REFERENCES
1. Caimano, M.J., Drecktrah, D., Kung, F. and Samuels, D.S. (2016) Interaction of the Lyme disease spirochete with its tick vector.Cell. Microbiol. , 18 , 919-927.
2. Radolf, J.D., Caimano, M.J., Stevenson, B. and Hu, L.T. (2012) Of ticks, mice and men: understanding the dual-host lifestyle of Lyme disease spirochaetes. Nat. Rev. Microbiol. , 10 , 87-99.
3. Iyer, R. and Schwartz, I. (2016) Microarray-based comparative genomic and transcriptome analysis of Borrelia burgdorferi .Microarrays , 5 , 9.
4. Samuels, D.S., Lybecker, M.C., Yang, X.F., Ouyang, Z., Bourret, T.J., Boyle, W.K., Stevenson, B., Drecktrah, D. and Caimano, M.J. (2021) Gene regulation and transcriptomics. Curr. Issues Mol. Biol. ,42 , 223-266.
5. Dunham-Ems, S.M., Caimano, M.J., Pal, U., Wolgemuth, C.W., Eggers, C.H., Balic, A. and Radolf, J.D. (2009) Live imaging reveals a biphasic mode of dissemination of Borrelia burgdorferi within ticks.J. Clin. Invest. , 119 , 3652-3665.
6. Ribeiro, J.M.C., Mather, T.N., Piesman, J. and Spielman, A. (1987) Dissemination and salivary delivery of Lyme disease spirochetes in vector ticks (Acari: Ixodidae). J. Med. Entomol. , 24 , 201-205.
7. Fisher, M.A., Grimm, D., Henion, A.K., Elias, A.F., Stewart, P.E., Rosa, P.A. and Gherardini, F.C. (2005) Borrelia burgdorferiσ54 is required for mammalian infection and vector transmission but not for tick colonization. Proc. Natl. Acad. Sci. USA , 102 , 5162-5167.
8. Caimano, M.J., Iyer, R., Eggers, C.H., Gonzalez, C., Morton, E.A., Gilbert, M.A., Schwartz, I. and Radolf, J.D. (2007) Analysis of the RpoS regulon in Borrelia burgdorferi in response to mammalian host signals provides insight into RpoS function during the enzootic cycle.Mol. Microbiol. , 65 , 1193-1217.
9. Ouyang, Z., Blevins, J.S. and Norgard, M.V. (2008) Transcriptional interplay among the regulators Rrp2, RpoN and RpoS in Borrelia burgdorferi . Microbiology , 154 , 2641-2658.
10. Drecktrah, D., Lybecker, M., Popitsch, N., Rescheneder, P., Hall, L.S. and Samuels, D.S. (2015) The Borrelia burgdorferi RelA/SpoT homolog and stringent response regulate survival in the tick vector and global gene expression during starvation. PLoS Pathog. ,11 , e1005160.
11. Bugrysheva, J.V., Pappas, C.J., Terekhova, D.A., Iyer, R., Godfrey, H.P., Schwartz, I. and Cabello, F.C. (2015) Characterization of the RelBbu regulon in Borrelia burgdorferi reveals modulation of glycerol metabolism by (p)ppGpp. PLoS One ,10 , e0118063.
12. Caimano, M.J., Kenedy, M.R., Kairu, T., Desrosiers, D.C., Harman, M., Dunham-Ems, S., Akins, D.R., Pal, U. and Radolf, J.D. (2011) The hybrid histidine kinase Hk1 is part of a two-component system that is essential for survival of Borrelia burgdorferi in feedingIxodes scapularis ticks. Infect. Immun. , 79 , 3117-3130.
13. Caimano, M.J., Dunham-Ems, S., Allard, A.M., Cassera, M.B., Kenedy, M. and Radolf, J.D. (2015) Cyclic di-GMP modulates gene expression in Lyme disease spirochetes at the tick-mammal interface to promote spirochete survival during the blood meal and tick-to-mammal transmission. Infect. Immun. , 83 , 3043-3060.
14. Groshong, A.M., Grassmann, A.A., Luthra, A., McLain, M.A., Provatas, A.A., Radolf, J.D. and Caimano, M.J. (2021) PlzA is a bifunctional c-di-GMP biosensor that promotes tick and mammalian host-adaptation ofBorrelia burgdorferi . PLoS Pathog. , 17 , e1009725.
