
manuscript submitted to Water Resources Research 

 

1 

Hydrological Response to Vegetation Changes in the Yellow River Basin 2 

Z. J. Wang1, M. Z. Xu1, G. Penny2, H. C. Hu1 , and X. P. Zhang3 3 

1State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, China 4 

2Department of Geography, National University of Singapore, Singapore, Singapore 5 

3Yellow River Institute of Hydraulic Research, MWR, Zhengzhou 450003, China 6 

Corresponding author: M. Z. Xu (mzxu@mail.tsinghua.edu.cn) 7 

Key Points: 8 

• A novel vegetation-based analysis framework for water-food-ecology nexus was 9 

proposed 10 

• Distributed Budyko-based hydrological analysis was realized with ERA5-Land dataset 11 

• Climate change and ecological engineering magnified agricultural vulnerability in the 12 

Yellow River Basin  13 



manuscript submitted to Water Resources Research 

 

Abstract 14 

The Yellow River Basin (YRB) is confronted with significant conflicts between water, food, and 15 

ecology. A thorough understanding of the human stresses on eco-hydrological processes is 16 

essential for the sustainable management of the YRB. To simplify the complex nature-human 17 

interaction system, we developed an analysis framework based on vegetation change and the 18 

Budyko hypothesis. The intra-annual vegetation change was explored using phenological 19 

indicators, in addition to the inter-annual vegetation change represented by annual maximum 20 

NDVI. K-means clustering was used to identify seven patterns of vegetation change driven by 21 

different ecological projects, agricultural alterations, and climate change. To explore the 22 

hydrological responses to environmental changes revealed by vegetation, a distributed attribution 23 

analysis of runoff changes was conducted using the ERA5-Land dataset and an elasticity method 24 

based on the Budyko hypothesis. The results show that the hydrological-related landscape 25 

changed most in the semi-humid and semi-arid areas experiencing revegetation, and the aridity 26 

increased most in the upstream and downstream irrigation areas. Human-driven landscape 27 

changes contributed to 44.1% - 60.7% of the local runoff reduction within the YRB. Notably, 28 

agricultural changes intensified drought, similar to revegetation, and meanwhile, the combined 29 

effect of climate change and ecological engineering could magnify agricultural vulnerability. We 30 

propose the adoption of drought-tolerant crop planting and water transfer across watersheds to 31 

ensure water-food-ecology security. 32 

 33 

1 Introduction 34 

The world's major rivers and their floodplains are crucial for economic development and 35 

support some of the most diverse habitats on the planet. However, their sustainability is 36 

increasingly challenged by anthropogenic stressors (Best, 2018). Establishing an inclusive 37 

governance framework across regions, scales, organizations, and local communities in large river 38 

basins requires a comprehensive understanding of nature-human interaction systems. However, 39 

this is challenging due to the complexity and substantial differences across the major river basins 40 

(Karabulut et al., 2016). The Yellow River Basin (YRB), known as the birthplace of Chinese 41 

civilization, is experiencing a severe conflict between development and protection, constrained 42 

by limited water resources, fragile ecosystems, and long-term anthropogenic stressors (Chen et 43 
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al., 2015; Wang et al., 2015). With annual water resources of 64.7 billion m3, less than 7% of the 44 

Yangtze River, the YRB is home to a population of 160 million people. The utilization rate of 45 

water resources in the YRB has reached 80%, well beyond sustainable limits which are typically 46 

considered to be about  40% (the State Council, 2021). Ecological protection and high-quality 47 

development in the YRB have been designated as a national strategy since 2019. 48 

Vegetation is a critical component of the global water and carbon cycle (Gerten et al., 49 

2004; Pan et al., 2011), and serves as a crucial indicator of environmental change (Root et al., 50 

2003). The Yellow River Basin (YRB) is an area where vegetation has been significantly 51 

impacted by both long-term agricultural activities and large-scale ecological engineering 52 

initiatives. Historical records show that forests in the YRB were converted to farmland starting 53 

around AD 1000, which increased erosion and annual sediment delivery to the Yellow River 54 

over multiple centuries, culminating in a peak sediment discharge of about 1.6 Gt in the 1950s 55 

