References
Abdelrazec, A. & Gumel, A.B. (2017). Mathematical assessment of the role of temperature and rainfall on mosquito population dynamics.J. Math. Biol. , 74, 1351–1395.
Adelman, Z.N., Anderson, M.A.E., Wiley, M.R., Murreddu, M.G., Samuel, G.H., Morazzani, E.M., et al. (2013). Cooler Temperatures Destabilize RNA Interference and Increase Susceptibility of Disease Vector Mosquitoes to Viral Infection. PLoS Negl. Trop. Dis. , 7, e2239.
Afrane, Y.A., Lawson, B.W., Githeko, A.K. & Yan, G. (2005). Effects of Microclimatic Changes Caused by Land Use and Land Cover on Duration of Gonotrophic Cycles of Anopheles gambiae (Diptera: Culicidae) in Western Kenya Highlands. J. Med. Entomol. , 42, 974–980.
Aguirre, A.A. (2017). Changing Patterns of Emerging Zoonotic Diseases in Wildlife, Domestic Animals, and Humans Linked to Biodiversity Loss and Globalization. ILAR J. , 58, 315–318.
Akinwande, K.L., Arotiowa, A.R. & Ete, A.J. (2021). Impacts of changes in temperature and exposure time on the median lethal concentrations (LC50) of a combination of organophosphate and pyrethroid in the control of Culex quinquefasciatus , say (Diptera: Culicidae). Sci. Afr. , 12, e00743.
Albernaz, D. a. S., Tai, M.H.H. & Luz, C. (2009). Enhanced ovicidal activity of an oil formulation of the fungus Metarhizium anisopliae on the mosquito Aedes aegypti . Med. Vet. Entomol. , 23, 141–147.
Aliota, M.T., Peinado, S.A., Velez, I.D. & Osorio, J.E. (2016a). The wMel strain of Wolbachia Reduces Transmission of Zika virus byAedes aegypti . Sci. Rep. , 6, 28792.
Aliota, M.T., Walker, E.C., Yepes, A.U., Velez, I.D., Christensen, B.M. & Osorio, J.E. (2016b). The wMel strain of Wolbachia reduces transmission of Chikungunya virus in Aedes aegypti . PLoS Negl. Trop. Dis. , 10, e0004677.
Alphey, L., Benedict, M., Bellini, R., Clark, G.G., Dame, D.A., Service, M.W., et al. (2010). Sterile-Insect Methods for Control of Mosquito-Borne Diseases: An Analysis. Vector-Borne Zoonotic Dis. , 10, 295–311.
Althouse, B.M., Hanley, K.A., Diallo, M., Sall, A.A., Ba, Y., Faye, O.,et al. (2015). Impact of Climate and Mosquito Vector Abundance on Sylvatic Arbovirus Circulation Dynamics in Senegal. Am. J. Trop. Med. Hyg. , 92, 88–97.
Alto, B.W., Bettinardi, D.J. & Ortiz, S. (2015). Interspecific Larval Competition Differentially Impacts Adult Survival in Dengue Vectors.J. Med. Entomol. , 52, 163–170.
Alto, B.W. & Juliano, S.A. (2001). Temperature Effects on the Dynamics of Aedes albopictus (Diptera: Culicidae) Populations in the Laboratory. J. Med. Entomol. , 38, 548–556.
Anderson, R.C.O. & Andrade, D.V. (2017). Trading heat and hops for water: Dehydration effects on locomotor performance, thermal limits, and thermoregulatory behavior of a terrestrial toad. Ecol. Evol. , 7, 9066–9075.
Angilletta, M.J. (2009). Thermal adaptation: a theoretical and empirical synthesis . OUP Oxford.
Ashepet, M.G., Jacobs, L., Van Oudheusden, M. & Huyse, T. (2021). Wicked Solution for Wicked Problems: Citizen Science for Vector-Borne Disease Control in Africa. Trends Parasitol. , 37, 93–96.
Asigau, S. & Parker, P.G. (2018). The influence of ecological factors on mosquito abundance and occurrence in Galápagos. J. Vector Ecol. , 43, 125–137.
Ayala, A.M., Vera, N.S., Chiappero, M.B., Almirón, W.R. & Gardenal, C.N. (2020). Urban Populations of Aedes aegypti (Diptera: Culicidae) From Central Argentina: Dispersal Patterns Assessed by Bayesian and Multivariate Methods. J. Med. Entomol. , 57, 1069–1076.
Azar, S.R., Roundy, C.M., Rossi, S.L., Huang, J.H., Leal, G., Yun, R.,et al. (2017). Differential Vector Competency of Aedes albopictus Populations from the Americas for Zika Virus. Am. J. Trop. Med. Hyg. , 97, 330–339.
Azil, A.H., Long, S.A., Ritchie, S.A. & Williams, C.R. (2010). The development of predictive tools for pre-emptive dengue vector control: a study of Aedes aegypti abundance and meteorological variables in North Queensland, Australia. Trop. Med. Int. Health , 15, 1190–1197.
Baeza, A., Santos-Vega, M., Dobson, A.P. & Pascual, M. (2017). The rise and fall of malaria under land-use change in frontier regions.Nat. Ecol. Evol. , 1, 1–7.
Bar-Zeev, M. (1957). The Effect of extreme Temperatures on different Stages of Aëdes aegypti (L.). Bull. Entomol. Res. , 48, 593–599.
Bayoh, M.N. (2001). Studies on the development and survival ofAnopheles gambiae sensu stricto at various temperatures and relative humidities. Doctoral. Durham University.
Beck, J., McCain, C.M., Axmacher, J.C., Ashton, L.A., Bärtschi, F., Brehm, G., et al. (2017). Elevational species richness gradients in a hyperdiverse insect taxon: a global meta-study on geometrid moths.Glob. Ecol. Biogeogr. , 26, 412–424.
Beebe, N.W., Cooper, R.D., Mottram, P. & Sweeney, A.W. (2009). Australia’s Dengue Risk Driven by Human Adaptation to Climate Change.PLoS Negl. Trop. Dis. , 3, e429.
Beitz, E. (2006). Aquaporin Water and Solute Channels from Malaria Parasites and Other Pathogenic Protozoa. ChemMedChem , 1, 587–592.
Benoit, J.B. (2010). Water Management by Dormant Insects: Comparisons Between Dehydration Resistance During Summer Aestivation and Winter Diapause. In: Aestivation: Molecular and Physiological Aspects , Progress in Molecular and Subcellular Biology (eds. Arturo Navas, C. & Carvalho, J.E.). Springer, Berlin, Heidelberg, pp. 209–229.
Benoit, J.B. & Denlinger, D.L. (2010). Meeting the challenges of on-host and off-host water balance in blood-feeding arthropods. J. Insect Physiol. , 56, 1366–1376.
Bezerra Da Silva, C.S., Price, B.E. & Walton, V.M. (2019). Water-Deprived Parasitic Wasps (Pachycrepoideus vindemmiae ) Kill More Pupae of a Pest (Drosophila suzukii ) as a Water-Intake Strategy. Sci. Rep. , 9, 3592.
Bhatt, S., Weiss, D.J., Cameron, E., Bisanzio, D., Mappin, B., Dalrymple, U., et al. (2015). The effect of malaria control onPlasmodium falciparum in Africa between 2000 and 2015.Nature , 526, 207–211.
Bidlingmayer, W.L. (1974). The Influence of Environmental Factors and Physiological Stage on Flight Patterns of Mosquitoes Taken in the Vehicle Aspirator and Truck, Suction, Bait and New Jersey Light Traps.J. Med. Entomol. , 11, 119–146.
Bidlingmayer, W.L. (1985). The measurement of adult mosquito population changes - some considerations. J. Am. Mosq. Control Assoc. , 1, 328–248.
Bradshaw, D. (2003). Vertebrate Ecophysiology: An Introduction to its Principles and Applications . Cambridge University Press, Cambridge.