15. Rogers, E.A., Terekhova, D., Zhang, H.-M., Hovis, K.M., Schwartz, I. and Marconi, R.T. (2009) Rrp1, a cyclic-di-GMP-producing response regulator, is an important regulator of Borrelia burgdorferi core cellular functions. Mol. Microbiol. , 71 , 1551-1573.
16. Woodson, S.A., Panja, S. and Santiago-Frangos, A. (2018) Proteins that chaperone RNA regulation. Microbiol. Spectr. , 6 , RWR-0026-2018.
17. Rajkowitsch, L., Chen, D., Stampfl, S., Semrad, K., Waldsich, C., Mayer, O., Jantsch, M.F., Konrat, R., Bläsi, U. and Schroeder, R. (2007) RNA chaperones, RNA annealers and RNA helicases. RNA Biol. ,4 , 118-130.
18. Doetsch, M., Schroeder, R. and Fürtig, B. (2011) Transient RNA-protein interactions in RNA folding. FEBS J. , 278 , 1634-1642.
19. Katsuya-Gaviria, K., Paris, G., Dendooven, T. and Bandyra, K.J. (2022) Bacterial RNA chaperones and chaperone-like riboregulators: behind the scenes of RNA-mediated regulation of cellular metabolism.RNA Biol. , 19 , 419-436.
20. Djapgne, L. and Oglesby, A.G. (2021) Impacts of small RNAs and their chaperones on bacterial pathogenicity. Front. Cell. Infect. Microbiol. , 11 , 604511.
21. Panja, S. and Woodson, S.A. (2012) Hfq proximity and orientation controls RNA annealing. Nucleic Acids Res. , 40 , 8690-8697.
22. Olejniczak, M. and Storz, G. (2017) ProQ/FinO-domain proteins: another ubiquitous family of RNA matchmakers? Mol. Microbiol. ,104 , 905-915.
23. Holmqvist, E., Berggren, S. and Rizvanovic, A. (2020) RNA-binding activity and regulatory functions of the emerging sRNA-binding protein ProQ. Biochim. Biophys. Acta Gene Regul. Mech. , 1863 , 194596.
24. Melamed, S., Adams, P.P., Zhang, A., Zhang, H. and Storz, G. (2020) RNA-RNA Interactomes of ProQ and Hfq reveal overlapping and competing roles. Mol. Cell , 77 , 411-425 e417.
25. Lybecker, M.C., Abel, C.A., Feig, A.L. and Samuels, D.S. (2010) Identification and function of the RNA chaperone Hfq in the Lyme disease spirochete Borrelia burgdorferi . Mol. Microbiol. ,78 , 622-635.
26. Majdalani, N., Vanderpool, C.K. and Gottesman, S. (2005) Bacterial small RNA regulators. Crit. Rev. Biochem. Mol. Biol. ,40 , 93-113.
27. Storz, G., Vogel, J. and Wassarman, K.M. (2011) Regulation by small RNAs in bacteria: expanding frontiers. Mol. Cell , 43 , 880-891.
28. Caldelari, I., Chao, Y., Romby, P. and Vogel, J. (2013) RNA-mediated regulation in pathogenic bacteria. Cold Spring Harb. Perspect. Med. , 3 , a010298.
29. Chakravarty, S. and Massé, E. (2019) RNA-dependent regulation of virulence in pathogenic bacteria. Front. Cell. Infect. Microbiol. , 9 , 337.
30. Svensson, S.L. and Sharma, C.M. (2016) Small RNAs in bacterial virulence and communication. Microbiol. Spectr. , 4 , VMBF-0028-2015.
31. Lybecker, M.C. and Samuels, D.S. (2007) Temperature-induced regulation of RpoS by a small RNA in Borrelia burgdorferi .Mol. Microbiol. , 64 , 1075-1089.
32. Drecktrah, D., Hall, L.S., Brinkworth, A.J., Comstock, J.R., Wassarman, K.M. and Samuels, D.S. (2020) Characterization of 6S RNA in the Lyme disease spirochete. Mol. Microbiol. , 113 , 399-417.
33. Medina-Pérez, D.N., Wager, B., Troy, E., Gao, L., Norris, S.J., Lin, T., Hu, L., Hyde, J.A., Lybecker, M. and Skare, J.T. (2020) The intergenic small non-coding RNA ittA is required for optimal infectivity and tissue tropism in Borrelia burgdorferi .PLoS Pathog. , 16 , e1008423.
