerman, L. O. (2014). Mitochondrial protection restores renal function in swine atherosclerotic renovascular disease. Cardiovascular research103 (4), 461–472. https://doi.org/10.1093/cvr/cvu157
ELOCON® (mometasone furoate) Cream, 0.1% for topical use. Prescribing Information. Merck & Co., Inc., May 2018. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/019625s026lbl.pdf (accessed 23 Sept 2022).
Gabros, S., Nessel, T. A., & Zito, P. M. (2023). Topical Corticosteroids. In StatPearls . Treasure Island, Florida: StatPearls Publishing. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK532940/
Grazioli, S., & Pugin, J. (2018). Mitochondrial Damage-Associated Molecular Patterns: From Inflammatory Signaling to Human Diseases. Frontiers in immunology9 , 832. https://doi.org/10.3389/fimmu.2018.00832
Grimes, J., Desai, S., Charter, N. W., Lodge, J., Moita Santos, R., Isidro-Llobet, A., Mason, A. M., Wu, Z., Wolfe, L. A., 3rd, Anantharaman, L., Green, A., Bridges, A. M., Dalmas Wilk, D. A., & Brown, A. J. (2019). MrgX2 is a promiscuous receptor for basic peptides causing mast cell pseudo-allergic and anaphylactoid reactions. Pharmacology research & perspectives7 (6), e00547. https://doi.org/10.1002/prp2.547
Hasbak, P., Eskesen, K., Lind, H., Holst, J., & Edvinsson, L. (2006). The vasorelaxant effect of adrenomedullin, proadrenomedullin N-terminal 20 peptide and amylin in human skin. Basic & clinical pharmacology & toxicology99 (2), 162–167. https://doi.org/10.1111/j.1742-7843.2006.pto_465.x
Karaa, A., Haas, R., Goldstein, A., Vockley, J., & Cohen, B. H. (2020). A randomized crossover trial of elamipretide in adults with primary mitochondrial myopathy. Journal of cachexia, sarcopenia and muscle11 (4), 909–918. https://doi.org/10.1002/jcsm.12559
Karaa, A., Haas, R., Goldstein, A., Vockley, J., Weaver, W. D., & Cohen, B. H. (2018). Randomized dose-escalation trial of elamipretide in adults with primary mitochondrial myopathy. Neurology90 (14), e1212–e1221. https://doi.org/10.1212/WNL.0000000000005255
Manczak, M., Mao, P., Calkins, M. J., Cornea, A., Reddy, A. P., Murphy, M. P., Szeto, H. H., Park, B., & Reddy, P. H. (2010). Mitochondria-targeted antioxidants protect against amyloid-beta toxicity in Alzheimer’s disease neurons. Journal of Alzheimer’s disease : JAD20 Suppl 2 (Suppl 2), S609–S631. https://doi.org/10.3233/JAD-2010-100564
McNeil B. D. (2021). Minireview: Mas-related G protein-coupled receptor X2 activation by therapeutic drugs. Neuroscience letters751 , 135746. https://doi.org/10.1016/j.neulet.2021.135746
McNeil B. D. (2021). MRGPRX2 and Adverse Drug Reactions. Frontiers in immunology12 , 676354. https://doi.org/10.3389/fimmu.2021.676354
McNeil, B. D., Pundir, P., Meeker, S., Han, L., Undem, B. J., Kulka, M., & Dong, X. (2015). Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature519 (7542), 237–241. https://doi.org/10.1038/nature14022
Mettu, P. S., Allingham, M. J., & Cousins, S. W. (2021). Phase 1 Clinical Trial of Elamipretide in Dry Age-Related Macular Degeneration and Noncentral Geographic Atrophy: ReCLAIM NCGA Study. Ophthalmology science2 (1), 100086. https://doi.org/10.1016/j.xops.2021.100086
Mitchell, W., Ng, E. A., Tamucci, J. D., Boyd, K. J., Sathappa, M., Coscia, A., Pan, M., Han, X., Eddy, N. A., May, E. R., Szeto, H. H., & Alder, N. N. (2020). The mitochondria-targeted peptide SS-31 binds lipid bilayers and modulates surface electrostatics as a key component of its mechanism of action. The Journal of biological chemistry295 (21), 7452–7469. https://doi.org/10.1074/jbc.RA119.012094
Motakis, E., Guhl, S., Ishizu, Y., Itoh, M., Kawaji, H., de Hoon, M., Lassmann, T., Carninci, P., Hayashizaki, Y., Zuberbier, T., Forrest, A. R., Babina, M., & FANTOM consortium (2014). Redefinition of the human mast cell transcriptome by deep-CAGE sequencing. Blood123 (17), e58–e67. https://doi.org/10.1182/blood-2013-02-483792
Nickel, A., Kohlhaas, M., & Maack, C. (2014). Mitochondrial reactive oxygen species production and elimination. Journal of molecular and cellular cardiology73 , 26–33. https://doi.org/10.1016/j.yjmcc.2014.03.011
Roshanravan, B., Liu, S. Z., Ali, A. S., Shankland, E. G., Goss, C., Amory, J. K., Robertson, H. T., Marcinek, D. J., & Conley, K. E. (2021). In vivo mitochondrial ATP production is improved in older adult skeletal muscle after a single dose of elamipretide in a randomized trial. PloS one16 (7), e0253849. https://doi.org/10.1371/journal.pone.0253849
Saad, A., Herrmann, S. M. S., Eirin, A., Ferguson, C. M., Glockner, J. F., Bjarnason, H., McKusick, M. A., Misra, S., Lerman, L. O., & Textor, S. C. (2017). Phase 2a Clinical Trial of Mitochondrial Protection (Elamipretide) During Stent Revascularization in Patients With Atherosclerotic Renal Artery Stenosis. Circulation. Cardiovascular interventions10 (9), e005487. https://doi.org/10.1161/CIRCINTERVENTIONS.117.005487
Sabbah, H. N., Gupta, R. C., Singh-Gupta, V., & Zhang, K. (2019). Effects of elamipretide on skeletal muscle in dogs with experimentally induced heart failure. ESC heart failure6 (2), 328–335. https://doi.org/10.1002/ehf2.12408
Sicari, V., & Zabbo, C. P. (2022). Diphenhydramine. In StatPearls . Treasure Island, Florida: StatPearls Publishing. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK526010/.
