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Key Points: 10 

• Transitioning rainfed agriculture to irrigation-fed increases water scarcity in urban areas.  11 
• The impact magnitude depends on local demand, upstream flow changes due to irrigation 12 

expansion, and ancillary sources' buffering capacity. 13 
• Irrigation expansion decisions should consider the impact on water availability both locally 14 

and in distant areas to avoid water conflicts. 15 

  16 



Abstract 17 

Irrigation expansion is often posed as a promising option to enhance food security. Here, we assess 18 
the influence of expansion of irrigation, primarily in rural areas of the contiguous United States 19 
(CONUS), on the intensification and spatial proliferation of surface freshwater scarcity. Our study 20 
shows that the rainfed to irrigation-fed (RFtoIF) transition of water-scarce croplands can impact 21 
scarcity in both transitioned and non-transitioned regions, with the magnitude of impact being 22 
dependent on multiple factors including local water demand, abstractions in the river upstream, 23 
and the buffering capacity of ancillary water sources to cities. Overall, RFtoIF transition will result 24 
in an additional 169.6 million hectares or 22% of the total CONUS land area facing moderate or 25 
severe water scarcity. Analysis of just the 53 large urban clusters with 146 million residents shows 26 
that the transition will result in 97 million urban population facing water scarcity for at least one 27 
month per year on average versus 82 million before the irrigation expansion. While these reported 28 
figures are subject to simulation uncertainties despite efforts to exercise due diligence, the study 29 
unambiguously underscores the need for strategies aimed at boosting crop productivity to 30 
incorporate the effects on water availability throughout the entire extent of the flow networks, 31 
instead of solely focusing on the local level. The results further highlight that if irrigation 32 
expansion is poorly managed, it may increase urban water scarcity, thus also possibly increasing 33 
the likelihood of water conflict between urban and rural areas.  34 

Plain Language Summary 35 

In this study, we investigate the impact of the expansion of irrigation for improving food security 36 
on water scarcity. Our results show that the transition of croplands from rainfed to irrigation-fed 37 
was found to have an adverse impact on water scarcity in both transitioned and non-transitioned 38 
regions. The impacts were influenced by various factors, such as local water demand, abstractions 39 
in the river upstream, and the buffering capacity of ancillary water sources to cities. The findings 40 
of the study provide valuable insights for policymakers and stakeholders to develop more 41 
sustainable strategies that are aimed at boosting crop productivity. Specifically, the study 42 
emphasizes the need for devising strategies that consider irrigation expansion's impact on water 43 
availability throughout the entire extent of the river network, instead of focusing solely on the local 44 
level. 45 

1. Introduction 46 

Increasing population, dietary changes, and growing per capita income are elevating global food 47 
demand1–6. Considering 2005 as base year, estimates indicate that crop production needs to be 48 
roughly doubled to satisfy the food demand by 20502. Several strategies are being practiced or 49 
explored to increase the crop productivity and making it more resilient7–12. Among these, a 50 
prominent option is through the expansion and intensification of irrigated agriculture13,14. 51 
Irrigation can substantially increase crop yield, and reduce the risks from droughts15,16. Given that 52 
the share of irrigated cropland in the US was only 16% in 2005, even though it accounted for 44% 53 
of the total crop production17, there is a potential to significantly increase crop productivity through 54 
the transition of rainfed agriculture to irrigation-fed in the US. Recognizing this opportunity, 55 
several recent studies have explored its potential implications. For example, it was recently 56 



reported that transitioning 26% of the current global rainfed land to irrigation-fed can feed an extra 57 
2.8 billion population13. Despite its potential, rain-fed to irrigation-fed transition may not always 58 
be sustainable, especially if the transition is poorly managed. The irrigation expansion may cause 59 
river water depletion, groundwater depletion, and pose a threat to the aquatic ecosystem, thus 60 
resulting in freshwater scarcity18.  61 

In this study, we assess the potential impacts of rain-fed to irrigation-fed (RFtoIF) transition of US 62 
croplands on blue water scarcity in the contiguous United States (CONUS). Given that RFtoIF 63 
transition is expected to increase the water demand for agriculture in the rural areas, our hypothesis 64 
is that it may have an impact on the water supply of domestic and industrial sectors in the urban 65 
areas. Here we specifically assess the proliferation of blue water scarcity (see: Methods section), 66 
taking into account both the surface and renewable groundwater availability, in large urban clusters 67 
(LUCs) (see Methods: Definition of urban and rural areas) due to increased agricultural water use 68 
from RFtoIF transition in regions which are largely concentrated in rural areas.  In contrast to a 69 
majority of the past studies concerned with water scarcity evaluations19–26, and much like a few 70 
selected studies27–29, here we explicitly consider the role of water transfer to urban areas from 316 71 
surface water withdrawal points. However, previous studies have not taken into account the 72 
expansion of irrigation in current non-irrigated croplands, instead employing future scenarios that 73 
assume an increased demand for irrigation water. This study differs from previous ones in that we 74 
assess the impact of the expansion of irrigation on non-irrigated croplands, i.e., the spatial 75 
proliferation of blue water scarcity in areas that were not previously irrigated, a topic that has not 76 
been addressed in earlier studies. The need for this evaluation is timely especially given the latent 77 
potential for irrigation expansion in central and eastern United States, where several regions have 78 
already experienced more than 100% increase in irrigation expansion just within 20-years period30.  79 

2. Methods 80 

2.1. Definition of urban and rural areas 81 

The US Census Bureau delineates geographic areas identifying them as urban or rural. Urban areas 82 
represent densely developed aggregations of census blocks, and usually encompass residential, 83 
commercial, and other non-residential land uses. Areas not qualifying as urban are coined as rural. 84 
Here, the urban-rural area information is obtained from US Census Bureau as TIGER/line 85 
Shapefile31. 86 

In this study, we assess the impact of RFtoIF in 53 large urban clusters (also referred as LUCs 87 
henceforth) which are spread over around 11.9 million hectares and populate around 146 million 88 
people. The choice of these LUCs is partly motivated by their significant populace, exceeding 89 
750,000, and also due to the availability of comprehensive surface water withdrawal points data 90 
for them29. Population information for urban regions is obtained from Gridded Population of the 91 
World (GPW), SEDAC32. 92 

2.2. Assessment of blue and green water scarcity 93 

Green water scarcity is assessed using the GWS index which captures the fraction of crop water 94 
requirement that is not met by green water, and is obtained as the ratio of monthly irrigation water 95 



demand (= crop water requirement – green water use) and crop water requirement33. Green water 96 
refers to the rainwater and soil moisture consumed by crops. GWS is calculated at monthly 97 
resolution using  98 