34. Adams, P.P., Flores Avile, C., Popitsch, N., Bilusic, I., Schroeder, R., Lybecker, M. and Jewett, M.W. (2017) In vivo expression technology and 5′ end mapping of the Borrelia burgdorferitranscriptome identify novel RNAs expressed during mammalian infection.Nucleic Acids Res. , 45 , 775-792.
35. Lybecker, M.C. and Samuels, D.S. (2017) Small RNAs of Borrelia burgdorferi : characterizing functional regulators in a sea of sRNAs.Yale J. Biol. Med. , 90 , 317-323.
36. Drecktrah, D., Hall, L.S., Rescheneder, P., Lybecker, M. and Samuels, D.S. (2018) The stringent response-regulated sRNA transcriptome of Borrelia burgdorferi . Front. Cell. Infect. Microbiol. ,8 , 231.
37. Popitsch, N., Bilusic, I., Rescheneder, P., Schroeder, R. and Lybecker, M. (2017) Temperature-dependent sRNA transcriptome of the Lyme disease spirochete. BMC Genomics , 18 , 28.
38. Arnold, W.K., Savage, C.R., Brissette, C.A., Seshu, J., Livny, J. and Stevenson, B. (2016) RNA-seq of Borrelia burgdorferi in multiple phases of growth reveals insights into the dynamics of gene expression, transcriptome architecture, and noncoding RNAs. PLoS One , 11 , e0164165.
39. Cotter, P.A. and Stibitz, S. (2007) c-di-GMP-mediated regulation of virulence and biofilm formation. Curr. Opin. Microbiol. ,10 , 17-23.
40. Wolfe, A.J. and Visick, K.L. (2008) Get the message out: cyclic-di-GMP regulates multiple levels of flagellum-based motility.J. Bacteriol. , 190 , 463-475.
41. Hengge, R. (2009) Principles of c-di-GMP signalling in bacteria.Nat. Rev. Microbiol. , 7 , 263-273.
42. Römling, U., Galperin, M.Y. and Gomelsky, M. (2013) Cyclic di-GMP: the first 25 years of a universal bacterial second messenger.Microbiol. Mol. Biol. Rev. , 77 , 1-52.
43. Valentini, M. and Filloux, A. (2019) Multiple roles of c-di-GMP sgnaling in bacterial pathogenesis. Annu. Rev. Microbiol. ,73 , 387-406.
44. Galperin, M.Y., Nikolskaya, A.N. and Koonin, E.V. (2001) Novel domains of the prokaryotic two-component signal transduction systems.FEMS Microbiol. Lett. , 203 , 11-21.
45. Sultan, S.Z., Pitzer, J.E., Boquoi, T., Hobbs, G., Miller, M.R. and Motaleb, M.A. (2011) Analysis of the HD-GYP domain cyclic-di-GMP phosphodiesterase reveals a role in motility and enzootic life cycle ofBorrelia burgdorferi . Infect. Immun. , 79 , 3273-3283.
46. Sultan, S.Z., Pitzer, J.E., Miller, M.R. and Motaleb, M.A. (2010) Analysis of a Borrelia burgdorferi phosphodiesterase demonstrates a role for cyclic-di-guanosine monophosphate in motility and virulence.Mol. Microbiol. , 77 , 128-142.
47. Novak, E.A., Sultan, S.Z. and Motaleb, M.A. (2014) The cyclic-di-GMP signaling pathway in the Lyme disease spirochete, Borrelia burgdorferi . Front. Cell. Infect. Microbiol. , 4 , 56.
48. Bauer, W.J., Luthra, A., Zhu, G., Radolf, J.D., Malkowski, M.G. and Caimano, M.J. (2015) Structural characterization and modeling of theBorrelia burgdorferi hybrid histidine kinase Hk1 periplasmic sensor: a system for sensing small molecules associated with tick feeding. J. Struct. Biol. , 192 , 48-58.
49. He, M., Ouyang, Z., Troxell, B., Xu, H., Moh, A., Piesman, J., Norgard, M.V., Gomelsky, M. and Yang, X.F. (2011) Cyclic di-GMP is essential for the survival of the Lyme disease spirochete in ticks.PLoS Pathog. , 7 , e1002133.
50. Kostick, J.L., Szkotnicki, L.T., Rogers, E.A., Bocci, P., Raffaelli, N. and Marconi, R.T. (2011) The diguanylate cyclase, Rrp1, regulates critical steps in the enzootic cycle of the Lyme disease spirochetes.Mol. Microbiol. , 81 , 219-231.