Siegel, M. P., Kruse, S. E., Percival, J. M., Goh, J., White, C. C., Hopkins, H. C., Kavanagh, T. J., Szeto, H. H., Rabinovitch, P. S., & Marcinek, D. J. (2013). Mitochondrial-targeted peptide rapidly improves mitochondrial energetics and skeletal muscle performance in aged mice. Aging cell12 (5), 763–771. https://doi.org/10.1111/acel.12102
Spada, F., Barnes, T. M., & Greive, K. A. (2018). Comparative safety and efficacy of topical mometasone furoate with other topical corticosteroids. The Australasian journal of dermatology59 (3), e168–e174. https://doi.org/10.1111/ajd.12762
Stauffer, B., Sparagna, G., Chau, S, Rodegheri­-Brito, J., Ambardekar, A., Korst, A., Miyamoto, S., Sucharov, C., Chatfield, K. (2016). MTP131, a cardiolipin targeting peptide, improves mitochondrial activity in the failing human heart. European Journal of Heart Failure, 18(S1), 289.
Szeto H. H. (2008). Mitochondria-targeted cytoprotective peptides for ischemia-reperfusion injury. Antioxidants & redox signaling10 (3), 601–619. https://doi.org/10.1089/ars.2007.1892
Szeto, H. H., & Birk, A. V. (2014). Serendipity and the discovery of novel compounds that restore mitochondrial plasticity. Clinical pharmacology and therapeutics96 (6), 672–683. https://doi.org/10.1038/clpt.2014.174
Szeto, H. H., & Schiller, P. W. (2011). Novel therapies targeting inner mitochondrial membrane–from discovery to clinical development. Pharmaceutical research28 (11), 2669–2679. https://doi.org/10.1007/s11095-011-0476-8
Tatemoto, K., Nozaki, Y., Tsuda, R., Konno, S., Tomura, K., Furuno, M., Ogasawara, H., Edamura, K., Takagi, H., Iwamura, H., Noguchi, M., & Naito, T. (2006). Immunoglobulin E-independent activation of mast cell is mediated by Mrg receptors. Biochemical and biophysical research communications349 (4), 1322–1328. https://doi.org/10.1016/j.bbrc.2006.08.177
Thompson, W. R., Hornby, B., Manuel, R., Bradley, E., Laux, J., Carr, J., & Vernon, H. J. (2021). A phase 2/3 randomized clinical trial followed by an open-label extension to evaluate the effectiveness of elamipretide in Barth syndrome, a genetic disorder of mitochondrial cardiolipin metabolism. Genetics in medicine : official journal of the American College of Medical Genetics23 (3), 471–478. https://doi.org/10.1038/s41436-020-01006-8
Zhao, K., Luo, G., Giannelli, S., & Szeto, H. H. (2005). Mitochondria-targeted peptide prevents mitochondrial depolarization and apoptosis induced by tert-butyl hydroperoxide in neuronal cell lines. Biochemical pharmacology70 (12), 1796–1806. https://doi.org/10.1016/j.bcp.2005.08.022
Zuberbier, T., Aberer, W., Asero, R., Abdul Latiff, A. H., Baker, D., Ballmer-Weber, B., Bernstein, J. A., Bindslev-Jensen, C., Brzoza, Z., Buense Bedrikow, R., Canonica, G. W., Church, M. K., Craig, T., Danilycheva, I. V., Dressler, C., Ensina, L. F., Giménez-Arnau, A., Godse, K., Gonçalo, M., Grattan, C., … Endorsed by the following societies: AAAAI, AAD, AAIITO, ACAAI, AEDV, APAAACI, ASBAI, ASCIA, BAD, BSACI, CDA, CMICA, CSACI, DDG, DDS, DGAKI, DSA, DST, EAACI, EIAS, EDF, EMBRN, ESCD, GA²LEN, IAACI, IADVL, JDA, NVvA, MSAI, ÖGDV, PSA, RAACI, SBD, SFD, SGAI, SGDV, SIAAIC, SIDeMaST, SPDV, TSD, UNBB, UNEV and WAO (2018). The EAACI/GA²LEN/EDF/WAO guideline for the definition, classification, diagnosis and management of urticaria. Allergy73 (7), 1393–1414. https://doi.org/10.1111/all.13397