 𝐺𝑊𝑆 = 𝐶𝑊𝑅 – 𝐶𝑊𝑆𝐺𝐶𝑊𝑅  (4)

where, CWR is crop water requirement or the amount of water required by a crop to grow 99 
optimally, and CWSG is the crop water supply from green water. CWR and CWSG for a given 100 
month are calculated by summing daily PET and AET for the month, respectively. GWS is 101 
calculated for rainfed crops, therefore, water-limited AET that is solely due to precipitation is used 102 
here (see supplementary information for more detail). A region is considered green water scarce if 103 
CWSG < 0.9 CWR or in other words, GWS > 0.1 based on Rosa et al.33. 104 

Blue water scarcity in this study is quantified using the cumulative abstraction to demand (CAD) 105 
metric, which is the ratio of water abstraction to water demand18. Monthly blue water scarcity is 106 
assessed using an index called cumulative abstraction to demand (CAD). CAD is calculated at a 107 
monthly time step as the ratio of monthly water abstraction to the demand of all the sectors in the 108 
grid cell. Here water abstraction corresponds to abstracted water from both surface and subsurface 109 
sources, while the water demand quantifies the total water needed to satisfy the demands of 110 
agricultural, domestic, and industrial sectors34. When water abstraction in a region is less than the 111 
water demand, CAD falls below unity. Generally, CAD < 1 indicates a water shortage, and an 112 
alternative source of water is needed to alleviate water scarcity. Smaller is the CAD value, more 113 
severe is the scarcity. A low, moderate, high, and severe blue water scarcity corresponds to 0.8 < 114 
CAD ≤ 0.99, 0.5 < CAD ≤ 0.8, 0.3 < CAD ≤ 0.5, and CAD ≤ 0.3, respectively. The water scarcity 115 
classification thresholds using CAD are consistent with the other widely used water scarcity 116 
indexes- water withdrawal to availability and water availability per capita35. Herein, all reported 117 
results regarding the regions that face scarcity correspond to CAD ≤ 0.8, which indicates a 118 
moderate to high blue water scarcity, unless explicitly stated otherwise. 119 

2.3. H08 Model Simulations 120 

To assess the impacts of RFtoIF transition on blue water scarcity, a global hydrological model, 121 
H0834, is used to simulate monthly water availability over the CONUS at a spatial resolution of 5 122 
x 5 arcmin. Two scenario simulations are performed. Scenario S1 represents the status quo during 123 
1996-2005, a period around which most of the input data for H08 are available at continental scale 124 
(e.g., crop area fraction for 19 crops36, irrigated area fraction37, etc.). Scenario S2 simulates the 125 
transition of all rain-fed croplands that experience green water scarcity, to irrigation-fed.  126 

The H08 consists of six submodels named land surface, river routing, crop growth, water 127 
abstraction, environmental flow, and reservoir operations. H08 was run at daily time intervals and 128 
a spatial resolution of 5-arcmin over the period 1996-2005 for the CONUS. All submodels of H08 129 
are coupled to obtain monthly blue water demand for agricultural, industrial, and domestic sectors, 130 
and blue water availability in each cell. Blue water demand is satisfied by varied surface and 131 
groundwater sources. Surface water is supplied by rivers, canals, reservoirs, and desalination 132 
plants while groundwater is supplied from renewable and nonrenewable groundwater resources. 133 



The municipal sector is given priority in water supply, followed by the industrial and agricultural 134 
sectors, respectively. Daily meteorological forcing data of precipitation, wind speed, air 135 
temperature, air pressure, specific humidity, and longwave and shortwave radiation were obtained 136 
from NLDAS38 at 0.125 degrees, hourly, and downscaled at 5 arc min, daily. Additional non-137 
meteorological input data including irrigated area- area equipped for irrigation (AEI) and area 138 
actually irrigated (AAI)37, cropland area39, crop area fraction and spatial distribution of 18 selected 139 
crops36, and water withdrawal for domestic and industrial sectors (FAO40) were obtained for the 140 
year circa 2000. Other relevant data for H08, including parameterizations, were directly obtained 141 
based on Hanasaki et al, 201841 The EFRs are determined using Shirakawa's (2005) algorithm in 142 
which all grids are classified (dry, wet, and stable) based on the monthly minimum and maximum 143 
streamflow. 42  144 

The model divides a grid cell into 4 subcells for the irrigated first-crop area, irrigated second-crop 145 
area, rainfed area, and no crop area. Irrigated areas are assumed to support a maximum of two 146 
crops, a major crop or the first-crop and a secondary crop as the second-crop. The model estimates 147 
daily irrigation water requirements using meteorological forcing, crop and agricultural information 148 
(crop intensity, crop type, irrigation efficiency, etc.). Irrigation is applied to the crops to maintain 149 
75% soil saturation. Annual national industrial and municipal water requirements are obtained 150 
from the AQUASTAT database40 and spatially interpolated at 5 arc min according to the 151 
population density32.  152 

H08 incorporates two types of reservoirs, large and medium-sized. Large reservoirs have a 153 
catchment area of more than 5000 km2 and are located on the main river streams and can control 154 
the flow. The medium size reservoirs are generally located in the tributaries and act as tank storage, 155 
it stores the water until the storage capacity is reached. Any additional water than storage capacity 156 
is released to downstream.  157 

The canal water supply system in the H08 enables the grids to transfer water to large distances. 158 
H08 considers two types of aqueducts characterized as explicit and implicit. Explicit canals are 159 
those that are physically constructed and can be validated by literature, while implicit canals are 160 
based on the assumption that the river water is shared with the first neighboring cell. Implicit 161 
canals help prevent the artificial gap in water availability for the cells nearby rivers. Due to the 162 
unavailability of the continental scale data of explicit canals, the model may underestimate the 163 
water abstraction, especially in urban areas. This is alleviated to some extent by the use of city 164 
water map data that provides information on the water sources for 53 cities in the US29. Large 165 
cities abstract water from urban withdrawal points (groundwater, surface water, and desalination 166 
plants), some of them are located around a few hundred kilometers away from the cities. Urban 167 
water withdrawal point information was implemented in H08 as canal origins.  168 

For both scenarios, S1 and S2, the model34 allocates water to a grid according to the water demand 169 
and availability at the source of water. The available water in any grid is the sum of runoff 170 
generated in the grid, renewable groundwater reserve, canal water abstraction, water abstraction 171 
from reservoirs, and water released from upstream grids after fulfilling their all-sectoral demands 172 
to the grid under consideration. The model also accounts for environmental flow requirements 173 
(EFR)43 as an additional demand, while estimating the blue water scarcity. 174 



2.4. Assessment of intensification and proliferation of blue water scarcity 175 

The total water demand and abstraction in a LUC is calculated by summing the demand of all LUC 176 
grids. The ratio between total monthly water abstraction to demand summed over all LUC grids 177 
represents CAD for LUCs. 178 