Brown, J.H., Gillooly, J.F., Allen, A.P., Savage, V.M. & West, G.B. (2004). Toward a Metabolic Theory of Ecology. Ecology , 85, 1771–1789.
Brown, L., Medlock, J. & Murray, V. (2014). Impact of drought on vector-borne diseases – how does one manage the risk? Public Health , 128, 29–37.
Buckner, E.A., Blackmore, M.S., Golladay, S.W. & Covich, A.P. (2011). Weather and landscape factors associated with adult mosquito abundance in southwestern Georgia, U.S.A. J. Vector Ecol. , 36, 269–278.
Buzan, J.R. & Huber, M. (2020). Moist Heat Stress on a Hotter Earth.Annu. Rev. Earth Planet. Sci. , 48, 623–655.
Calatayud, J., Hortal, J., Medina, N.G., Turin, H., Bernard, R., Casale, A., et al. (2016). Glaciations, deciduous forests, water availability and current geographical patterns in the diversity of European Carabus species. J. Biogeogr. , 43, 2343–2353.
Caldwell, J.M., LaBeaud, A.D., Lambin, E.F., Stewart-Ibarra, A.M., Ndenga, B.A., Mutuku, F.M., et al. (2021). Climate predicts geographic and temporal variation in mosquito-borne disease dynamics on two continents. Nat. Commun. , 12, 1233.
Canyon, D.V., Hii, J.L.K. & Müller, R. (1999). Adaptation ofAedes aegypti (Diptera: Culicidae) oviposition behavior in response to humidity and diet. J. Insect Physiol. , 45, 959–964.
Canyon, D.V., Muller, R. & Hii J, L.K. (2013). Aedes aegyptidisregard humidity-related conditions with adequate nutrition.Trop. Biomed. , 30, 1–8.
Carballar-Lejarazú, R. & James, A.A. (2017). Population modification of Anopheline species to control malaria transmission. Pathog. Glob. Health , 111, 424–435.
Cardoso, P., Barton, P.S., Birkhofer, K., Chichorro, F., Deacon, C., Fartmann, T., et al. (2020). Scientists’ warning to humanity on insect extinctions. Biol. Conserv. , 242, 108426.
Carrington, L.B., Armijos, M.V., Lambrechts, L., Barker, C.M. & Scott, T.W. (2013). Effects of Fluctuating Daily Temperatures at Critical Thermal Extremes on Aedes aegypti Life-History Traits. PLOS ONE , 8, e58824.
Carvajal, T.M., Ogishi, K., Yaegeshi, S., Hernandez, L.F.T., Viacrusis, K.M., Ho, H.T., et al. (2020). Fine-scale population genetic structure of dengue mosquito vector, Aedes aegypti , in Metropolitan Manila, Philippines. PLoS Negl. Trop. Dis. , 14, e0008279.
Cator, L.J., Thomas, S., Paaijmans, K.P., Ravishankaran, S., Justin, J.A., Mathai, M.T., et al. (2013). Characterizing microclimate in urban malaria transmission settings: a case study from Chennai, India.Malar. J. , 12, 84.
Chandy, S., Ramanathan, K., Manoharan, A., Mathai, D. & Baruah, K. (2013). Assessing effect of climate on the incidence of dengue in Tamil Nadu. Indian J. Med. Microbiol. , 31, 283–286.
Chaplin, M. (2006). Do we underestimate the importance of water in cell biology? Nat. Rev. Mol. Cell Biol. , 7, 861–866.
Chappuis, C.J., Béguin, S., Vlimant, M. & Guerin, P.M. (2013). Water vapour and heat combine to elicit biting and biting persistence in tsetse. Parasit. Vectors , 6, 240.
Chaves, L.F. & Kitron, U.D. (2011). Weather variability impacts on oviposition dynamics of the southern house mosquito at intermediate time scales. Bull. Entomol. Res. , 101, 633–641.
Chen, S.-C., Liao, C.-M., Chio, C.-P., Chou, H.-H., You, S.-H. & Cheng, Y.-H. (2010). Lagged temperature effect with mosquito transmission potential explains dengue variability in southern Taiwan: Insights from a statistical analysis. Sci. Total Environ. , 408, 4069–4075.
Chowdhury, F.R., Ibrahim, Q.S.U., Bari, M.S., Alam, M.M.J., Dunachie, S.J., Rodriguez-Morales, A.J., et al. (2018). The association between temperature, rainfall and humidity with common climate-sensitive infectious diseases in Bangladesh. PLOS ONE , 13, e0199579.
Chown, S.L. & Davis, A.L.V. (2003). Discontinuous gas exchange and the significance of respiratory water loss in scarabaeine beetles. J. Exp. Biol. , 206, 3547–3556.
Chown, S.L. & Gaston, K.J. (2008). Macrophysiology for a changing world. Proc. R. Soc. B Biol. Sci. , 275, 1469–1478.
Chown, S.L. & Nicolson, S. (2004). Insect Physiological Ecology: Mechanisms and Patterns . OUP Oxford.
Chown, S.L., Sørensen, J.G. & Terblanche, J.S. (2011). Water loss in insects: An environmental change perspective. J. Insect Physiol. , 57, 1070–1084.
Christofferson, R.C. & Mores, C.N. (2016). Potential for Extrinsic Incubation Temperature to Alter Interplay between Transmission Potential and Mortality of Dengue-Infected Aedes aegypti . Environ. Health Insights , 10, EHI.S38345.
Clusella-Trullas, S., Blackburn, T.M. & Chown, S.L. (2011). Climatic Predictors of Temperature Performance Curve Parameters in Ectotherms Imply Complex Responses to Climate Change. Am. Nat. , 177, 738–751.
Cohen, J.M., Civitello, D.J., Brace, A.J., Feichtinger, E.M., Ortega, C.N., Richardson, J.C., et al. (2016). Spatial scale modulates the strength of ecological processes driving disease distributions.Proc. Natl. Acad. Sci. , 113, E3359–E3364.
Corkrey, R., McMeekin, T.A., Bowman, J.P., Ratkowsky, D.A., Olley, J. & Ross, T. (2016). The biokinetic spectrum for temperature. PLOS ONE , 11, e0153343.
Coseo, P. & Larsen, L. (2014). How factors of land use/land cover, building configuration, and adjacent heat sources and sinks explain Urban Heat Islands in Chicago. Landsc. Urban Plan. , 125, 117–129.
Costa, E.A.P. de A., Santos, E.M. de M., Correia, J.C. & Albuquerque, C.M.R. de. (2010). Impact of small variations in temperature and humidity on the reproductive activity and survival of Aedes aegypti (Diptera, Culicidae). Rev. Bras. Entomol. , 54, 488–493.
Couper, L.I., Farner, J.E., Caldwell, J.M., Childs, M.L., Harris, M.J., Kirk, D.G., et al. (2021). How will mosquitoes adapt to climate warming? eLife , 10, e69630.
Darbro, J.M., Graham, R.I., Kay, B.H., Ryan, P.A. & Thomas, M.B. (2011). Evaluation of entomopathogenic fungi as potential biological control agents of the dengue mosquito, Aedes aegypti (Diptera: Culicidae). Biocontrol Sci. Technol. , 21, 1027–1047.
Davis, J.K., Vincent, G.P., Hildreth, M.B., Kightlinger, L., Carlson, C. & Wimberly, M.C. (2018). Improving the prediction of arbovirus outbreaks: A comparison of climate-driven models for West Nile virus in an endemic region of the United States. Acta Trop. , 185, 242–250.
Delatte, H., Gimonneau, G., Triboire, A. & Fontenille, D. (2009). Influence of Temperature on Immature Development, Survival, Longevity, Fecundity, and Gonotrophic Cycles of Aedes albopictus , Vector of Chikungunya and Dengue in the Indian Ocean. J. Med. Entomol. , 46, 33–41.
Dell, A.I., Pawar, S. & Savage, V.M. (2011). Systematic variation in the temperature dependence of physiological and ecological traits.Proc. Natl. Acad. Sci. , 108, 10591–10596.