51. Jenal, U., Reinders, A. and Lori, C. (2017) Cyclic di-GMP: second messenger extraordinaire. Nat. Rev. Microbiol. , 15 , 271-284.
52. He, M., Zhang, J.-J., Ye, M., Lou, Y. and Yang, X.F. (2014) Cyclic di-GMP receptor PlzA controls virulence gene expression through RpoS inBorrelia burgdorferi . Infect. Immun. , 82 , 445-452.
53. Mallory, K.L., Miller, D.P., Oliver, L.D., Jr., Freedman, J.C., Kostick-Dunn, J.L., Carlyon, J.A., Marion, J.D., Bell, J.K. and Marconi, R.T. (2016) Cyclic-di-GMP binding induces structural rearrangements in the PlzA and PlzC proteins of the Lyme disease and relapsing fever spirochetes: a possible switch mechanism for c-di-GMP-mediated effector functions. Pathog. Dis. , 74 , ftw105.
54. Freedman, J.C., Rogers, E.A., Kostick, J.L., Zhang, H., Iyer, R., Schwartz, I. and Marconi, R.T. (2010) Identification and molecular characterization of a cyclic-di-GMP effector protein, PlzA (BB0733): additional evidence for the existence of a functional cyclic-di-GMP regulatory network in the Lyme disease spirochete, Borrelia burgdorferi . FEMS Immunol. Med. Microbiol. , 58 , 285-294.
55. Pitzer, J.E., Sultan, S.Z., Hayakawa, Y., Hobbs, G., Miller, M.R. and Motaleb, M.A. (2011) Analysis of the Borrelia burgdorfericyclic-di-GMP-binding protein PlzA reveals a role in motility and virulence. Infect. Immun. , 79 , 1815-1825.
56. Kostick-Dunn, J.L., Izac, J.R., Freedman, J.C., Szkotnicki, L.T., Oliver, L.D., Jr. and Marconi, R.T. (2018) The Borrelia burgdorferi c-di-GMP binding receptors, PlzA and PlzB, are functionally distinct. Front. Cell. Infect. Microbiol. , 8 , 213.
57. Zhang, J.-J., Chen, T., Yang, Y., Du, J., Li, H., Troxell, B., He, M., Carrasco, S.E., Gomelsky, M. and Yang, X.F. (2018) Positive and negative regulation of glycerol utilization by the c-di-GMP binding protein PlzA in Borrelia burgdorferi . J. Bacteriol. ,200 , e00243-18.
58. Singh, A., Izac, J.R., Schuler, E.J.A., Patel, D.T., Davies, C. and Marconi, R.T. (2021) High-resolution crystal structure of theBorreliella burgdorferi PlzA protein in complex with c-di-GMP: new insights into the interaction of c-di-GMP with the novel xPilZ domain. Pathog. Dis. , 79 .
59. Samuels, D.S., Drecktrah, D. and Hall, L.S. (2018) In Pal, U. and Buyuktanir, O. (eds.), Borrelia burgdorferi: Methods and Protocols . Humana Press, New York, NY, Vol. 1690, pp. 183-200.
60. Brandt, K.S., Horiuchi, K., Biggerstaff, B.J. and Gilmore, R.D. (2019) Evaluation of patient IgM and IgG reactivity against multiple antigens for improvement of serodiagnostic testing for early Lyme disease. Front. in Public Health , 7 , 370.
61. Samuels, D.S., Mach, K.E. and Garon, C.F. (1994) Genetic transformation of the Lyme disease agent Borrelia burgdorferiwith coumarin-resistant gyrB . J. Bacteriol. , 176 , 6045-6049.
62. Pace, C.N., Vajdos, F., Fee, L., Grimsley, G. and Gray, T. (1995) How to measure and predict the molar absorption coefficient of a protein. Protein Sci. , 4 , 2411-2423.
63. Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S.e., Wilkins, M.R., Appel, R.D. and Bairoch, A. (2005) In Walker, J. M. (ed.),The Proteomics Protocols Handbook . Humana Press, Totowa, NJ, pp. 571-607.
64. Heinig, M. and Frishman, D. (2004) STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Res. , 32 , W500-W502.
65. Miles, A.J., Ramalli, S.G. and Wallace, B.A. (2022) DichroWeb, a website for calculating protein secondary structure from circular dichroism spectroscopic data. Protein Sci. , 31 , 37-46.