 𝐶𝐴𝐷௅௎஼,௠ = 𝑇𝐴௅௎஼,௠𝑇𝐷௅௎஼,௠ (5) 

where TALUC,m and TDLUC,m are total monthly water abstraction and demand in LUC grids, 179 
respectively, calculated by summing daily industrial (ind) and domestic (dom) water abstraction 180 
(A) and demand (D) over number of days (d) in a month. We did not consider the agricultural water 181 
demand in LUC grids due to the presence of small fraction of irrigated croplands in suburban areas. 182 
Urban water withdrawal points serve additional source of water abstraction for LUCs. It is assumed 183 
that if an urban water withdrawal point is designated to supply water to a city, all the city's grids 184 
can abstract water from it based on their demand.  185 

In this study, the intensification of water scarcity is defined as the increase in intensity of blue 186 
water scarcity following RFtoIF transition, i.e., areas facing CAD ≤ 0.99 being lower CAD in S2 187 
than in S1. Spatial proliferation of blue water scarcity indicates expansion of areas (or model cells, 188 
used interchangeably henceforth) that do not face water scarcity to begin with, i.e., CAD > 0.99 in 189 
S1, but do so following RFtoIF transition, i.e., CAD ≤ 0.99 in S2. 190 

3. Results 191 

3.1. RFtoIF transition’s impact on sectoral water use and blue water scarcity 192 

In scenario S1, more than 72.8% of the total cropland area or 82.5% of the total rainfed cropland 193 
faces green water scarcity for at least one month in a year (Fig. S1). This is consistent with previous 194 
studies where 70% of the cropland area was reported to be facing green water scarcity in the 195 
CONUS33 during the same period. Spatially, the GWS magnitude for any given month generally 196 
increases with the monthly aridity index (PET/P) (Fig. S2). Areas facing green water scarcity for 197 
at least one month a year on average in S1, are considered for RFtoIF transition in S2 (Fig. S3).  198 

Given that freshwater is predominantly shared among agricultural, domestic, and industrial 199 
sectors, RFtoIF transition alters water availability, and consequently, water withdrawal by all three 200 
sectors. Specifically, irrigation expansion causes an increase in annual average agricultural water 201 
demand over the simulation period, with total water withdrawal increasing from 318 million m3 202 
per day to 1119 million m3 per day after the RFtoIF transition (Fig. S4). The largest increase takes 203 
place in the summer (Table 1). Notably, the increase in agricultural water use results in less water 204 
available for industrial and domestic water use, resulting in a reduction from 600 million m3 per 205 
day to 587 million m3 per day.  206 

Next, we assess the average monthly blue water scarcity for both scenarios. The difference in 207 
CAD, after and before the RFtoIF transition shows the impact of transition on blue water scarcity 208 
(Fig.1). The land area facing at least a moderate annual average blue water scarcity (CAD ≤ 0.8) 209 
increases from 71.5 million ha (~ 9.33% of the total land area in CONUS) to 241.08 million ha (~ 210 
31.45% of the total land area), i.e., an increase of 169.6 million ha, after RFtoIF transition (see 211 



definitions of blue water scarcity severities in Methods: Assessment of blue and green water 212 
scarcity). The spatial distribution of blue water scarcity varies monthly, and peaks in spring and 213 
summer largely because of the increased water demand during this period. The impact is maximum 214 
during the month of August, when the land area facing moderate blue water scarcity increases from 215 
68.6 million ha (~ 9% of the total land area in CONUS) to 228.7 million ha (~ 30% of the total 216 
land area) after RFtoIF transition. In S1, around 27% and 66% of the CONUS face blue water 217 
scarcity that is at least moderate (CAD ≤ 0.8) and low (CAD ≤ 0.99) in intensity for at least one 218 
month, respectively. The corresponding values increase to 49% and 76% after the RFtoIF 219 
transition. The scarcity intensification is largest in High Plains, with Texas, Kansas, and Nebraska 220 
experiencing intensification in the majority of months. Significant expansion is also experienced 221 
in the eastern US, which has low or no water scarcity in scenario S1. California, Oklahoma, Iowa, 222 
Indiana, South Dakota, North Dakota, Minnesota, Illinois, and Missouri observe the spatial 223 
proliferation of blue water scarcity, mainly in the summer (Fig. 1). The somewhat conspicuous 224 
reduction of CAD in North Dakota in winter is due to a reduction in water availability for industrial 225 
and domestic sectors, which in turn is a result of upstream usage of water for irrigation of winter 226 
crops in Montana following RFtoIF transition. Notably, the water reduction in North Dakota is 227 
small but the change in CAD is high due to the small water demand. Some areas of Mississippi 228 
and Arkansas that contribute to the lower Mississippi river basin also show an increase in blue 229 
water scarcity in the summer after the RFtoIF transition.  230 



 231 
Figure 1. Spatial distribution of the difference in CAD (∆CAD) after and before the RFtoIF transition. Negative values 232 
indicate a decrease in CAD (or an increase in blue water scarcity) with RFtoIF transition.  233 

 234 

RFtoIF transition is expected to generally increase blue water scarcity in areas undergoing 235 
transition because of the extra water usage in irrigation. The aggravated blue water scarcity in the 236 
transitioned area indicate that existing renewable water resources (i.e., the river discharge or 237 
reservoirs) and water transportation infrastructure (i.e., implicit and explicit aqueducts, and urban 238 
water withdrawal points, (see Methods: H08 Model)) are inadequate for fulfilling the increased 239 
water demand due to RFtoIF transition. Notably, the RFtoIF transition also causes a rise in monthly 240 
blue water scarcity in the areas untouched by the transition. This is because an increase in 241 



agricultural water withdrawal from surface water sources due to irrigation expansion in upstream 242 
areas leads to a reduction in water flow in river channels, and hence less water availability in 243 
receiving lakes and reservoirs. Notably, the average annual surface water use for irrigation 244 
increases from 162 million m3 per day to 517.8 million m3 per day after RFtoIF transition.  245 

The impact can be gauged both in terms of intensification and spatial proliferation of blue water 246 
scarcity. Around 5.3 million hectares (27.2 million hectares) of land that did not undergo RFtoIF 247 
transition in S2 face spatial proliferation (intensification) in blue water scarcity (Fig. S5).  248 