Deocaris, C.C., Shrestha, B.G., Kraft, D.C., Yamasaki, K., Kaul, S.C., Rattan, S.I.S., et al. (2006). Geroprotection by Glycerol.Ann. N. Y. Acad. Sci. , 1067, 488–492.
Deutsch, C.A., Tewksbury, J.J., Huey, R.B., Sheldon, K.S., Ghalambor, C.K., Haak, D.C., et al. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. , 105, 6668–6672.
Diallo, D., Diagne, C.T., Buenemann, M., Ba, Y., Dia, I., Faye, O.,et al. (2019). Biodiversity Pattern of Mosquitoes in Southeastern Senegal, Epidemiological Implication in Arbovirus and Malaria Transmission. J. Med. Entomol. , 56, 453–463.
Diamant, S., Eliahu, N., Rosenthal, D. & Goloubinoff, P. (2001). Chemical Chaperones Regulate Molecular Chaperones in Vitro and in Cells under Combined Salt and Heat Stresses*. J. Biol. Chem. , 276, 39586–39591.
Dillon, M.E., Wang, G. & Huey, R.B. (2010). Global metabolic impacts of recent climate warming. Nature , 467, 704–706.
Döring, T.F. (2017). Vector-Borne Diseases. In: Plant Diseases and Their Management in Organic Agriculture , IPM. The American Phytopathological Society, pp. 107–116.
Dow, R.P. & Gerrish, G.M. (1970). Day-to-Day Change in Relative Humidity and the Activity of Culex nigripalpus (Diptera: Culicidae)1. Ann. Entomol. Soc. Am. , 63, 995–999.
Drakou, K., Nikolaou, T., Vasquez, M., Petric, D., Michaelakis, A., Kapranas, A., et al. (2020). The Effect of Weather Variables on Mosquito Activity: A Snapshot of the Main Point of Entry of Cyprus.Int. J. Environ. Res. Public. Health , 17, 1403.
Durant, A.C. & Donini, A. (2019). Development of Aedes aegypti(Diptera: Culicidae) mosquito larvae in high ammonia sewage in septic tanks causes alterations in ammonia excretion, ammonia transporter expression, and osmoregulation. Sci. Rep. , 9, 19028.
Durant, A.C., Grieco Guardian, E., Kolosov, D. & Donini, A. (2021). The transcriptome of anal papillae of Aedes aegypti reveals their importance in xenobiotic detoxification and adds significant knowledge on ion, water and ammonia transport mechanisms. J. Insect Physiol. , 132, 104269.
Edney, E.B. (2012). Water Balance in Land Arthropods . Springer Science & Business Media.
Edney, E.B. & Barrass, R. (1962). The body temperature of the tsetse fly, Glossina morsitans Westwood (Diptera, Muscidae). J. Insect Physiol. , 8, 469–481.
Evans, M.V., Hintz, C.W., Jones, L., Shiau, J., Solano, N., Drake, J.M.,et al. (2019). Microclimate and larval habitat density predict adult Aedes albopictus abundance in urban areas. Am. J. Trop. Med. Hyg. , 101, 362–370.
Evans, M.V., Newberry, P.M. & Murdock, C.C. (2018a). Carry-over effects of the larval environment in mosquito-borne disease systems .Popul. Biol. Vector-Borne Dis. Oxford University Press.
Evans, M.V., Shiau, J.C., Solano, N., Brindley, M.A., Drake, J.M. & Murdock, C.C. (2018b). Carry-over effects of urban larval environments on the transmission potential of dengue-2 virus. Parasit. Vectors , 11, 426.
Ferreira, P.G., Tesla, B., Horácio, E.C.A., Nahum, L.A., Brindley, M.A., de Oliveira Mendes, T.A., et al. (2020). Temperature dramatically shapes mosquito gene expression with consequences for mosquito–Zika virus interactions. Front. Microbiol. , 11.
Fikrig, K., Peck, S., Deckerman, P., Dang, S., Fleur, K.S., Goldsmith, H., et al. (2020). Sugar feeding patterns of New York Aedes albopictus mosquitoes are affected by saturation deficit, flowers, and host seeking. PLoS Negl. Trop. Dis. , 14, e0008244.
Foo, I.J.-H., Hoffmann, A.A. & Ross, P.A. (2019). Cross-Generational Effects of Heat Stress on Fitness and Wolbachia Density inAedes aegypti Mosquitoes. Trop. Med. Infect. Dis. , 4, 13.
Fouet, C., Kamdem, C., Gamez, S. & White, B.J. (2017). Extensive genetic diversity among populations of the malaria mosquitoAnopheles moucheti revealed by population genomics. Infect. Genet. Evol. , 48, 27–33.
Gaaboub, I.A., El-Sawaf, S.K. & El-Latif, M.A. (1971). Effect of Different Relative Humidities and Temperatures on Egg-Production and Longevity of Adults of Anopheles (Myzomyia) pharoensis Theob.1.Z. Für Angew. Entomol. , 67, 88–94.
Garros, C., Bouyer, J., Takken, W. & Smallegange, R.C. (2017). Control of vector-borne diseases in the livestock industry: new opportunities and challenges. In: Pests and vector-borne diseases in the livestock industry , Ecology and Control of Vector-borne Diseases. Wageningen Academic Publishers, pp. 575–580.
George, T.L., Harrigan, R.J., LaManna, J.A., DeSante, D.F., Saracco, J.F. & Smith, T.B. (2015). Persistent impacts of West Nile virus on North American bird populations. Proc. Natl. Acad. Sci. , 112, 14290–14294.
Gething, P.W., Smith, D.L., Patil, A.P., Tatem, A.J., Snow, R.W. & Hay, S.I. (2010). Climate change and the global malaria recession.Nature , 465, 342–345.
Gloria-Soria, A., Armstrong, P.M., Powell, J.R. & Turner, P.E. (2017). Infection rate of Aedes aegypti mosquitoes with dengue virus depends on the interaction between temperature and mosquito genotype.Proc. R. Soc. B Biol. Sci. , 284, 20171506.
Glunt, K.D., Paaijmans, K.P., Read, A.F. & Thomas, M.B. (2014). Environmental temperatures significantly change the impact of insecticides measured using WHOPES protocols. Malar. J. , 13, 350.
González-Tokman, D., Córdoba-Aguilar, A., Dáttilo, W., Lira-Noriega, A., Sánchez-Guillén, R.A. & Villalobos, F. (2020). Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. Biol. Rev. , 95, 802–821.
Gray, E.M. & Bradley, T.J. (2005). Physiology of desiccation resistance in Anopheles gambiae and Anopheles arabienses . Am. J. Trop. Med. Hyg. , 73, 553–559.
Grimstad, P.R. & DeFoliart, G.R. (1975). Mosquito Nectar Feeding in Wisconsin in Relation to Twilight and Microclimate. J. Med. Entomol. , 11, 691–698.
Gu, X., Ross, P.A., Rodriguez-Andres, J., Robinson, K.L., Yang, Q., Lau, M.-J., et al. (2022). A w Mel Wolbachia variant inAedes aegypti from field-collected Drosophila melanogasterwith increased phenotypic stability under heat stress. Environ. Microbiol. , 24, 2119–2135.
Gunay, F., Alten, B. & Ozsoy, E.D. (2010). Estimating reaction norms for predictive population parameters, age specific mortality, and mean longevity in temperature-dependent cohorts of Culex quinquefasciatus Say (Diptera: Culicidae). J. Vector Ecol. , 35, 354–362.
Gunderson, A.R. & Stillman, J.H. (2015). Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming. Proc. R. Soc. B Biol. Sci. , 282, 20150401.
Gutiérrez, L.A., Gómez, G.F., González, J.J., Castro, M.I., Luckhart, S., Conn, J.E., et al. (2010). Microgeographic Genetic Variation of the Malaria Vector Anopheles darlingi Root (Diptera: Culicidae) from Córdoba and Antioquia, Colombia. Am. J. Trop. Med. Hyg. , 83, 38–47.