(Ren, 2006). To address the soil erosion issue, the Grain for Green Project was initiated in 1999, 56 

which is the world's largest active revegetation program. As a result, vegetation coverage on the 57 

Loess Plateau increased from 31.6% in 1999 to 59.6% in 2013 (Chen et al., 2015). Following the 58 

rapid greening, the annual sediment load decreased to the pristine level of about 0.2 Gt.  59 

However, vegetation expansion has created potential water demand conflicts between 60 

ecosystems and humans in water-limited areas (Feng et al., 2016). Conservation measures to 61 

mitigate soil erosion have led to a runoff reduction of 0.25 km3 yr−1 from the 1950s to the 2010s, 62 

exacerbating water scarcity in the YRB (Wang et al., 2015; Yang et al., 2004). Furthermore, the 63 

reduction in agriculture due to vegetation expansion may result in food deficits, which could be a 64 

significant concern for Chinese food security, as food production of YRB accounts for about 65 

one-third of the country's output (Chen et al., 2015). In addition to ecological engineering, 66 

agricultural mechanization and water-conservation reforms have also significantly impacted the 67 

croplands in the YRB in the past few decades. Therefore, vegetation changes in the YRB can 68 

serve as an indicator of the impact of agricultural activities, ecological engineering, and climate 69 

change on water, food, and ecosystems. Studying vegetation changes and their corresponding 70 

hydrological responses could provide a breakthrough in simplifying the complicated multi-factor 71 

relationships in the large-scale YRB. 72 
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Methodologically, various methods have been employed to study the hydrological 73 

impacts of climate change and human activities in the Yellow River Basin (YRB), including 74 

statistical regression methods, elastic methods, and physical models (Kong et al., 2016). Among 75 

these, simple linear regression and double mass curve methods are commonly used statistical 76 

methods that divide time series into baseline and changing periods to establish the relationship 77 

between precipitation and discharge/sediment load to detect the effects of climate change and 78 

anthropogenic activities (Gao et al., 2017; Zhao et al., 2018). Elasticity methods used in the YRB 79 

are usually based on the Budyko framework, which considers both water and energy constraints 80 

in hydrological processes over a long-term period (Budyko, 1974; Li et al., 2019; Xu et al., 81 

2014). Most statistical regression methods and elasticity methods, which are lumped and easily 82 

applicable, ignore spatial heterogeneity and assume uniformity of hydrological variables and 83 

parameters in an entire basin (Wang et al., 2022). Recently developed physical hydrological 84 

models are distributed and have finer temporal and spatial resolutions (Yang et al., 2000), 85 

applying varying parameters for different meshes to simulate and predict site-specific variations 86 

over different time scales (Liu et al., 2019; Lu et al., 2020). However, these models are limited 87 

by their complex structures, large numbers of input datasets, time requirements, and uncertainty 88 

in model calibration and validation (Gao et al., 2016). Furthermore, most physical models still 89 

require the calibration of empirical coefficients (Wu et al., 2018).  90 

We aim to bridge this technical research gap by using model-based meteorological 91 

reanalysis data instead of station data in the application of an elasticity method based on the 92 

Budyko hypothesis. Model-based meteorological products have undergone rapid development 93 

over the past few decades (Muñoz-Sabater et al., 2021). The state-of-the-art model-based dataset, 94 

ERA5-land, has been verified to have a good performance over subregions of temperate 95 

monsoon climate and temperate continental climate in China, which is the major type of the 96 

YRB (Xin et al., 2022; Xu et al., 2022). The use of ERA5-land enables a continuous and accurate 97 

representation of spatial meteorological heterogeneity, as well as the provision of additional 98 

surface indicators such as evaporation, which allows for the distributed Budyko analysis to 99 

present the runoff analysis results that are comparable to those obtained in physical models. 100 

Moreover, the proposed analysis method is easier to apply than distributed physical models, 101 

while retaining a stronger physical foundation than statistical methods.  102 
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With the increasing conflict between water, food, and ecosystems in the YRB, it is urgent 103 

to gain a better understanding of the complex eco-hydrological processes impacted by human 104 

activities to promote sustainable river management. Vegetation change serves as a useful 105 

indicator of environmental changes and can help to simplify the relationships between water, 106 

food, and ecosystems. Specifically, our objectives are to (a) characterize vegetation change 107 

patterns and their drivers across the YRB, (b) quantify the impact of different vegetation changes 108 

on runoff, and (c) provide recommendations for alleviating water-food-ecology conflicts in the 109 