3.2. RFtoIF transition and the urban water security 249 

RFtoIF transition, which is primarily concentrated in rural areas (see definition in rural areas in 250 
Methods: Definition of urban and rural areas) with 97% of the RFtoIF transitioned land lying 251 
within it, may have significant impacts on the urban water security. Analyses of blue water scarcity 252 
over LUCs (see Methods: Water Supply Data of LUCs) for which detailed data of water supply 253 
infrastructure is publicly available, show evidence of both spatial proliferation and intensification 254 
of blue water scarcity in them. CAD estimates over LUCs are evaluated to assess the differential 255 
impacts of RFtoIF transition on them. The impact of RFtoIF transition is significant in LUCs, with 256 
spatial proliferation (intensification) of blue water scarcity increasing by 0.97 million hectares (8.2 257 
million hectares), i.e. around 4.4% (37.5%) of the total area of LUCs considered in this study. 258 
Before RFtoIF transition, i.e., in scenario S1, 86.2% of LUC and 90.2% of rest of the area 259 
(henceforth referred to as ROA) model cells have CAD values greater than 0.8, which belongs to 260 
a low or no water scarcity category (Fig. 2). After the RFtoIF transition, the percent of cells that 261 
face no or low water scarcity reduces to 84.3% and 67.8% for LUCs and ROA, respectively. In 262 
contrast, 13% of the total ROA cells are estimated to face a moderate blue water scarcity after the 263 
transition, while it was 5.3% in S1. The LUCs also see a hike in the number of cells facing 264 
moderate blue water scarcity after transition with fractional area rising to 9.2% from 7.8%.  265 

Results show that 24 (18) out of 53 highly populated LUCs face a blue water scarcity with at least 266 
a moderate intensity for a minimum of one month (six months), respectively (Fig. 3) before RFtoIF 267 
transition. These 24 urban areas have a population of around 82 million and roughly constitute 268 
25% of the total US population. The number rises to 29 cities facing blue water scarcity for at least 269 
one month with a population of around 97 million urban population or 29.5% of the US population 270 
after the RFtoIF transition. In addition, urban agglomerations of Columbus in OH, Dallas--Fort 271 
Worth--Arlington in TX, Houston in TX, Memphis in TN—MS—AR, Minneapolis--St. Paul in 272 
MN—WI, and Virginia Beach in VA face moderate water scarcity (0.5 < CAD ≤ 0.8) for at least  273 

 274 



 275 
Figure 2. Cumulative distribution function of CAD values for ROA (a), and LUC cells (b) for scenarios S1 (blue) and 276 
S2 (red). The numbers indicate the percent of cells belonging to different blue water scarcity classes i.e. low (0.8 < 277 
CAD ≤ 0.99), moderate (0.5 < CAD ≤ 0.8), high (0.3 < CAD ≤ 0.5), or severe (CAD ≤ 0.3). Fraction of the cells with 278 
low or no water scarcity reduces after the RFtoIF transition in both LUCs and ROA. The reduction in fraction of ROC 279 
cells is relatively larger. 280 

 281 

one extra month after RFtoIF transition. Overall, RFtoIF transition increases scarcity in 6 out of 282 
53 urban areas, affecting additional 16 million people. 283 

3.3. Variables that influence the spatial distribution and intensity of blue water scarcity, and 284 
changes in it due to RFtoIF transition 285 

The spatial distribution of CAD is found to be largely controlled by the relative availability of 286 
water from upstream. Locations (or model cells) receiving high incoming lateral flow or runoff  287 

 288 



 289 

 290 

 291 
Figure 3. Blue water scarcity for 53 LUCs for scenarios S1 (a) and S2 (b). The size of the circle represents the 292 
population, and the color represents the number of months a LUC faces water scarcity 293 

 294 

generally have higher CAD values or low blue water scarcity (Fig. 4a). For example, among cells 295 
with CAD ≤ 0.5, around 55% of them have a lateral flow of less than 0.0001 MCM per day. 296 
Further, 59% of the severely water scarce cells, i.e., CAD ≤ 0.3, have lateral flow less than 0.0001 297 
MCM per day. For ROA cells, CAD distribution is affected by crop area as well, as water demand 298 
increases with high crop area. The difference between potential evapotranspiration (PET) and 299 
actual evapotranspiration (AET), which captures the irrigation water demand for crops, is another 300 
influencing factor. Together, it is observed that cells with less PET-AET and less crop area 301 
generally have higher CAD values (Fig. 4b for scenario S2). In contrast, for LUC cells that usually 302 
do not have any significant fraction of croplands, the water demand and consequently the CAD is 303 



influenced by the human population. Cells with less population and less lateral flow tend to show 304 
higher CAD values or less blue water scarcity (Fig. 4d). 305 

The change in blue water scarcity, as quantified by ∆CAD, is either zero or negative. Of the LUC 306 
cells that experience a change in CAD, most observe ∆CAD between 0 to -0.2 (Table 2 and Fig 307 
S6). The same is true for non-transitioned ROA cells. Among the ROA cells that undergo 308 
transition, a large fraction of them (> 70%) have ∆CAD < -0.2. Around 5.7% of the transitioned 309 
grids have ∆CAD ranging from -1 to -0.8. Overall, when all cells are considered, more than 24% 310 
of the cells experience ∆CAD < -0.2. 311 

  312 

 313 
Figure 4. (a) Lateral flow for ROA cells vs. ((PET-AET)*crop area). PET is the potential evapotranspiration and AET 314 
is the actual evapotranspiration. ((PET-AET)*crop area) represents the crop water demand in a cell. (b) ROA cells 315 
with lateral flow less than 1 MCM/day show smaller CAD, with CAD generally decreasing with higher (PET-AET) 316 
and crop area fraction. (c) Lateral flow for LUC cells vs. population. (d) LUC cells with lateral flow less than 5 317 
MCM/day show an increase in blue water scarcity (or decrease in CAD) with increasing population. The data in all 318 
the subplots is for the month of June only. 319 

 320 



To understand the influences on the spatial distribution of ∆CAD, ∆CAD for LUC and ROA cells 321 
are expressed as: 322 

 ∆𝐶𝐴𝐷 = 𝐴2𝐷2 – 𝐴1𝐷1 = 𝐴2 − 𝐴1𝐷2 − 𝐴1𝐷2. 𝐷1 ሺ𝐷2 − 𝐷1ሻ
= ሺ𝐴2 − 𝐴1ሻ − 𝐴1𝐷1 ሺ𝐷2 − 𝐷1ሻ𝐷2 (1)

 
 ∆𝐶𝐴𝐷 = ∆௔௕௦ – ಲభವభ∗∆ௗ௘௠஽ଵ ା ∆ௗ௘௠  (2)

where, A1 and D1 (A2 and D2) are the water abstraction and demand in scenario S1 (S2), 323 
respectively. ∆abs (= A2-A1) and ∆dem (= D2-D1) represent the change in water abstraction and 324 
demand due to transition, respectively. ∆dem is either zero or positive while ∆abs is either negative 325 
or positive depending on the availability of excess water available for abstraction following RFtoIF 326 
transition.  327 

For LUCs, since the water demand remains the same in both scenarios because of the absence of 328 
RFtoIF transition in them, ∆dem is zero and the equation 2 reduces to: 329 

 ∆𝐶𝐴𝐷 = ∆𝑎𝑏𝑠𝐷1  (3) 