Hagan, R.W., Didion, E.M., Rosselot, A.E., Holmes, C.J., Siler, S.C., Rosendale, A.J., et al. (2018). Dehydration prompts increased activity and blood feeding by mosquitoes. Sci. Rep. , 8, 6804.
Hamann, E., Blevins, C., Franks, S.J., Jameel, M.I. & Anderson, J.T. (2021). Climate change alters plant–herbivore interactions. New Phytol. , 229, 1894–1910.
Hao, L., Huang, X., Qin, M., Liu, Y., Li, W. & Sun, G. (2018). Ecohydrological Processes Explain Urban Dry Island Effects in a Wet Region, Southern China. Water Resour. Res. , 54, 6757–6771.
Hayden, M.H., Uejio, C.K., Walker, K., Ramberg, F., Moreno, R., Rosales, C., et al. (2010). Microclimate and Human Factors in the Divergent Ecology of Aedes aegypti along the Arizona, U.S./Sonora, MX Border. EcoHealth , 7, 64–77.
Heaviside, C., Macintyre, H. & Vardoulakis, S. (2017). The Urban Heat Island: Implications for Health in a Changing Environment. Curr. Environ. Health Rep. , 4, 296–305.
van Heerwaarden, B. & Sgrò, C.M. (2014). Is adaptation to climate change really constrained in niche specialists? Proc. R. Soc. B Biol. Sci. , 281, 20140396.
Hegde, S. & Hughes, G.L. (2017). Population modification ofAnopheles mosquitoes for malaria control: pathways to implementation. Pathog. Glob. Health , 111, 401–402.
Heinisch, M.R.S., Diaz-Quijano, F.A., Chiaravalloti-Neto, F., Menezes Pancetti, F.G., Rocha Coelho, R., dos Santos Andrade, P., et al.(2019). Seasonal and spatial distribution of Aedes aegypti andAedes albopictus in a municipal urban park in São Paulo, SP, Brazil. Acta Trop. , 189, 104–113.
Hoffmann, A.A., Chown, S.L. & Clusella-Trullas, S. (2013). Upper thermal limits in terrestrial ectotherms: how constrained are they?Funct. Ecol. , 27, 934–949.
Holt, R.A., Subramanian, G.M., Halpern, A., Sutton, G.G., Charlab, R., Nusskern, D.R., et al. (2002). The Genome Sequence of the Malaria Mosquito Anopheles gambiae . Science , 298, 129–149.
Howe, D.A., Hathaway, J.M., Ellis, K.N. & Mason, L.R. (2017). Spatial and temporal variability of air temperature across urban neighborhoods with varying amounts of tree canopy. Urban For. Urban Green. , 27, 109–116.
Huber, J.H., Childs, M.L., Caldwell, J.M. & Mordecai, E.A. (2018). Seasonal temperature variation influences climate suitability for dengue, chikungunya, and Zika transmission. PLoS Negl. Trop. Dis. , 12, e0006451.
Huey, R.B. & Kingsolver, J.G. (2019). Climate warming, resource availability, and the metabolic meltdown of ectotherms. Am. Nat. , 194, E140–E150.
Huxley, P.J., Murray, K.A., Pawar, S. & Cator, L.J. (2021). The effect of resource limitation on the temperature dependence of mosquito population fitness. Proc. R. Soc. B Biol. Sci. , 288, 20203217.
Huxley, P.J., Murray, K.A., Pawar, S. & Cator, L.J. (2022). Competition and resource depletion shape the thermal response of population fitness in Aedes aegypti . Commun. Biol. , 5, 1–11.
Hylton, A.R. (1969). Studies on Longevity of Adult Eretmapodites chrysogaster, Aedes togoi and Aedes (Stegomyia) albopictusFemales (Diptera: Culicidae). J. Med. Entomol. , 6, 147–149.
IPCC. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change . Cambridge University Press, Geneva, Switzerland.
Jamieson, M.A., Trowbridge, A.M., Raffa, K.F. & Lindroth, R.L. (2012). Consequences of Climate Warming and Altered Precipitation Patterns for Plant-Insect and Multitrophic Interactions. Plant Physiol. , 160, 1719–1727.
Jasper, M., Schmidt, T.L., Ahmad, N.W., Sinkins, S.P. & Hoffmann, A.A. (2019). A genomic approach to inferring kinship reveals limited intergenerational dispersal in the yellow fever mosquito. Mol. Ecol. Resour. , 19, 1254–1264.
Jemal, Y. & Al-Thukair, A.A. (2018). Combining GIS application and climatic factors for mosquito control in Eastern Province, Saudi Arabia.Saudi J. Biol. Sci. , 25, 1593–1602.
Jindra, M. & Sehnal, F. (1990). Linkage between diet humidity, metabolic water production and heat dissipation in the larvae ofGalleria mellonella . Insect Biochem. , 20, 389–395.
Johansson, M.A., Dominici, F. & Glass, G.E. (2009). Local and Global Effects of Climate on Dengue Transmission in Puerto Rico. PLoS Negl. Trop. Dis. , 3, e382.
Johansson, M.A., Powers, A.M., Pesik, N., Cohen, N.J. & Staples, J.E. (2014). Nowcasting the Spread of Chikungunya Virus in the Americas.PLOS ONE , 9, e104915.
Johnson, B.J., Manby, R. & Devine, G.J. (2020). What Happens on Islands, doesn’t Stay on Islands: Patterns of Synchronicity in Mosquito Nuisance and Host-Seeking Activity between a Mangrove Island and Adjacent Coastal Development. Urban Ecosyst. , 23, 1321–1333.
Johnson, L.R., Ben-Horin, T., Lafferty, K.D., McNally, A., Mordecai, E., Paaijmans, K.P., et al. (2015). Understanding uncertainty in temperature effects on vector-borne disease: a Bayesian approach.Ecology , 96, 203–213.
Juliano, S.A. & Stoffregen, T.L. (1994). Effects of habitat drying on size at and time to metamorphosis in the tree hole mosquito Aedes triseriatus . Oecologia , 97, 369–376.
Kang, D.S., Kim, S., Cotten, M.A. & Sim, C. (2021). Transcript Assembly and Quantification by RNA-Seq Reveals Significant Differences in Gene Expression and Genetic Variants in Mosquitoes of the Culex pipiens (Diptera: Culicidae) Complex. J. Med. Entomol. , 58, 139–145.
Karim, Md.N., Munshi, S.U., Anwar, N. & Alam, Md.S. (2012). Climatic factors influencing dengue cases in Dhaka city: A model for dengue prediction. Indian J. Med. Res. , 136, 32–39.
Kearney, M. & Porter, W. (2009). Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. , 12, 334–350.
Kellermann, V., Overgaard, J., Hoffmann, A.A., Fløjgaard, C., Svenning, J.-C. & Loeschcke, V. (2012). Upper thermal limits of Drosophilaare linked to species distributions and strongly constrained phylogenetically. Proc. Natl. Acad. Sci. , 109, 16228–16233.
Kessler, S. & Guerin, P.M. (2008). Responses of Anopheles gambiae , Anopheles stephensi , Aedes aegypti , andCulex pipiens mosquitoes (Diptera: Culicidae) to cool and humid refugium conditions. J. Vector Ecol. , 33, 145–149.
Kikankie, C.K., Brooke, B.D., Knols, B.G., Koekemoer, L.L., Farenhorst, M., Hunt, R.H., et al. (2010). The infectivity of the entomopathogenic fungus Beauveria bassiana to insecticide-resistant and susceptible Anopheles arabiensismosquitoes at two different temperatures. Malar. J. , 9, 71.
Kleynhans, E. & Terblanche, J. (2011). Complex Interactions between Temperature and Relative Humidity on Water Balance of Adult Tsetse (Glossinidae, Diptera): Implications for Climate Change. Front. Physiol. , 2, 74.
Klink, R. van, Bowler, D.E., Gongalsky, K.B., Swengel, A.B., Gentile, A. & Chase, J.M. (2020). Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science , 368, 417–420.