YRB. 110 

2 Materials and Methods 111 

2.1 Study sites 112 

The Yellow River, originating from the Qinghai-Tibet Plateau and draining into the 113 

Bohai Sea, is one of the longest rivers in China, with a length of 5464 km and an area of 114 

7.95×105 km2. The climate in the basin varies from humid in the southeast to arid in the 115 

northwest, with a corresponding decrease in precipitation from the southeast to the northwest. To 116 

facilitate analysis, the Yellow River Basin (YRB) has been divided into seven sections based on 117 

seven key hydrological stations on the mainstream (Figure 1, Table 1). S1, located upstream of 118 

Tangnaihai, is the source region of the Yellow River, with an average altitude of over 4000 m. 119 

S2 (Tangnaihai - Lanzhou) is a transition zone with a steep slope and super-large reservoirs. S3 120 

(Lanzhou - Toudaoguai) is on the Inner Mongolia Plateau, with an altitude of 1000-2000 m. S4 121 

(Toudaoguai - Longmen) and S5 (Longmen-Sanmenxia) are located on the Loess Plateau and 122 

experience severe soil erosion. S6 (Sanmenxia - Huayuankou) is another terrain transition zone, 123 

descending from an altitude of ~ 1000 m to ~ 95 m, and also has massive reservoirs to regulate 124 

the Yellow River's runoff and sediment load. S7 (Huayuankou - Lijin) is characterized by a flat 125 

alluvial plain with a strong depositional tendency. The YRB's diverse climate, landforms, and 126 

long-term human activities have led to various vegetation types in the region.  127 
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 128 

Figure 1 Map of the seven sections and vegetation types in the Yellow River Basin 129 

Table 1 Characteristics of the seven sections in the Yellow River Basin 130 
Section Inlet station Outlet station Area (103 km2) Major vegetation types 
S1 - Tangnaihai 114 meadows (75.8%), shrublands (10.9%), grasslands (5.2%) 
S2 Tangnaihai Lanzhou 105 meadows (28.4%), grasslands (26.0%), shrublands (20.84%) 
S3 Lanzhou Toudaoguai 171 grasslands (45.5%), croplands (23.2%), deserts (19.2%) 
S4 Toudaoguai Longmen 153 croplands (43.2%), grasslands (38.6%), shrublands (5.5%) 

S5 Longmen Sanmenxia 199 
croplands (62.6%), broadleaf forests (10.5%), grasslands 
(8.1%) 

S6 Sanmenxia Huayuankou 49 
croplands (57.3%), broadleaf forests (14.9%), shrublands 
(10.5%) 

S7 Huayuankou Lijin 51 
croplands (85.9%), shrublands (3.34%), broadleaf forests 
(2.67%) 
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2.2 Methodologies 131 

With the vegetation-based idea, we developed an integrated framework for data analysis 132 

(Figure 2). Firstly, we analyzed the inter-annual and intra-annual changes of NDVI in the YRB. 133 

To be specific, we extracted the time sequence of four vegetation indicators, namely the annual 134 

maximum (NDVImax), start-of-season (SOS), end-of-season (EOS), and growing season length 135 

(GSL) of each pixel, mapped characteristics of vegetation inter-annual and intra-annual changes 136 

through trend analysis, and clustered the pixels with significant vegetation changes by the k-137 

means method based on the vegetation types and change characteristics. After identifying 138 

vegetation change patterns and their driving factors, an elasticity method based on the Budyko 139 

hypothesis was applied to explore the hydrological responses to the different vegetation change 140 

patterns. Finally, we provided suggestions for integrated vegetation and water management in the 141 

YRB. 142 

 143 

Figure 2 Framework for data analysis 144 
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2.2.1 Remote-sensing based vegetation phenology identification 145 