As indicated in Equation 3, ∆CAD increases as the magnitude of ∆abs increases for LUC cells 330 
(Fig. 5a). For a given ∆abs, high-demand LUCs that are primarily the areas with high population 331 
density or industrialization experience smaller change in CAD or blue water scarcity. Conversely, 332 
∆CAD is generally higher for urban areas which a higher reduction in water abstraction (Fig. S7. 333 
LUCs with higher ∆abs either face water scarcity for additional months or experience a reduction 334 
in CAD value after the transition. For example, Houston, TX receives water from Lake Livingston 335 
on the Trinity River, and Lake Houston and Lake Conroe on the San Jacinto River, for its daily 336 
domestic and industrial needs and does not face water scarcity in S1.  337 

After irrigation expansion in scenario S2, predicted water availability in current surface water 338 
sources reduces and the existing water transport infrastructure is unable to meet the city water 339 
demands. Thus, the number of water-scarce months rises to 6 in S2. The largest reduction in water 340 
abstraction is observed in September, when it reduces by around 10%. The mean annual water 341 
abstraction reduces by around 4%. Consequently, CAD reduces for all the months. blue water 342 
scarcity changes from no or low to moderate for May-Oct. A similar picture unfolds in Dallas, 343 
where water scarcity months rise from 0 to 4 due to reduced water availability in the city’s water 344 



 345 
Figure 5. (a) Scatter plot between annual average ∆CAD and ∆abs for LUC cells. Cells with higher demand (shown 346 
in million cubic meter per year (MCM/year)) have smaller ∆CAD for the same ∆abs, (b) annual average ∆abs and 347 
∆dem scatter plot for ROA cells. Some of the non-transitioned cells show change in CAD even after no change in 348 
demand in scenario S2. For transitioned grids, change in CAD is higher for the cells with less increase in abstraction 349 
i.e. low ∆abs, while cells with high ∆abs have less change in CAD. 350 

 351 

resources. Along similar lines, Columbus, OH; Memphis, TN—MS—AR; Minneapolis--St. Paul, 352 
MN—WI; and Virginia Beach, VA have large absolute ∆abs and face at least one additional month 353 
of water scarcity. Notably, urban agglomerations with sufficient excess water supply and/or 354 
minimal RFtoIF transition upstream manage to be unaffected by RFtoIF transition. For example, 355 
two major urban agglomerations in Arizona, viz. Phoenix-Mesa and Tucson experience blue water 356 
scarcity for 6 and 4 months, respectively, in both scenarios S1 and S2, as relatively small increase 357 
in water withdrawal from RFtoIF transition can be supplemented by water supply from Central 358 
Arizona Project (CAP) reservoirs (Tucson and Phoenix-Mesa) and Salt Lake Project (Phoenix-359 
Mesa). In a few circumstances, number of months experiencing changes in scarcity may be zero 360 
because they may already be scarced in all months in scenario S1. For ecample, New York—361 
Newark, Oklahoma City, and San Antonio, already experience a full year of water scarcity, 362 
indicating that no further months are added in those cities. It is to be noted that for several LUCs, 363 
such as Milwaukee, Kansas City, Chicago, and St. Louis, while RFtoIF transition in the upstream 364 
contribution area decreased river flow causing negative change in abstraction from it (Fig. 6, local 365 
water sources in the neighborhood that supply water through canals are able to cushion this 366 
reduction (as indicated by positive change in abstraction from canals). In contrast, LUCs that 367 
experience increase in number of months of scarcity generally experience negative change 368 
abstraction from both rivers and the canals. This highlights that the impact of RFtoIF transition on 369 
scarcity can be mediated by anciallary water sources that are not directly or significantly impacted 370 
by RFtoIF transition. 371 

For ROA cells, in addition to ∆abs and D1, the spatial distribution of ∆CAD is controlled by 372 
additional variables including ∆dem and A1 (see Equation 2). Notably, among the ROAs, most 373 



transitioned locations have positive ∆abs, while the non-transitioned cells either have zero or 374 
negative ∆abs (Fig. 5b). This suggests that transitioned cells withdraw more water to match the 375 
demand after RFtoIF transition, while cells that do not participate in transition withdraw less or 376 
the same amount of water depending on the extent of reduction in water availability at the location. 377 
∆CAD for non-transitioned ROA cells behaves like that of LUC cells, with its absolute value 378 
increasing with an increase in ∆abs. In contrast, at the transitioned ROA locations, the absolute 379 
value of ∆CAD decreases with an increase in ∆abs magnitude for a given ∆dem. In other words, 380 
if the increase in abstraction does not match the increase in water demand, transitioned locations 381 
experience higher ∆CAD.  382 

4. Discussion and Synthesis 383 

It is well known that transitioning from rainfed to irrigation-fed agriculture boosts crop yields and 384 
improves food security. Our continental hydrologic simulation, however, shows that RFtoIF 385 
transition over croplands that experience green water scarcity for an average of at least one month 386 
a year intensifies freshwater scarcity in both transitioned and non-transitioned areas. Notably, 387 
urban areas that generally support significant populations also experience increased water scarcity 388 
due to an increase in agricultural water usage by upstream rural users. Our simulation results show 389 
that from among just the 53 considered LUCs, around 16 million additional urban residents will 390 
get affected by such a transition. This may increase the risk of water conflict between urban and 391 
the surrounding upstream rural water users, as it is being realized in many water stressed situations 392 
throughout the world44–48.   393 

The analysis was conducted assuming all rainfed areas facing green water scarcity for at least one 394 
month are converted to irrigation fed, which while being an unlikely scenario in terms of its 395 
implementation, helps highlight the degree of impact that may be incurred. The study does not 396 
account for water consumption by poultry and livestock in agricultural sectors. The impact of 397 
RFtoIF transition on the increase in the number of livestock and consequently water use by them49 398 
is also not considered here. A model facilitating livestock and other farm water consumption may 399 
be used to assess the overall impact. However, the water use by livestock is minimal as compared 400 
to other sectors (less than 1% of total freshwater withdrawals in 2000)50.  401 

The water scarcity evaluations performed here are based on the historical datasets, i.e. crop area 402 
distribution and irrigated area maps circa 2000 and 2005, respectively. Given that new and better 403 
data is continuously being generated, the reported population facing blue water scarcity in the 404 
status quo and transition scenario are expected to change with their usage. It is also to be noted 405 
that by the year the full RFtoIF transition (as simulated in S2) may get realized, if it ever does, the 406 
climate is likely to be different. However, given the uncertainty in timeline of this transition, the 407 
current study does not consider the concomitant impacts of changes in climate on 408 
evapotranspiration, precipitation, water availability, and water demand51,52. During the transition, 409 
other socioeconomic changes such as urban and rural demographics, water infrastructure 410 
technology, economic changes, changes in water withdrawal efficiency for all three sectors, 411 
cropping patterns, agricultural management practices, land cover change, etc. are subject to change 412 
and may affect the water scarcity in an area as well. These factors are not explicitly considered in 413 