66. Lees, J.G., Miles, A.J., Wien, F. and Wallace, B.A. (2006) A reference database for circular dichroism spectroscopy covering fold and secondary structure space. Bioinformatics , 22 , 1955-1962.
67. Sreerama, N. and Woody, R.W. (2000) Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set. Anal. Biochem. , 287 , 252-260.
68. Doetsch, M., Fürtig, B., Gstrein, T., Stampfl, S. and Schroeder, R. (2011) The RNA annealing mechanism of the HIV-1 Tat peptide: conversion of the RNA into an annealing-competent conformation. Nucleic Acids Res. , 39 , 4405-4418.
69. Rajkowitsch, L., Semrad, K., Mayer, O. and Schroeder, R. (2005) Assays for the RNA chaperone activity of proteins. Biochem. Soc. Trans. , 33 , 450-456.
70. Boyle, W.K., Hall, L.S., Armstrong, A.A., Dulebohn, D.P., Samuels, D.S., Gherardini, F.C. and Bourret, T.J. (2020) Establishment of anin vitro RNA polymerase transcription system: a new tool to study transcriptional activation in Borrelia burgdorferi . Sci. Rep. , 10 , 8246.
71. Doetsch, M., Gstrein, T., Schroeder, R. and Fürtig, B. (2010) Mechanisms of StpA-mediated RNA remodeling. RNA Biol. ,7 , 735-743.
72. Ammerman, M.L., Presnyak, V., Fisk, J.C., Foda, B.M. and Read, L.K. (2010) TbRGG2 facilitates kinetoplastid RNA editing initiation and progression past intrinsic pause sites. RNA , 16 , 2239-2251.
73. Bae, W., Xia, B., Inouye, M. and Severinov, K. (2000)Escherichia coli CspA-family RNA chaperones are transcription antiterminators. Proc. Natl. Acad. Sci. USA , 97 , 7784-7789.
74. Landick, R., Stewart, J. and Lee, D.N. (1990) Amino acid changes in conserved regions of the β-subunit of Escherichia coli RNA polymerase alter transcription pausing and termination. Genes Dev. , 4 , 1623-1636.
75. Lybecker, M., Zimmermann, B., Bilusic, I., Tukhtubaeva, N. and Schroeder, R. (2014) The double-stranded transcriptome ofEscherichia coli . Proc. Natl. Acad. Sci. USA ,111 , 3134-3139.
76. Chaulk, S.G., Smith-Frieday, M.N., Arthur, D.C., Culham, D.E., Edwards, R.A., Soo, P., Frost, L.S., Keates, R.A.B., Glover, J.N.M. and Wood, J.M. (2011) ProQ is an RNA chaperone that controls ProP levels inEscherichia coli . Biochemistry , 50 , 3095-3106.
77. Smirnov, A., Förstner, K.U., Holmqvist, E., Otto, A., Günster, R., Becher, D., Reinhardt, R. and Vogel, J. (2016) Grad-seq guides the discovery of ProQ as a major small RNA-binding protein. Proc. Natl. Acad. Sci. USA , 113 , 11591-11596.
78. Gonzalez, G.M., Hardwick, S.W., Maslen, S.L., Skehel, J.M., Holmqvist, E., Vogel, J., Bateman, A., Luisi, B.F. and Broadhurst, R.W. (2017) Structure of the Escherichia coli ProQ RNA-binding protein. RNA , 23 , 696-711.
79. Smirnov, A., Wang, C., Drewry, L.L. and Vogel, J. (2017) Molecular mechanism of mRNA repression in trans by a ProQ-dependent small RNA. EMBO J. , 36 , 1029-1045.
80. Doetsch, M., Stampfl, S., Fürtig, B., Beich-Frandsen, M., Saxena, K., Lybecker, M. and Schroeder, R. (2013) Study of E. coli Hfq’s RNA annealing acceleration and duplex destabilization activities using substrates with different GC-contents. Nucleic Acids Res. ,41 , 487-497.
81. Mayer, O., Rajkowitsch, L., Lorenz, C., Konrat, R. and Schroeder, R. (2007) RNA chaperone activity and RNA-binding properties of the E. coli protein StpA. Nucleic Acids Res. , 35 , 1257-1269.
82. Rajkowitsch, L. and Schroeder, R. (2007) Coupling RNA annealing and strand displacement: a FRET-based microplate reader assay for RNA chaperone activity. Biotechniques , 43 , 304-310.