We used the Savitzky-Golay filter to reconstruct remote sensing vegetation data and a 146 

double Logistic function to fit the data, and thus obtained the vegetation phenological 147 

characteristic values (Chen et al., 2004; Savitzky and Golay, 1964). 148 

The equation of the Savitzky-Golay filter applied to the vegetation data is as follows: 149  𝑁𝐷𝑉𝐼௝∗ = ∑ 𝑊௜ ∙ 𝑁𝐷𝑉𝐼௝ା௜௜ୀ௠௜ୀି௠ 𝑁 (1) 

, where 𝑁𝐷𝑉𝐼௝ା௜ is the 𝑗 + 𝑖-th NDVI of the original data sequence, 𝑁𝐷𝑉𝐼௝∗ is the 𝑗-th NDVI of 150 

the reconstructed data sequence, 𝑊௜ is the weight of the 𝑖-th original data in the filter during a 151 

local fitting smoothing process, 𝑁 indicates the number of data processed in a sliding window, 𝑚 152 

is half of the width of the sliding window, 𝑁 = 2𝑚 + 1. 153 

To obtain the surface phenology, the reconstructed NDVI sequence was fitted with the 154 

following double Logistic function (Beck et al., 2006; Fisher et al., 2006): 155  𝑓(𝑡) = 𝑣ଵ + 𝑣ଶ ൬ 11 + 𝑒ି௠భ(௧ି௡భ) − 11 + 𝑒ି௠మ(௧ି௡మ)൰ (2)

, where 𝑓(𝑡) is the NDVI value at the Julian day t, 𝑣ଵ is the background NDVI level for the 156 

whole year, and 𝑣ଶ is the amplitude of NDVI for the whole year. The parameters 𝑚 and 𝑛 are 157 

used to determine the overall slope and basic phase of the NDVI increase phase and decrease 158 

phase, respectively; 𝑚ଵ, 𝑛ଵ and 𝑚ଶ, 𝑛ଶ are two pairs of the parameters. The six parameters of the 159 

model are solved by the Levenberg-Marquardt algorithm. The Julian day corresponding to the 160 

maximum slope of the fitted model curve is identified as the start-of-season (SOS), while the 161 

Julian day corresponding to the minimum slope is identified as the end-of-season (EOS). The 162 

growing season length (GSL) is then calculated as the difference between the SOS and EOS. 163 

Notably, this method is objective and does not rely on subjective experience, making it suitable 164 

for analyzing various types of vegetation (Figure 3). 165 



manuscript submitted to Water Resources Research 

 

 166 

Figure 3 Examples of phenological indicators extraction. Extraction for a single-peak pixel (a), a 167 

double-peak pixel (b), and a pixel with low vegetation coverage (c). 168 

2.2.2 Trend analysis and clustering 169 

We chose the Kendall rank correlation coefficient τ to quantify the likelihood of the 170 

changing trend of the data sequence (Kendall, 1990). The value range of τ is in [-1, 1], where a 171 

positive τ indicates an increasing trend and a negative τ indicates a decreasing trend. The closer 172 

the absolute value to 1, the more significant the changing trend. To determine the significance of 173 

the trend, the Mann-Kendall nonparametric test method was employed (Kendall, 1990; Mann, 174 

1945). A significance level of 0.05 was set to assess the trend. 175 

To summarize the inter-annual and intra-annual variation characteristics of vegetation, 176 

we utilized the normalized vegetation information and Kendall’s τ of the four vegetation 177 

characteristics (NDVImax, SOS, EOS, and GSL) as input for k-means clustering. Specifically, 178 

the vegetation of a pixel was considered to have significant changes when at least one of the four 179 

sequences passed the Mann-Kendall significance test. The k-means method was then applied to 180 

the dataset composed of the vegetation types and Kendall’s τ of the four vegetation 181 

characteristics to cluster the pixels with significant vegetation changes (Arthur and Vassilvitskii, 182 

2006).  183 

2.2.3 Elasticity of runoff derived from the Choudhury–Yang equation 184 

The long-term hydroclimatic characteristics of the watershed obey the principle of water 185 

and energy balance under certain climate and vegetation conditions (Budyko, 1974). The 186 