 414 
Fig. 6. 53 LUCs considered in this study and their average annual water demand and ∆abs. The ∆abs is specified 415 
separately based on the source of water abstraction i.e. river and canal. Water abstraction from WTPs is included in 416 
canal water abstraction. Column on the right indicates number of months of water scarcity in scenarios S1 and S2 for 417 
each considered LUC. 418 

 419 

the scenario simulations performed here. We further acknowledge that the RFtoIF transition may 420 
disturb local hydrological cycle and affect the precipitation, evapotranspiration, surface 421 
temperature, and other land atmospheric interactions53–55. These factors can affect the water 422 
scarcity estimates well.  423 

It is to be noted that just as is the case with most model implementations, the H08 model results, 424 
which have been used to obtain the scenario simulations in this study, suffer from model structure 425 
and data uncertainty. For example, as the model does not consider lateral groundwater flow 426 
between cells, it may have impacted the estimates of the spatial distribution of CAD and ∆CAD 427 
as groundwater withdrawals may directly impact the surface water resources56,57. Uncertainties 428 



also exist in terms of accounting for all the possible surface water supplies. An effort has been 429 
made in this study to reduce this uncertainty by including urban water withdrawal points29. A more 430 
accurate dataset on distant water supply may improve the results. Notably, only surface urban 431 
withdrawal points were considered, due to their ability to be incorporated as canal origin points in 432 
the current version of H08. This may result in an overestimation of blue water scarcity in cities 433 
that rely primarily on groundwater or desalinization for their municipal and industrial water 434 
demand. Another source of uncertainty may arise due to the current representation of urban water 435 
withdrawal points in H08. Specifically, while all LUC grids are able to abstract water from urban 436 
withdrawal points, the grids that come first in the pre-defined sequence are prioritized for 437 
withdrawal. This could potentially impact water scarcity at the grid scale, although the overall 438 
effect on the LUC level is likely to be minimal as the abstraction from all grids is aggregated to 439 
calculate the total water abstracted by the LUCs. Furthermore, the study assumes that the domestic 440 
sector is the first to extract water, followed by the industrial and then the agricultural sectors. 441 
Assuming agriculture has the lowest priority in water abstraction is a pragmatic choice given the 442 
lack of information on which regions prioritize which sectors. However, the results of water 443 
scarcity can be sensitive to this assumption. According to Flörke et al.28, climate change affects 444 
the surface water deficit in urban areas in significantly different ways depending on the water 445 
extraction priority assigned to the urban population. 446 

In this study, areas facing water scarcity are derived using the CAD index. The index is similar to 447 
other commonly employed water scarcity indices such as the criticality ratio58, Falkenmark 448 
index20, and water footprint based index. Previous studies35,59 have shown that estimates of 449 
population experiencing scarcity are only mildly sensitive to the choice of water scarcity metrics 450 
(Table S1a), and there is a close correspondence between these indices. This is unsurprising as 451 
majority of these metrics use two similar primary variables, namely the abstracted water amount 452 
or the water available for abstraction, and demand or water footprint (Table S1b). Differences 453 
between metrics may arise from the inclusion of additional variables, such as accounting of water-454 
use losses in water abstraction term or the numerator of CAD. The magnitude of these additional 455 
variables can lead to variations in the estimates of water scarcity across metrics. It's worth noting 456 
that each metric often applies subjective thresholds to classify the severity of scarcity, which can 457 
also contribute to disparities in results between metrics.  458 

Apart from these, uncertainties may also occur due to the use of spatially uniform irrigation and, 459 
domestic and industrial water use efficiencies, which are set to 0.6, 0.15, and 0.1, respectively, 460 
over all the cells. Furthermore, the results are based on a temporally static distribution of irrigation 461 
area, cropland-pasture fraction, and areas of different crops over the simulation period. The 462 
industrial and domestic water withdrawal used in this study is obtained from AQUASTAT and 463 
downscaled to the modeling scale of 5x5 arcmin based on the population distribution. Notably, the 464 
temporal variation of domestic and industrial water withdrawal is also not taken into consideration. 465 
This issue can be attenuated if the model is supplied with more accurate data on water withdrawal 466 
by domestic and industrial sectors. Notably, the first priority for water abstraction is given to the 467 
domestic sector followed by the industrial and agricultural. As an earlier study28 has reported, 468 
water scarcity in urban areas is sensitive to the water supply preferences, the results may change 469 
if other sectors are prioritized. CAD and ∆CAD estimates are likely to be also affected by 470 



uncertainties in EFR, which here is defined based on the monthly average river discharge42. 471 
Studies60 have previously reported that the EFR estimation method may determine water scarcity 472 
assessment, although Mekonnen and Hoekstra (2016)19 also noted that the population living under 473 
moderate blue water scarcity does not change significantly for the uncertainty range of EFR. 474 
Another source of uncertainty is from the current AET and PET parameterizations, which do not 475 
account for crop-specific stomatal conductances. Given that these conductances may vary with 476 
crops and cultivars61, uncertainties in PET and ET estimates can be reduced by performing 477 
calibration and validation against remotely-sensed evapotranspiration estimates62. 478 

Despite the aforementioned methodological limitations, the analysis clearly shows that the controls 479 
on changes in blue water scarcity (or ∆CAD) are different between non-transitioned and 480 
transitioned locations. The trend of changes in ∆CAD vis-à-vis changes in abstraction is also 481 
contrasting between non-transitioned and transitioned locations. In addition, the affect of RFtoIF 482 
transition on urban areas, especially in regards to additional months being affected by scarcity is 483 
dependent both on antecedent scarcity state before transition and presence of ancillary water 484 
supply sources to cities either from reservoirs or locations that are not directly impacted bt RFtoIF 485 
transition. Overall, the study indicates that the irrigation expansion, if not properly managed, is 486 
unsustainable. Furthermore, irrigation expansion can enhance water scarcity in large urban areas 487 
and could be a conflict agent between urban and rural water users. Given the existing significant 488 
divide in the urban-rural electorate in US63, these conflicts are likely to get aggravated and spur 489 
social and administrative challenges regarding water allocation and access. Alterations in water 490 
resources due to rapid urbanization, and socio-economic and climate change, are likely to further 491 
pose challenges for water managers64–66. Since the impacts of RFtoIF transition propagate 492 
downstream, constraining urban-rural conflicts44–48 may require update and/or formulation of 493 
innovative basin-scale water apportioning doctrines and compacts. 494 

Acknowledgements 495 

MK acknowledges support from the National Science Foundation (NSF, grant nos. EAR-1856054 496 
and OIA-2019561). 497 