Knowles, R. & Basu, B.C. (1943). Laboratory Studies on the Infectivity of Anopheles stephensi . J. Malar. Inst. India , 5.
Konapala, G., Mishra, A.K., Wada, Y. & Mann, M.E. (2020). Climate change will affect global water availability through compounding changes in seasonal precipitation and evaporation. Nat. Commun. , 11, 3044.
Kühnholz, S. & Seeley, T.D. (1997). The control of water collection in honey bee colonies. Behav. Ecol. Sociobiol. , 41, 407–422.
Lajevardi, A., Sajadi, F., Donini, A. & Paluzzi, J.-P.V. (2021). Studying the Activity of Neuropeptides and Other Regulators of the Excretory System in the Adult Mosquito. JoVE J. Vis. Exp. , e61849.
Lambrechts, L., Paaijmans, K.P., Fansiri, T., Carrington, L.B., Kramer, L.D., Thomas, M.B., et al. (2011). Impact of daily temperature fluctuations on dengue virus transmission by Aedes aegypti .Proc. Natl. Acad. Sci. , 108, 7460–7465.
Lardeux, F.J., Tejerina, R.H., Quispe, V. & Chavez, T.K. (2008). A physiological time analysis of the duration of the gonotrophic cycle ofAnopheles pseudopunctipennis and its implications for malaria transmission in Bolivia. Malar. J. , 7, 141.
Lawrence, M.G. (2005). The Relationship between Relative Humidity and the Dewpoint Temperature in Moist Air: A Simple Conversion and Applications. Bull. Am. Meteorol. Soc. , 86, 225–234.
Lega, J., Brown, H.E. & Barrera, R. (2017). Aedes aegypti(Diptera: Culicidae) Abundance Model Improved With Relative Humidity and Precipitation-Driven Egg Hatching. J. Med. Entomol. , 54, 1375–1384.
Lenhart, P.A., Eubanks, M.D. & Behmer, S.T. (2015). Water stress in grasslands: dynamic responses of plants and insect herbivores.Oikos , 124, 381–390.
Lewis, D.J. (1933). Observations on Aëdes aegypti , L. (Dipt. Culic.) under controlled Atmospheric Conditions. Bull. Entomol. Res. , 24, 363–372.
Li, Y., Kamara, F., Zhou, G., Puthiyakunnon, S., Li, C., Liu, Y.,et al. (2014). Urbanization increases Aedes albopictuslarval habitats and accelerates mosquito development and survivorship.PLoS Negl. Trop. Dis. , 8, e3301.
Lippi, C.A., Stewart-Ibarra, A.M., Muñoz, Á.G., Borbor-Cordova, M.J., Mejía, R., Rivero, K., et al. (2018). The Social and Spatial Ecology of Dengue Presence and Burden during an Outbreak in Guayaquil, Ecuador, 2012. Int. J. Environ. Res. Public. Health , 15, 827.
Liu, K., Tsujimoto, H., Cha, S.-J., Agre, P. & Rasgon, J.L. (2011). Aquaporin water channel AgAQP1 in the malaria vector mosquitoAnopheles gambiae during blood feeding and humidity adaptation.Proc. Natl. Acad. Sci. , 108, 6062–6066.
Liu, K., Tsujimoto, H., Huang, Y., Rasgon, J.L. & Agre, P. (2016). Aquaglyceroporin function in the malaria mosquito Anopheles gambiae . Biol. Cell , 108, 294–305.
Liu, O.R. & Gaines, S.D. (2022). Environmental context dependency in species interactions. Proc. Natl. Acad. Sci. , 119, e2118539119.
Lokoshchenko, M.A. (2017). Urban Heat Island and Urban Dry Island in Moscow and Their Centennial Changes. J. Appl. Meteorol. Climatol. , 56, 2729–2745.
Lomax, J.L. (1968). Proceedings. Fifty-fifth annual meeting. New Jersey Mosquito Extermination Association. A study of mosquito mortality relative to temperature and relative humidity in an overwintering site.Proc. Fifty-Fifth Annu. Meet. N. J. Mosq. Exterm. Assoc. Study Mosq. Mortal. Relat. Temp. Relat. Humidity Overwintering Site .
Lucio, P.S., Degallier, N., Servain, J., Hannart, A., Durand, B., de Souza, R.N., et al. (2013). A case study of the influence of local weather on Aedes aegypti (L.) aging and mortality. J. Vector Ecol. , 38, 20–37.
Lyons, C.L., Coetzee, M., Terblanche, J.S. & Chown, S.L. (2014). Desiccation tolerance as a function of age, sex, humidity and temperature in adults of the African malaria vectors Anopheles arabiensis and Anopheles funestus . J. Exp. Biol. , 217, 3823–3833.
Maffey, L., Garzón, M.J., Confalonieri, V., Chanampa, M.M., Hasson, E. & Schweigmann, N. (2020). Genome-Wide Screening of Aedes aegypti(Culicidae: Diptera) Populations From Northwestern Argentina: Active and Passive Dispersal Shape Genetic Structure. J. Med. Entomol. , 57, 1930–1941.
Magombedze, G., Ferguson, N.M. & Ghani, A.C. (2018). A trade-off between dry season survival longevity and wet season high net reproduction can explain the persistence of Anopheles mosquitoes.Parasit. Vectors , 11, 576.
Marron, M.T., Markow, T.A., Kain, K.J. & Gibbs, A.G. (2003). Effects of starvation and desiccation on energy metabolism in desert and mesicDrosophila . J. Insect Physiol. , 49, 261–270.
Matowo, N.S., Abbasi, S., Munhenga, G., Tanner, M., Mapua, S.A., Oullo, D., et al. (2019). Fine-scale spatial and temporal variations in insecticide resistance in Culex pipiens complex mosquitoes in rural south-eastern Tanzania. Parasit. Vectors , 12, 413.
Mayne, B. (1930). A Study of the Influence of Relative Humidity on the Life and Infectibility of the Mosquito. Indian J. Med. Res. , 17.
Mcgaughey, W.H. & Knight, K.L. (1967). Preoviposition Activity of the Black Salt-Marsh Mosquito, Aedes taeniorhynchus (Diptera: Culicidae)1. Ann. Entomol. Soc. Am. , 60, 107–115.
McLaughlin, K., Russell, T.L., Apairamo, A., Bugoro, H., Oscar, J., Cooper, R.D., et al. (2019). Smallest Anopheles farautioccur during the peak transmission season in the Solomon Islands.Malar. J. , 18, 1–8.
Miazgowicz, K.L., Shocket, M.S., Ryan, S.J., Villena, O.C., Hall, R.J., Owen, J., et al. (2020). Age influences the thermal suitability of Plasmodium falciparum transmission in the Asian malaria vectorAnopheles stephensi . Proc. R. Soc. B Biol. Sci. , 287, 20201093.
Mitchell, A. & Bergmann, P.J. (2016). Thermal and moisture habitat preferences do not maximize jumping performance in frogs. Funct. Ecol. , 30, 733–742.
Mogi, M., Miyagi, I., Abadi, K., & syafruddin. (1996). Inter- and Intraspecific Variation in Resistance to Desiccation by AdultAedes (Stegomyia) spp. (Diptera: Culicidae) from Indonesia.J. Med. Entomol. , 33, 53–57.
Monteiro, L.C.C., Souza, J.R.B. de & Albuquerque, C.M.R. de. (2007). Eclosion rate, development and survivorship of Aedes albopictus(Skuse) (Diptera: Culicidae) under different water temperatures.Neotrop. Entomol. , 36, 966–971.
Mordecai, E.A., Caldwell, J.M., Grossman, M.K., Lippi, C.A., Johnson, L.R., Neira, M., et al. (2019). Thermal biology of mosquito-borne disease. Ecol. Lett. , 22, 1690–1708.
Mordecai, E.A., Cohen, J.M., Evans, M.V., Gudapati, P., Johnson, L.R., Lippi, C.A., et al. (2017). Detecting the impact of temperature on transmission of Zika, dengue, and chikungunya using mechanistic models. PLoS Negl. Trop. Dis. , 11, e0005568.