Choudhury-Yang equation is an empirical water-energy balance equation (Yang et al., 2008), 187 

expressed as: 188 
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 𝐸 = 𝑃𝐸଴(𝑃௡ + 𝐸଴௡)ଵ/௡ (3) 

, where 𝐸 is the mean annual actual evaporation, 𝑃 is the mean annual precipitation, 𝐸଴ is the 189 

mean annual potential evaporation, and the parameter n represents the catchment landscape 190 

characteristics that are mainly related to properties of soil, topography, and vegetation. 191 

From the long-term catchment water balance equation, 𝑅 = 𝑃 − 𝐸, where 𝑅 is the mean 192 

annual runoff. Assuming 𝑃, 𝐸଴ and 𝑛 are independent variables, the total differential of 𝑅 can be 193 

written as: 194  𝑑𝑅 = 𝜕𝑓𝜕𝑃 𝑑𝑃 + 𝜕𝑓𝜕𝐸଴ 𝑑𝐸଴ + 𝜕𝑓𝜕𝑛 𝑑𝑛 (4) 

Define the precipitation elasticity of runoff (𝜀௉) as 𝜀௉ = ௗோ ோ⁄ௗ௉ ௉⁄ , the potential evaporation 195 

elasticity of runoff (𝜀ாబ) as  𝜀ாబ = ௗோ ோ⁄ௗாబ ாబ⁄ , and the catchment landscape elasticity of runoff (𝜀௡) as 196 𝜀௡ = ௗோ ோ⁄ௗ௡ ௡⁄ . Then Eq. (6) can be transformed into the following form (Xu et al., 2014): 197 

 𝑑𝑅𝑅 = 𝜀௉ 𝑑𝑃𝑃 + 𝜀ாబ 𝑑𝐸଴𝐸଴ + 𝜀௡ 𝑑𝑛𝑛 (5) 

, in which the elasticities of runoff are:  198  𝜀௉ = (1 + ∅௡)ଵାଵ/௡ − ∅௡ାଵ(1 + ∅௡)ሾ(1 + ∅௡)ଵ/௡ − ∅ሿ (6)  𝜀ாబ = 1(1 + ∅௡)ሾ1 − (1 + ∅ି௡)ଵ/௡ሿ (7) 𝜀௡ = 𝑙𝑛 (1 + ∅௡) + ∅௡𝑙𝑛(1 + ∅ି௡)𝑛(1 + ∅௡)ሾ1 − (1 + ∅ି௡)ଵ/௡ሿ (8) 

, where ∅ is the aridity index and ∅ = 𝐸଴ 𝑃⁄ . 199 

2.2.4 Attribution analysis 200 

We divided the study period into two sub-periods. Here we set the breakpoint as 1999 201 

because the Grain for Green project began this year. Period 1 is from 1950 to 1999 (P1) and 202 

period 2 is from 2000 to 2020 (P2). The mean annual runoff during period 1 was denoted as R1 203 

and the mean annual runoff during period 2 was denoted as R2. The change of annual runoff 204 

from period 1 to period 2 can be written as: 205 

 ∆𝑅 = 𝑅ଶ − 𝑅ଵ (9) 
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This change of runoff (∆𝑅) is attributed to the impacts of climate variation and watershed 206 

landscape change. Assuming the landscape change is mainly induced by land use/cover change, 207 

the change of runoff can be written as: 208 ∆𝑅 = ∆𝑅௖ + ∆𝑅௟ (10) 

, where ∆𝑅௖ is climate-induced runoff change,  𝑎𝑛𝑑 ∆𝑅௟ is land cover-induced runoff change. 209 

Runoff change due to climate variation (∆𝑅௖) includes runoff change due to precipitation 210 

variation (∆𝑅௉) and potential evaporation variation (∆𝑅ாబ). 211 

From Eq. (7), we can estimate the changes of runoff from P1 to P2 induced by variations 212 

of precipitation, potential evaporation, and land use/cover as: 213 ∆𝑅௉ = 𝜀௉ 𝑅𝑃 ∆𝑃, ∆𝑅ாబ = 𝜀ாబ 𝑅𝐸଴ ∆𝐸଴, ∆𝑅௟ = 𝜀௡ 𝑅𝑛 ∆𝑛 (11) 