Author Contributions  498 

MK conceived the study, acquired funding, and provided project administration and supervision. 499 
LR compiled the data, performed model simulations, developed relevant codes for analyses and 500 
visualizations, and generated model outputs. LR and MK designed the methodology, performed 501 
data analyses, and drafted the manuscript. NH and PR contributed to model implementation. All 502 
authors edited the manuscript and helped improve it. 503 

Competing Interests  504 

The authors declare no competing interests. 505 

Open Research 506 

Data analyses were performed using Python (version 3.8), major libraries used are: pandas, numpy, 507 
scipy, os, glob, arcpy, geopandas, and matplotlib. The datasets generated and/or analysed during 508 



the current study are available in the Zenodo repository (see link: 509 
https://zenodo.org/record/7641692). 510 

  511 



References 512 

1. Godfray, H. C. J. et al. Food Security: The Challenge of Feeding 9 Billion People. Science 327, 513 
812–818 (2010). 514 

2. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable 515 
intensification of agriculture. Proc. Natl. Acad. Sci. 108, 20260–20264 (2011). 516 

3. Beltran-Peña, A., Rosa, L. & D’Odorico, P. Global food self-sufficiency in the 21st century under 517 
sustainable intensification of agriculture. Environ. Res. Lett. 15, 095004 (2020). 518 

4. Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011). 519 

5. Cirera, X. & Masset, E. Income distribution trends and future food demand. Philos. Trans. R. Soc. 520 
B Biol. Sci. 365, 2821–2834 (2010). 521 

6. Garnett, T. et al. Sustainable Intensification in Agriculture: Premises and Policies. Science 341, 522 
33–34 (2013). 523 

7. Richards, R. A., Rebetzke, G. J., Condon, A. G. & van Herwaarden, A. F. Breeding Opportunities 524 
for Increasing the Efficiency of Water Use and Crop Yield in Temperate Cereals. Crop Sci. 42, 111–121 525 
(2002). 526 

8. Raines, C. A. Increasing Photosynthetic Carbon Assimilation in C3 Plants to Improve Crop Yield: 527 
Current and Future Strategies. Plant Physiol. 155, 36–42 (2011). 528 

9. Smith, R. G., Gross, K. L. & Robertson, G. P. Effects of Crop Diversity on Agroecosystem Function: 529 
Crop Yield Response. Ecosystems 11, 355–366 (2008). 530 

10. Wang, Y. et al. Effects of rainfall harvesting and mulching technologies on water use efficiency 531 
and crop yield in the semi-arid Loess Plateau, China. Agric. Water Manag. 96, 374–382 (2009). 532 

11. Blum, A. Effective use of water (EUW) and not water-use efficiency (WUE) is the target of crop 533 
yield improvement under drought stress. Field Crops Res. 112, 119–123 (2009). 534 

12. Su, Z. et al. Effects of conservation tillage practices on winter wheat water-use efficiency and 535 
crop yield on the Loess Plateau, China. Agric. Water Manag. 87, 307–314 (2007). 536 

13. Rosa, L. et al. Closing the yield gap while ensuring water sustainability. Environ. Res. Lett. 13, 537 
104002 (2018). 538 

14. Rosa, L. et al. Potential for sustainable irrigation expansion in a 3 °C warmer climate. Proc. Natl. 539 
Acad. Sci. 117, 29526–29534 (2020). 540 

15. Troy, T. J., Kipgen, C. & Pal, I. The impact of climate extremes and irrigation on US crop yields. 541 
Environ. Res. Lett. 10, 054013 (2015). 542 

16. Zaveri, E. & B. Lobell, D. The role of irrigation in changing wheat yields and heat sensitivity in 543 
India. Nat. Commun. 10, 4144 (2019). 544 

17. Alexandratos, N. World Agriculture towards 2030/2050: the 2012 revision. 154. 545 



18. Hanasaki, N. et al. An integrated model for the assessment of global water resources – Part 2: 546 
Applications and assessments. Hydrol. Earth Syst. Sci. 12, 1027–1037 (2008). 547 

19. Mekonnen, M. M. & Hoekstra, A. Y. Four billion people facing severe water scarcity. Sci. Adv. 2, 548 
e1500323 (2016). 549 

20. Falkenmark, M. The Massive Water Scarcity Now Threatening Africa: Why Isn’t It Being 550 
Addressed? Ambio 18, 112–118 (1989). 551 

21. Falkenmark, M., Lundqvist, J. & Widstrand, C. Macro-scale water scarcity requires micro-scale 552 
approaches. Nat. Resour. Forum 13, 258–267 (1989). 553 

22. Oki, T. & Kanae, S. Global Hydrological Cycles and World Water Resources. Science 313, 1068–554 
1072 (2006). 555 

23. Vörösmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global Water Resources: Vulnerability 556 
from Climate Change and Population Growth. Science 289, 284–288 (2000). 557 

24. Alcamo, J. & Henrichs, T. Critical regions: A model-based estimation of world water resources 558 
sensitive to global changes. Aquat. Sci. 64, 352–362 (2002). 559 

25. Wada, Y. et al. Global monthly water stress: 2. Water demand and severity of water stress. 560 
Water Resour. Res. 47, (2011). 561 

26. Hoekstra, A. Y., Mekonnen, M. M., Chapagain, A. K., Mathews, R. E. & Richter, B. D. Global 562 
Monthly Water Scarcity: Blue Water Footprints versus Blue Water Availability. PLOS ONE 7, e32688 563 
(2012). 564 

27. He, C. et al. Future global urban water scarcity and potential solutions. Nat. Commun. 12, 4667 565 
(2021). 566 

28. Flörke, M., Schneider, C. & McDonald, R. I. Water competition between cities and agriculture 567 
driven by climate change and urban growth. Nat. Sustain. 1, 51–58 (2018). 568 

29. McDonald, R. I. et al. Water on an urban planet: Urbanization and the reach of urban water 569 
infrastructure. Glob. Environ. Change 27, 96–105 (2014). 570 

30. Walton, B. U.S. Irrigation Continues Steady Eastward Expansion. Circle of Blue 571 
https://www.circleofblue.org/2019/world/u-s-irrigation-continues-steady-eastward-expansion/ (2019). 572 

31. Bureau, U. C. TIGER/Line Shapefiles. The United States Census Bureau 573 
https://www.census.gov/geographies/mapping-files/time-series/geo/tiger-line-file.html. 574 

32. Center For International Earth Science Information Network-CIESIN-Columbia University. 575 
Gridded Population of the World, Version 4 (GPWv4): Population Count, Revision 11. (2018) 576 
doi:10.7927/H4JW8BX5. 577 

33. Rosa, L., Chiarelli, D. D., Rulli, M. C., Dell’Angelo, J. & D’Odorico, P. Global agricultural economic 578 
water scarcity. Sci. Adv. 6, eaaz6031 (2020). 579 