Mordecai, E.A., Paaijmans, K.P., Johnson, L.R., Balzer, C., Ben‐Horin, T., Moor, E. de, et al. (2013). Optimal temperature for malaria transmission is dramatically lower than previously predicted.Ecol. Lett. , 16, 22–30.
Mordecai, E.A., Ryan, S.J., Caldwell, J.M., Shah, M.M. & LaBeaud, A.D. (2020). Climate change could shift disease burden from malaria to arboviruses in Africa. Lancet Planet. Health , 4, e416–e423.
Moreira, L.A., Iturbe-Ormaetxe, I., Jeffery, J.A., Lu, G., Pyke, A.T., Hedges, L.M., et al. (2009). A Wolbachia symbiont inAedes aegypti limits infection with dengue, chikungunya, andPlasmodium . Cell , 139, 1268–1278.
Murdock, C.C., Blanford, S., Hughes, G.L., Rasgon, J.L. & Thomas, M.B. (2014a). Temperature alters Plasmodium blocking byWolbachia . Sci. Rep. , 4, 3932.
Murdock, C.C., Blanford, S., Luckhart, S. & Thomas, M.B. (2014b). Ambient temperature and dietary supplementation interact to shape mosquito vector competence for malaria. J. Insect Physiol. , 67, 37–44.
Murdock, C.C., Evans, M.V., McClanahan, T.D., Miazgowicz, K.L. & Tesla, B. (2017). Fine-scale variation in microclimate across an urban landscape shapes variation in mosquito population dynamics and the potential of Aedes albopictus to transmit arboviral disease.PLoS Negl. Trop. Dis. , 11, e0005640.
Murdock, C.C., Moller-Jacobs, L.L. & Thomas, M.B. (2013). Complex environmental drivers of immunity and resistance in malaria mosquitoes.Proc. R. Soc. B Biol. Sci. , 280, 20132030.
Murdock, C.C., Paaijmans, K.P., Bell, A.S., King, J.G., Hillyer, J.F., Read, A.F., et al. (2012). Complex effects of temperature on mosquito immune function. Proc. R. Soc. B Biol. Sci. , 279, 3357–3366.
Murdock, C.C., Sternberg, E.D. & Thomas, M.B. (2016). Malaria transmission potential could be reduced with current and future climate change. Sci. Rep. , 6, 27771.
Ngonghala, C.N., Ryan, S.J., Tesla, B., Demakovsky, L.R., Mordecai, E.A., Murdock, C.C., et al. (2021). Effects of changes in temperature on Zika dynamics and control. J. R. Soc. Interface , 18, 20210165.
Nguyen, K.H., Boersch-Supan, P.H., Hartman, R.B., Mendiola, S.Y., Harwood, V.J., Civitello, D.J., et al. (2021). Interventions can shift the thermal optimum for parasitic disease transmission.Proc. Natl. Acad. Sci. , 118, e2017537118.
Nosrat, C., Altamirano, J., Anyamba, A., Caldwell, J.M., Damoah, R., Mutuku, F., et al. (2021). Impact of recent climate extremes on mosquito-borne disease transmission in Kenya. PLoS Negl. Trop. Dis. , 15, e0009182.
Okech, B.A., Gouagna, L.C., Knols, B.G.J., Kabiru, E.W., Killeen, G.F., Beier, J.C., et al. (2004). Influence of indoor microclimate and diet on survival of Anopheles gambiae s.s. (Diptera: Culicidae) in village house conditions in western Kenya. Int. J. Trop. Insect Sci. , 24, 207–212.
Ostwald, M.M., Smith, M.L. & Seeley, T.D. (2016). The behavioral regulation of thirst, water collection and water storage in honey bee colonies. J. Exp. Biol. , 219, 2156–2165.
Paaijmans, K.P., Blanford, S., Chan, B.H.K. & Thomas, M.B. (2012). Warmer temperatures reduce the vectorial capacity of malaria mosquitoes.Biol. Lett. , 8, 465–468.
Paaijmans, K.P., Heinig, R.L., Seliga, R.A., Blanford, J.I., Blanford, S., Murdock, C.C., et al. (2013). Temperature variation makes ectotherms more sensitive to climate change. Glob. Change Biol. , 19, 2373–2380.
Paaijmans, K.P. & Thomas, M.B. (2011). The influence of mosquito resting behaviour and associated microclimate for malaria risk.Malar. J. , 10, 183.
Padmanabha, H., Soto, E., Mosquera, M., Lord, C.C. & Lounibos, L.P. (2010). Ecological Links Between Water Storage Behaviors and Aedes aegypti Production: Implications for Dengue Vector Control in Variable Climates. EcoHealth , 7, 78–90.
Palmer, W.H., Varghese, F.S. & Van Rij, R.P. (2018). Natural Variation in Resistance to Virus Infection in Dipteran Insects. Viruses , 10, 118.
Parham, P.E. & Hughes, D.A. (2015). Climate influences on the cost-effectiveness of vector-based interventions against malaria in elimination scenarios. Philos. Trans. R. Soc. B Biol. Sci. , 370, 20130557.
Pérez-Díaz, J.L., Álvarez-Valenzuela, M.A. & García-Prada, J.C. (2012). The effect of the partial pressure of water vapor on the surface tension of the liquid water–air interface. J. Colloid Interface Sci. , 381, 180–182.
Pilotto, F., Kühn, I., Adrian, R., Alber, R., Alignier, A., Andrews, C.,et al. (2020). Meta-analysis of multidecadal biodiversity trends in Europe. Nat. Commun. , 11, 3486.
Pincebourde, S., Murdock, C.C., Vickers, M. & Sears, M.W. (2016). Fine-scale microclimatic variation can shape the responses of organisms to global change in both natural and urban environments. Integr. Comp. Biol. , 56, 45–61.
Platt, R.B., Collins, C.L. & Witherspoon, J.P. (1957). Reactions ofAnopheles quadrimaculatus Say to Moisture, Temperature, and Light. Ecol. Monogr. , 27, 303–324.
Platt, R.B., Love, G.J. & Williams, E.L. (1958). A Positive Correlation Between Relative Humidity and the Distribution and Abundance ofAedes vexans . Ecology , 39, 167–169.
Pless, E., Hopperstad, K.A., Ledesma, N., Dixon, D., Henke, J.A. & Powell, J.R. (2020). Sunshine versus gold: The effect of population age on genetic structure of an invasive mosquito. Ecol. Evol. , 10, 9588–9599.
Pörtner, H.O. & Farrell, A.P. (2008). Physiology and Climate Change.Science , 322, 690–692.
Provost, M.W. (1973). Mosquito flight and night relative humidity in Florida. Fla. Sci. , 36, 217–225.
Rajpurohit, S., Parkash, R. & Ramniwas, S. (2008). Body melanization and its adaptive role in thermoregulation and tolerance against desiccating conditions in drosophilids. Entomol. Res. , 38, 49–60.
Reiskind, M.H. & Lounibos, L.P. (2009). Effects of intraspecific larval competition on adult longevity in the mosquitoes Aedes aegyptiand Aedes albopictus . Med. Vet. Entomol. , 23, 62–68.
Romps, D.M. (2021). The Rankine–Kirchhoff approximations for moist thermodynamics. Q. J. R. Meteorol. Soc. , 147, 3493–3497.
Ross, P.A., Axford, J.K., Yang, Q., Staunton, K.M., Ritchie, S.A., Richardson, K.M., et al. (2020). Heatwaves cause fluctuations in wMel Wolbachia densities and frequencies in Aedes aegypti .PLoS Negl. Trop. Dis. , 14, e0007958.
Ross, P.A., Ritchie, S.A., Axford, J.K. & Hoffmann, A.A. (2019). Loss of cytoplasmic incompatibility in Wolbachia -infected Aedes aegypti under field conditions. PLoS Negl. Trop. Dis. , 13, e0007357.