, where ∆𝑃 = 𝑃ଶ − 𝑃ଵ and ∆𝐸଴ = 𝐸଴,ଶ − 𝐸଴,ଵ, representing a change in mean annual precipitation 214 

and potential evaporation from P1 to P2; ∆𝑛 = 𝑛ଶ − 𝑛ଵ, 𝑛ଵ, and 𝑛ଶ represent landscape 215 

condition in P1 and P2, respectively. 𝑛ଵ and 𝑛ଶ can be estimated by solving Eq. (5) with mean 216 

annual P and 𝐸଴ for P1 and P2. ∆𝑛 mainly indicates the changes in vegetation because the 217 

properties of soil and topography are relatively stable (Xu et al., 2014). 218 

3 Data 219 

We utilized NOAA CDR NDVI from 1982 to 2020 to detect changes in vegetation (Eric 220 

et al., 2018). This remote sensing product provides daily data with a spatial resolution of 221 

0.05°×0.05. This remote sensing product provides daily data at a spatial resolution of 0.05° × 222 

0.05°. The vegetation-type information was obtained from the basic maps of national natural 223 

resources and natural conditions, "Vegetation Atlas of China (1:1 000 000 000)" (Hou, 2001). 224 

We selected ERA5-Land from 1950 to 2020 for the series of total precipitation, total 225 

evaporation, and potential evaporation in hydrometeorological analysis. ERA5-Land is a 226 

reanalysis dataset with a spatial resolution of 0.1° × 0.1°, providing a consistent view of the 227 

evolution of land variables (Muñoz-Sabater et al., 2021). The temporal and spatial resolution of 228 

ERA5-Land makes this dataset useful for various land surface applications, such as flood or 229 

drought forecasting (Grigorev et al., 2022; Kageyama and Sawada, 2022).  230 



manuscript submitted to Water Resources Research 

 

4 Results 231 

4.1 Vegetation change patterns 232 

Through a remote-sensing-based vegetation phenology identification process, we 233 

obtained the annual start-of-season (SOS), end-of-season (EOS), and growing season length 234 

(GSL) of vegetation in the YRB. We then calculated the Kendall rank correlation coefficient τ of 235 

the four vegetation indicators (NDVImax, SOS, EOS, and GSL) on a pixel-by-pixel basis from 236 

1982 to 2020 in the YRB and created a map of the temporal and spatial trends of vegetation 237 

indicators (Figure 4). From 1982 to 2020, NDVImax showed an upward trend in almost the 238 

entire YRB, with significant improvements in vegetation observed in the northeastern part of S1 239 

and S2, irrigated areas in S3, and arid and semi-arid areas of the central Loess Plateau in S4-S6 240 

(Figure 4 a).  241 

 242 

Figure 4 Temporal and spatial trend of vegetation indicators in the Yellow River Basin (1982-243 

2020). Kendall’s τ of the annual maximum (NDVImax) (a), start-of-season (SOS) (b), end-of-244 

season (EOS) (c), and growing season length (GSL) (d) from 1982 to 2020. 245 
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The mean τ of NDVImax in S1-S3 was above 0.3, the mean τ in S5 and S6 was above 246 

0.4, and the mean τ in S4 even reached 0.55. The central part of the Loess Plateau, which 247 

coincided with the main revegetation implementation areas, showed the most significant 248 

improvement in vegetation. Changes in phenological indicators were relatively strong in 249 

irrigation and humid areas (Figure 4 b-d). The upstream irrigation areas in S3 showed a trend of 250 

delayed SOS, advanced EOS, and shortened GSL, while the downstream irrigation areas in S6 251 

and S7 showed a trend of advanced SOS and extended GSL. Humid and semi-humid areas 252 

dominated by forests and shrubs demonstrated an advance in SOS and an extension of GSL. 253 

Among SOS, EOS, and GSL, the SOS of vegetation in the YRB showed the most significant 254 

changes. 255 

The results of vegetation change clustering in the YRB are shown in Figure 5. After 256 

enumeration, the optimal number of clusters was determined to be k = 7, indicating seven 257 

distinct patterns of vegetation change. When compared to k = 6, the majority of pixels in the 258 

newly identified group were located in the source region (blue area in Figure 5 a), characterized 259 

by its high altitude and minimal human disturbance, which was markedly different from other 260 

areas in the YRB. On increasing k to 8, the pixels in the new group were found to be scattered 261 

with a small count number (red area in Figure 5 c). Based on the clustering analysis results, 262 