83. Babitzke, P., Lai, Y.-J., Renda, A.J. and Romeo, T. (2019) Posttranscription initiation control of gene expression mediated by bacterial RNA-binding proteins. Annu. Rev. Microbiol. ,73 , 43-67.
84. Li, J., Zhang, B., Zhou, L., Qi, L., Yue, L., Zhang, W., Cheng, H., Whitman, W.B. and Dong, X. (2019) The archaeal RNA chaperone TRAM0076 shapes the transcriptome and optimizes the growth of Methanococcus maripaludis . PLoS Genet. , 15 , e1008328.
85. Phadtare, S., Tyagi, S., Inouye, M. and Severinov, K. (2002) Three amino acids in Escherichia coli CspE surface-exposed aromatic patch are critical for nucleic acid melting activity leading to transcription antitermination and cold acclimation of cells. J. Biol. Chem. , 277 , 46706-46711.
86. Nakaminami, K., Karlson, D.T. and Imai, R. (2006) Functional conservation of cold shock domains in bacteria and higher plants.Proc. Natl. Acad. Sci. USA , 103 , 10122-10127.
87. Stampfl, S., Doetsch, M., Beich-Frandsen, M. and Schroeder, R. (2013) Characterization of the kinetics of RNA annealing and strand displacement activities of the E. coli DEAD-box helicase CsdA.RNA Biol. , 10 , 149-156.
88. Rajkowitsch, L. and Schroeder, R. (2007) Dissecting RNA chaperone activity. RNA , 13 , 2053-2060.
89. Povolotsky, T.L. and Hengge, R. (2016) Genome-based comparison of cyclic di-GMP signaling in pathogenic and commensal Escherichia coli strains. J. Bacteriol. , 198 , 111-126.
90. Youkharibache, P., Veretnik, S., Li, Q., Stanek, K.A., Mura, C. and Bourne, P.E. (2019) The small β-Barrel domain: a survey-based structural analysis. Structure , 27 , 6-26.
91. Phadtare, S. and Severinov, K. (2010) RNA remodeling and gene regulation by cold shock proteins. RNA Biol. , 7 , 788-795.
92. Rennella, E., Sára, T., Juen, M., Wunderlich, C., Imbert, L., Solyom, Z., Favier, A., Ayala, I., Weinhäupl, K., Schanda, P. et al. (2017) RNA binding and chaperone activity of the E. colicold-shock protein CspA. Nucleic Acids Res. , 45 , 4255-4268.
93. Hall, K.B. (2017) RNA and proteins: mutual respect. F1000Res ,6 , 345.
94. Allers, J. and Shamoo, Y. (2001) Structure-based analysis of protein-RNA interactions using the program ENTANGLE. J. Mol. Biol. , 311 , 75-86.
95. Bercy, M. and Bockelmann, U. (2015) Hairpins under tension: RNA versus DNA. Nucleic Acids Res. , 43 , 9928-9936.
96. Corley, M., Burns, M.C. and Yeo, G.W. (2020) How RNA-binding proteins interact with RNA: molecules and mechanisms. Mol. Cell ,78 , 9-29.
97. Hoffman, M.M., Khrapov, M.A., Cox, J.C., Yao, J., Tong, L. and Ellington, A.D. (2004) AANT: the amino acid-nucleotide interaction database. Nucleic Acids Res. , 32 , D174-D181.
98. Jones, S., Daley, D.T.A., Luscombe, N.M., Berman, H.M. and Thornton, J.M. (2001) Protein-RNA interactions: a structural analysis.Nucleic Acids Res. , 29 , 943-954.
99. Luscombe, N.M., Laskowski, R.A. and Thornton, J.M. (2001) Amino acid-base interactions: a three-dimensional analysis of protein-DNA interactions at an atomic level. Nucleic Acids Res. , 29 , 2860-2874.
100. Hudson, W.H. and Ortlund, E.A. (2014) The structure, function and evolution of proteins that bind DNA and RNA. Nat. Rev. Mol .Cell. Biol. , 15 , 749-760.
101. Takada, A., Wachi, M., Kaidow, A., Takamura, M. and Nagai, K. (1997) DNA binding properties of the hfq gene product ofEscherichia coli . Biochem. Biophys. Res. Commun. ,236 , 576-579.
102. Zhang, A., Rimsky, S., Reaban, M.E., Buc, H. and Belfort, M. (1996)Escherichia coli protein analogs StpA and H-NS: regulatory loops, similar and disparate effects on nucleic acid dynamics. EMBO J. ,15 , 1340-1349.