Ross, P.A., Wiwatanaratanabutr, I., Axford, J.K., White, V.L., Endersby-Harshman, N.M. & Hoffmann, A.A. (2017). Wolbachiainfections in Aedes aegypti differ markedly in their response to cyclical heat stress. PLOS Pathog. , 13, e1006006.
Roura-Pascual, N., Hui, C., Ikeda, T., Leday, G., Richardson, D.M., Carpintero, S., et al. (2011). Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader. Proc. Natl. Acad. Sci. , 108, 220–225.
Rowley, W.A. & Graham, C.L. (1968). The effect of temperature and relative humidity on the flight performance of female Aedes aegypti . J. Insect Physiol. , 14, 1251–1257.
Rozen-Rechels, D., Dupoué, A., Lourdais, O., Chamaillé-Jammes, S., Meylan, S., Clobert, J., et al. (2019). When water interacts with temperature: Ecological and evolutionary implications of thermo-hydroregulation in terrestrial ectotherms. Ecol. Evol. , 9, 10029–10043.
Rudolfs, W. (1923). Observations on the Relations Between Atmospheric Conditions and the Behavior of Mosquitoes . New Jersey Agricultural Experiment Stations.
Rudolfs, W. (1925). Relation between Temperature, Humidity and Activity of House Mosquitoes. J. N. Y. Entomol. Soc. , 33, 163–169.
Ryan, S.J., Carlson, C.J., Tesla, B., Bonds, M.H., Ngonghala, C.N., Mordecai, E.A., et al. (2020a). Warming temperatures could expose more than 1.3 billion new people to Zika virus risk by 2050. Glob. Change Biol. , 27, 84–93.
Ryan, S.J., Lippi, C.A. & Zermoglio, F. (2020b). Shifting transmission risk for malaria in Africa with climate change: a framework for planning and intervention. Malar. J. , 19, 170.
Ryan, S.J., McNally, A., Johnson, L.R., Mordecai, E.A., Ben-Horin, T., Paaijmans, K., et al. (2015). Mapping physiological suitability limits for malaria in Africa under climate change. Vector-Borne Zoonotic Dis. , 15, 718–725.
Samuel, M.D., Hobbelen, P.H.F., DeCastro, F., Ahumada, J.A., LaPointe, D.A., Atkinson, C.T., et al. (2011). The dynamics, transmission, and population impacts of avian malaria in native Hawaiian birds: a modeling approach. Ecol. Appl. , 21, 2960–2973.
Sang, R., Lutomiah, J., Said, M., Makio, A., Koka, H., Koskei, E.,et al. (2017). Effects of Irrigation and Rainfall on the Population Dynamics of Rift Valley Fever and Other Arbovirus Mosquito Vectors in the Epidemic-Prone Tana River County, Kenya. J. Med. Entomol. , 54, 460–470.
Santos-Vega, M., Bouma, M.J., Kohli, V. & Pascual, M. (2016). Population density, climate variables and poverty synergistically structure spatial risk in urban malaria in India. PLoS Negl. Trop. Dis. , 10, e0005155.
Santos-Vega, M., Martinez, P.P., Vaishnav, K.G., Kohli, V., Desai, V., Bouma, M.J., et al. (2022). The neglected role of relative humidity in the interannual variability of urban malaria in Indian cities. Nat. Commun. , 13, 533.
Schmidt, C.A., Comeau, G., Monaghan, A.J., Williamson, D.J. & Ernst, K.C. (2018). Effects of desiccation stress on adult female longevity inAedes aegypti and Ae. albopictus (Diptera: Culicidae): results of a systematic review and pooled survival analysis.Parasit. Vectors , 11, 267.
Schmidt, W.-P., Suzuki, M., Thiem, V.D., White, R.G., Tsuzuki, A., Yoshida, L.-M., et al. (2011). Population Density, Water Supply, and the Risk of Dengue Fever in Vietnam: Cohort Study and Spatial Analysis. PLOS Med. , 8, e1001082.
Shapiro, L.L.M., Whitehead, S.A. & Thomas, M.B. (2017). Quantifying the effects of temperature on mosquito and parasite traits that determine the transmission potential of human malaria. PLOS Biol. , 15, e2003489.
Shelford, V.E. (1918). A Comparison of the Responses of Animals in Gradients of Environmental Factors with Particular Reference to the Method of Reaction of Representatives of the Various Groups from Protozoa to Mammals. Science , 48, 225–230.
Shocket, M.S., Ryan, S.J. & Mordecai, E.A. (2018a). Temperature explains broad patterns of Ross River virus transmission. eLife , 7, e37762.
Shocket, M.S., Vergara, D., Sickbert, A.J., Walsman, J.M., Strauss, A.T., Hite, J.L., et al. (2018b). Parasite rearing and infection temperatures jointly influence disease transmission and shape seasonality of epidemics. Ecology , 99, 1975–1987.
Shocket, M.S., Verwillow, A.B., Numazu, M.G., Slamani, H., Cohen, J.M., El Moustaid, F., et al. (2020). Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures between 23°C and 26°C. eLife , 9, e58511.
Sinclair, B.J., Marshall, K.E., Sewell, M.A., Levesque, D.L., Willett, C.S., Slotsbo, S., et al. (2016). Can we predict ectotherm responses to climate change using thermal performance curves and body temperatures? Ecol. Lett. , 19, 1372–1385.
Singh, K.E.P. & Micks, D.W. (1957). The Effects of Surface Tension on Mosquito Development. Mosq. News , 17.
Siraj, A.S., Rodriguez-Barraquer, I., Barker, C.M., Tejedor-Garavito, N., Harding, D., Lorton, C., et al. (2018). Spatiotemporal incidence of Zika and associated environmental drivers for the 2015-2016 epidemic in Colombia. Sci. Data , 5, 180073.
Siraj, A.S., Santos-Vega, M., Bouma, M.J., Yadeta, D., Carrascal, D.R. & Pascual, M. (2014). Altitudinal Changes in Malaria Incidence in Highlands of Ethiopia and Colombia. Science .
Soti, V., Tran, A., Degenne, P., Chevalier, V., Seen, D.L., Thiongane, Y., et al. (2012). Combining Hydrology and Mosquito Population Models to Identify the Drivers of Rift Valley Fever Emergence in Semi-Arid Regions of West Africa. PLoS Negl. Trop. Dis. , 6, e1795.
Steiner, F.M., Schlick-Steiner, B.C., VanDerWal, J., Reuther, K.D., Christian, E., Stauffer, C., et al. (2008). Combined modelling of distribution and niche in invasion biology: a case study of two invasiveTetramorium ant species. Divers. Distrib. , 14, 538–545.
Sternberg, E.D. & Thomas, M.B. (2014). Local adaptation to temperature and the implications for vector-borne diseases. Trends Parasitol. , 30, 115–122.
Stewart Ibarra, A.M., Ryan, S.J., Beltrán, E., Mejía, R., Silva, M. & Muñoz, Á. (2013). Dengue Vector Dynamics (Aedes aegypti ) Influenced by Climate and Social Factors in Ecuador: Implications for Targeted Control. PLOS ONE , 8, e78263.
Stewart, I.D. & Oke, T.R. (2012). Local Climate Zones for Urban Temperature Studies. Bull. Am. Meteorol. Soc. , 93, 1879–1900.
Stoddard, S.T., Morrison, A.C., Vazquez-Prokopec, G.M., Soldan, V.P., Kochel, T.J., Kitron, U., et al. (2009). The role of human movement in the transmission of vector-borne pathogens. PLoS Negl. Trop. Dis. , 3, e481.
Stuchin, M., Machalaba, C.C. & Karesh, W.B. (2016). VECTOR-BORNE DISEASES: ANIMALS AND PATTERNS . Glob. Health Impacts Vector-Borne Dis. Workshop Summ. National Academies Press (US).