Figure 5 (a) presents the spatial distribution of the seven identified patterns of vegetation change 263 

in the YRB, while Table 2 summarizes the key characteristics of these seven clusters.  264 

 265 
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Figure 5 Results of vegetation change clustering in the Yellow River Basin. Number of cluster k 266 

=7(a), k=6 (b), and k=8 (c). RH is for Revegetation - Humid Area; RSH is for Revegetation - 267 

Semi-Humid area; RSA is for Revegetation - Semi-Aumid area; RA is for Revegetation - Semi-268 

Arid area; AU is for Agricultural alteration – Upstream (AU); AD is for Agricultural alteration – 269 

Downstream (AU); CC is for Climate Change. 270 

Table 2 Vegetation change patterns in the Yellow River Basin 271 

Clusters 
NDVI 
max-τ 

SOS-τ EOS-τ GSL- τ Vegetation types in the 1980s Drivers 

RH 0.48 -0.29 0.07 0.22 
shrublands (27.3%), broadleaf forests 
(26.0%), needleleaf forests (17.3%) 

Revegetation - humid area (RH) 

RSH 0.52 -0.35 0.13 0.29 
croplands (65.3%), meadows (10.6%), 
herbosa (9.4%) 

Revegetation - semi-humid area 
(RSH) 

RSA 0.46 0.06 0.15 0.06 
croplands (86.8%), grasslands (9.4%), 
meadows (1.3%) 

Revegetation - semi-arid area (RSA)

RA 0.47 0.20 0.07 -0.15 
grasslands (62.2%), deserts (12.3%), 
meadows (11.6%) 

Revegetation - arid area (RA) 

AU 0.55 0.13 -0.18 -0.19 
croplands (64.7%), meadows (17.7%), 
grasslands (7.4%) 

Agricultural alteration – Upstream 
(AU) 

AD 0.15 -0.36 -0.09 0.22 
croplands (89.8%), herbosa (2.4%), 
meadows (2.0%) 

Agricultural alteration –
Downstream (AD) 

CC 0.42 -0.11 0.08 0.11 
meadows (42.6%), grasslands (29.0%), 
shrublands (11.9%) 

Climate change (CC) 

 272 

The four clusters identified as Revegetation - Humid area (RH), Revegetation - Semi-273 

Humid area (RSH), Revegetation - Semi-Arid area (RSA), and Revegetation - Arid area (RA) 274 

were all driven by revegetation. These clusters were primarily distributed in the Loess Plateau 275 

region with notable improvements in vegetation conditions, as evidenced by the increased 276 

NDVImax (τ > 0.4). The feedback of revegetation on different hydrothermal conditions was 277 

manifested in distinct vegetation phenology patterns. The revegetation clusters were generally 278 

banded and distributed with increasing drought levels from southeast to northwest.  279 

RH was primarily distributed in S5, characterized by humid areas with relatively good 280 

vegetation conditions even before revegetation. The phenological characteristics of RH were 281 

advanced SOS (τ = -0.29), delayed EOS (τ = 0.07), and extended GSL (τ = 0.22). RSH was 282 

mainly concentrated in S4 and S5, semi-humid areas dominated by croplands (65.3%), reflecting 283 

the change pattern driven by the Green for Grain projects in semi-humid areas. The phenological 284 

changes of RSH were similar to that of RH but with stronger trends. RSA was primarily 285 

concentrated in S4 and S5, semi-arid areas with 86.8% of croplands, reflecting the vegetation 286 
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change patterns in semi-arid areas driven by the Green for Grain projects. In RSA, the SOS was 287 

slightly delayed (τ = 0.06), the GSL was weakly extended (τ = 0.06), but the delay trend of EOS 288 

was the strongest among the four clusters driven by revegetation (τ = 0.15). RA was mainly 289 

concentrated in S3 and S4, arid areas, reflecting the change pattern driven by ecological 290 

engineering to control desertification in arid areas. The phenological changes of RA included 291 

delayed SOS (τ = 0.20) and significantly shortened GSL (τ = -0.15). The vegetation conditions in 292 

the arid area were extremely poor, and before ecological projects such as desertification control, 293 

the NDVI sequences were flat, had no obvious peak, and the identified GSL was long (see Figure 294 