34. Hanasaki, N. et al. An integrated model for the assessment of global water resources – Part 1: 580 
Model description and input meteorological forcing. Hydrol. Earth Syst. Sci. 12, 1007–1025 (2008). 581 

35. Hanasaki, N., Yoshikawa, S., Pokhrel, Y. & Kanae, S. A Quantitative Investigation of the 582 
Thresholds for Two Conventional Water Scarcity Indicators Using a State-of-the-Art Global Hydrological 583 
Model With Human Activities. Water Resour. Res. 54, 8279–8294 (2018). 584 

36. Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of 585 
crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. 586 
Cycles 22, (2008). 587 

37. Siebert, S. et al. A global data set of the extent of irrigated land from 1900 to 2005. Hydrol. Earth 588 
Syst. Sci. 19, 1521–1545 (2015). 589 

38. Xia, Y. et al. Continental-scale water and energy flux analysis and validation for the North 590 
American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application 591 
of model products. J. Geophys. Res. Atmospheres 117, (2012). 592 

39. Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic 593 
distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 22, (2008). 594 

40. AQUASTAT database. http://www.fao.org/aquastat/statistics/query/index.html. 595 

41. Hanasaki, N., Yoshikawa, S., Pokhrel, Y. & Kanae, S. A global hydrological simulation to specify 596 
the sources of water used by humans. Hydrol. Earth Syst. Sci. 22, 789–817 (2018). 597 

42. Shirakawa, N. Global Estimation of Environmental Flow Requirement Based on River Runoff 598 
Seasonality. Proc. Hydraul. Eng. 49, 391–396 (2005). 599 

43. King, J., Brown, C. & Sabet, H. A scenario-based holistic approach to environmental flow 600 
assessments for rivers. River Res. Appl. 19, 619–639 (2003). 601 

44. Punjabi, B. & Johnson, C. A. The politics of rural–urban water conflict in India: Untapping the 602 
power of institutional reform. World Dev. 120, 182–192 (2019). 603 

45. Padowski, J. C. & Gorelick, S. M. Global analysis of urban surface water supply vulnerability. 604 
Environ. Res. Lett. 9, 104004 (2014). 605 

46. Scott, C. A., Flores-López, F. & Gastélum, J. R. Appropriation of Río San Juan water by Monterrey 606 
City, Mexico: implications for agriculture and basin water sharing. Paddy Water Environ. 5, 253–262 607 
(2007). 608 

47. Celio, M., Scott, C. A. & Giordano, M. Urban–agricultural water appropriation: the Hyderabad, 609 
India case. Geogr. J. 176, 39–57 (2010). 610 

48. F et al. Drought In Calif. Creates Water Wars Between Farmers, Developers, Residents. NPR 611 
(2015). 612 

49. Mekonnen, M. M. & Hoekstra, A. Y. A Global Assessment of the Water Footprint of Farm Animal 613 
Products. Ecosystems 15, 401–415 (2012). 614 



50. Hutson, S. S. et al. Estimated Use of Water in the United States in 2000. Estimated Use of Water 615 
in the United States in 2000 vol. 1268 http://pubs.er.usgs.gov/publication/cir1268 (2004). 616 

51. Schewe, J. et al. Multimodel assessment of water scarcity under climate change. Proc. Natl. 617 
Acad. Sci. 111, 3245–3250 (2014). 618 

52. Gosling, S. N. & Arnell, N. W. A global assessment of the impact of climate change on water 619 
scarcity. Clim. Change 134, 371–385 (2016). 620 

53. DeAngelis, A. et al. Evidence of enhanced precipitation due to irrigation over the Great Plains of 621 
the United States. J. Geophys. Res. Atmospheres 115, (2010). 622 

54. Xia, W., Wang, Y. & Wang, B. Decreasing Dust Over the Middle East Partly Caused by Irrigation 623 
Expansion. Earths Future 10, e2021EF002252 (2022). 624 

55. Douglas, E. M., Beltrán-Przekurat, A., Niyogi, D., Pielke, R. A. & Vörösmarty, C. J. The impact of 625 
agricultural intensification and irrigation on land–atmosphere interactions and Indian monsoon 626 
precipitation — A mesoscale modeling perspective. Glob. Planet. Change 67, 117–128 (2009). 627 

56. Condon, L. E. & Maxwell, R. M. Simulating the sensitivity of evapotranspiration and streamflow 628 
to large-scale groundwater depletion. Sci. Adv. 5, eaav4574. 629 

57. Seo, S. B., Mahinthakumar, G., Sankarasubramanian, A. & Kumar, M. Conjunctive Management 630 
of Surface Water and Groundwater Resources under Drought Conditions Using a Fully Coupled 631 
Hydrological Model. J. Water Resour. Plan. Manag. 144, 04018060 (2018). 632 

58. Alcamo, J., Henrichs, T. & Rosch, T. World Water in 2025 – Global modeling and scenario analysis 633 
for the World Commission on Water for the 21st Century. 634 
https://web.archive.org/web/20070613043132/https://www.usf.uni-635 
kassel.de/ftp/dokumente/kwws/kwws.2.pdf (2000). 636 

59. Hanasaki, N. et al. An integrated model for the assessment of global water resources – Part 2: 637 
Applications and assessments. Hydrol. Earth Syst. Sci. 12, 1027–1037 (2008). 638 

60. Liu, X. et al. Environmental flow requirements largely reshape global surface water scarcity 639 
assessment. Environ. Res. Lett. 16, 104029 (2021). 640 

61. Faralli, M., Matthews, J. & Lawson, T. Exploiting natural variation and genetic manipulation of 641 
stomatal conductance for crop improvement. Curr. Opin. Plant Biol. 49, 1–7 (2019). 642 

62. Gonzalez-Dugo, M. P. et al. A comparison of operational remote sensing-based models for 643 
estimating crop evapotranspiration. Agric. For. Meteorol. 149, 1843–1853 (2009). 644 

63. Gimpel, J. G., Lovin, N., Moy, B. & Reeves, A. The Urban–Rural Gulf in American Political 645 
Behavior. Polit. Behav. 42, 1343–1368 (2020). 646 

64. McDonald, R. I. et al. Urban growth, climate change, and freshwater availability. Proc. Natl. 647 
Acad. Sci. 108, 6312–6317 (2011). 648 

65. Blanc, E. et al. Modeling U.S. water resources under climate change. Earths Future 2, 197–224 649 
(2014). 650 



66. Srinivasan, V., Seto, K. C., Emerson, R. & Gorelick, S. M. The impact of urbanization on water 651 
vulnerability: A coupled human–environment system approach for Chennai, India. Glob. Environ. Change 652 
23, 229–239 (2013). 653 

 654 

 655 