Suwanchaichinda, C. & Paskewitz, S.M. (1998). Effects of Larval Nutrition, Adult Body Size, and Adult Temperature on the Ability ofAnopheles gambiae (Diptera: Culicidae) to Melanize Sephadex Beads. J. Med. Entomol. , 35, 157–161.
Takken, W. & Lindsay, S. (2019). Increased threat of urban malaria fromAnopheles stephensi mosquitoes, Africa. Emerg. Infect. Dis. , 25, 1431–1433.
Tatzel, J., Prusiner, S.B. & Welch, W.J. (1996). Chemical chaperones interfere with the formation of scrapie prion protein. EMBO J. , 15, 6363–6373.
Tesla, B., Demakovsky, L.R., Mordecai, E.A., Ryan, S.J., Bonds, M.H., Ngonghala, C.N., et al. (2018). Temperature drives Zika virus transmission: evidence from empirical and mathematical models.Proc. R. Soc. B Biol. Sci. , 285.
Thomas, S., Ravishankaran, S., Justin, J.A., Asokan, A., Mathai, M.T., Valecha, N., et al. (2016). Overhead tank is the potential breeding habitat of Anopheles stephensi in an urban transmission setting of Chennai, India. Malar. J. , 15, 274.
Thomas, S., Ravishankaran, S., Justin, N.A.J.A., Asokan, A., Kalsingh, T.M.J., Mathai, M.T., et al. (2018). Microclimate variables of the ambient environment deliver the actual estimates of the extrinsic incubation period of Plasmodium vivax and Plasmodium falciparum : a study from a malaria-endemic urban setting, Chennai in India. Malar. J. , 17, 201.
Thomas, S., Ravishankaran, S., Justin, N.A.J.A., Asokan, A., Mathai, M.T., Valecha, N., et al. (2017). Resting and feeding preferences of Anopheles stephensi in an urban setting, perennial for malaria. Malar. J. , 16, 111.
Thomson, R.C.M. (1938). The Reactions of Mosquitoes to Temperature and Humidity. Bull. Entomol. Res. , 29, 125–140.
Tun-Lin, W., Burkot, T.R. & Kay, B.H. (2000). Effects of temperature and larval diet on development rates and survival of the dengue vectorAedes aegypti in north Queensland, Australia. Med. Vet. Entomol. , 14, 31–37.
Ulrich, J.N., Beier, J.C., Devine, G.J. & Hugo, L.E. (2016). Heat Sensitivity of wMel Wolbachia during Aedes aegyptiDevelopment. PLoS Negl. Trop. Dis. , 10, e0004873.
United Nations, D. of E. and S.A., Population Division. (2019).World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420) . United Nations, New York, NY.
Urbanski, J.M., Benoit, J.B., Michaud, M.R., Denlinger, D.L. & Armbruster, P. (2010). The molecular physiology of increased egg desiccation resistance during diapause in the invasive mosquito,Aedes albopictus . Proc. R. Soc. B Biol. Sci. , 277, 2683–2692.
Vega-Rúa, A., Marconcini, M., Madec, Y., Manni, M., Carraretto, D., Gomulski, L.M., et al. (2020). Vector competence of Aedes albopictus populations for chikungunya virus is shaped by their demographic history. Commun. Biol. , 3, 1–13.
Verhulst, N.O., Brendle, A., Blanckenhorn, W.U. & Mathis, A. (2020). Thermal preferences of subtropical Aedes aegypti and temperateAe. japonicus mosquitoes. J. Therm. Biol. , 91, 102637.
Villena, O.C., Ryan, S.J., Murdock, C.C. & Johnson, L.R. (2022). Temperature impacts the transmission of malaria parasites byAnopheles gambiae and Anopheles stephensi mosquitoes.Ecology , n/a, e3685.
Vorhees, A.S., Gray, E.M. & Bradley, T.J. (2013). Thermal Resistance and Performance Correlate with Climate in Populations of a Widespread Mosquito. Physiol. Biochem. Zool. , 86, 73–81.
Wang, G.-H., Gamez, S., Raban, R.R., Marshall, J.M., Alphey, L., Li, M.,et al. (2021). Combating mosquito-borne diseases using genetic control technologies. Nat. Commun. , 12, 4388.
Warner, R.E. (1968). The Role of Introduced Diseases in the Extinction of the Endemic Hawaiian Avifauna. The Condor , 70, 101–120.
Weaver, S.C., Charlier, C., Vasilakis, N. & Lecuit, M. (2018). Zika, Chikungunya, and Other Emerging Vector-Borne Viral Diseases. Annu. Rev. Med. , 69, 395–408.
Weihrauch, D., Donini, A. & O’Donnell, M.J. (2012). Ammonia transport by terrestrial and aquatic insects. J. Insect Physiol. , Molecular Physiology of Epithelial Transport in Insects - a Tribute to William R. Harvey, 58, 473–487.
W.H.O. (2020). World malaria report 2020: 20 years of global progress and challenges. World Health Organization, Geneva.
Wilke, A.B.B. & Marrelli, M.T. (2012). Genetic Control of Mosquitoes: population suppression strategies. Rev. Inst. Med. Trop. São Paulo , 54, 287–292.
Wilke, A.B.B. & Marrelli, M.T. (2015). Paratransgenesis: a promising new strategy for mosquito vector control. Parasit. Vectors , 8, 342.
Wimberly, M.C., Davis, J.K., Evans, M.V., Hess, A., Newberry, P.M., Solano-Asamoah, N., et al. (2020). Land cover affects microclimate and temperature suitability for arbovirus transmission in an urban landscape. PLoS Negl. Trop. Dis. , 14, e0008614.
Witter, L.A., Johnson, C.J., Croft, B., Gunn, A. & Poirier, L.M. (2012). Gauging climate change effects at local scales: weather-based indices to monitor insect harassment in caribou. Ecol. Appl. , 22, 1838–1851.
Wright, R.E. & Knight, K.L. (1966). Effect of environmental factors on biting activity of Aedes vexans (Meigen) and Aedes trivittatus (Coquillett). Mosq. News , 26.
Wu, G.C. & Wright, J.C. (2015). Exceptional thermal tolerance and water resistance in the mite Paratarsotomus macropalpis(Erythracaridae) challenge prevailing explanations of physiological limits. J. Insect Physiol. , 82, 1–7.
Yang, P., Ren, G. & Hou, W. (2017). Temporal–Spatial Patterns of Relative Humidity and the Urban Dryness Island Effect in Beijing City.J. Appl. Meteorol. Climatol. , 56, 2221–2237.
Ye, Y.H., Carrasco, A.M., Frentiu, F.D., Chenoweth, S.F., Beebe, N.W., Hurk, A.F. van den, et al. (2015). Wolbachia Reduces the Transmission Potential of Dengue-Infected Aedes aegypti .PLoS Negl. Trop. Dis. , 9, e0003894.
Yu, H.-P., Shao, L., Xiao, K., Mu, L.-L. & Li, G.-Q. (2010). Hygropreference behaviour and humidity detection in the yellow-spined bamboo locust, Ceracris kiangsu . Physiol. Entomol. , 35, 379–384.
Yuan, F. & Bauer, M.E. (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ. , 106, 375–386.
Yurchenko, A.A., Masri, R.A., Khrabrova, N.V., Sibataev, A.K., Fritz, M.L. & Sharakhova, M.V. (2020). Genomic differentiation and intercontinental population structure of mosquito vectors Culex pipiens pipiens and Culex pipiens molestus . Sci. Rep. , 10, 7504.
Zhang, L.J., Wu, Z.L., Wang, K.F., Liu, Q., Zhuang, H.M. & Wu, G. (2015). Trade-off between thermal tolerance and insecticide resistance in Plutella xylostella . Ecol. Evol. , 5, 515–530.
Zouache, K., Fontaine, A., Vega-Rua, A., Mousson, L., Thiberge, J.-M., Lourenco-De-Oliveira, R., et al. (2014). Three-way interactions between mosquito population, viral strain and temperature underlying chikungunya virus transmission potential. Proc. R. Soc. B Biol. Sci. , 281, 20141078.