3 c). The restored sandy vegetation had a short growing season, as indicated by a small peak in 295 

the NDVI sequences. 296 

Both agricultural planting structure alteration upstream (AU) and agricultural 297 

intensification downstream (AD) were predominantly observed in irrigation areas where 298 

vegetation change patterns were driven by agricultural practices. AU was primarily observed in 299 

S3, the upstream irrigation area represented by the Hetao region. NDVImax significantly 300 

increased  (τ = 0.55) in AU, while the start of season (SOS) was delayed, the end of season 301 

(EOS) was advanced, and the growing season length (GSL) was shortened. In contrast, AD was 302 

mainly observed in S7, the downstream irrigation areas of the Yellow River Basin (YRB). The 303 

NDVImax increase in AD was the smallest among the seven groups (τ = 0.15), but SOS 304 

significantly advanced (τ = -0.36). Diverse agricultural practices caused different vegetation 305 

feedback in AU and AD. 306 

In AU, to reduce water consumption, the area under wheat cultivation shrank rapidly, and 307 

sunflowers and corn were planted instead of wheat. For sunflowers, the GSL is 90-130 days, and 308 

SOS is in mid-July to mid-August; the GSL of corn is 90-100 days, and SOS is in mid-to-late 309 

July. In contrast, the GSL is 100-130 days, and the SOS is in early April for wheat. The shorter 310 

GSL of sunflowers and corn and the later SOS led to the phenological changes in AU, with 311 

delayed SOS, advanced EOS, and shortened GSL. AD was primarily situated in the downstream 312 

irrigation areas, which are the main grain-producing regions in China. In contrast to AU, AD 313 

maintained the planting pattern of winter wheat and summer corn. With the modernization and 314 

intensification of agriculture, grain yield in AD grew rapidly. For instance, the irrigated area in 315 

Henan (a province in lower YRB) increased from 3.3 million ha to 5.6 million ha, the total power 316 

of agricultural machinery increased from 13.6 million kW to 104.6 million kW, and the total 317 
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grain output increased from 22.2 million tons to 68.3 million tons from 1980 to 2020. The large-318 

scale planting of winter wheat and summer corn resulted in a prominent double-peak NDVI 319 

curve, with significant advances in SOS and extensions in GSL in AD. 320 

Climate change (CC) predominantly affected S1 and S2, which had fewer anthropogenic 321 

stressors. The significant warming of the Qinghai-Tibet Plateau led to an improvement in 322 

vegetation coverage, an advance in the SOS, a delay in the EOS, and an extension of the GSL. 323 

Nonetheless, the vegetation changes triggered by climate changes were generally less 324 

pronounced when compared to those resulting from human activities. 325 

 326 

4.2 Hydrometeorological changes based on the Budyko hypothesis 327 

We analyzed the hydrological responses to different vegetation changes using the 328 

Choudhury-Yang equation based on the Budyko hypothesis. Figure 6 presents the annual mean 329 

aridity factor (𝐸଴ 𝑃⁄ , ∅), actual evaporation factor (𝐸 𝑃⁄ ), and landscape factor (𝑛), and their 330 

differences during two time periods, 1950-1999 (P1) and 2000-2020 (P2). The YRB experienced 331 

significant changes in 𝐸଴ 𝑃⁄ , 𝐸 𝑃⁄ , and 𝑛. 𝐸଴ 𝑃⁄  increased from the southeast to the northwest in 332 

all sections except S1. Between P1 and P2,  𝐸଴ 𝑃⁄  decreased in S1 but increased in the other six 333 

sections. Notably, high ∆𝐸଴ 𝑃⁄  (> 1.0) was primarily observed in S3, S5, and S7, which are 334 

mainly distributed in the upstream and downstream irrigation areas. This suggests that 335 

agricultural activities may aggravate the trend of local aridification in the YRB. The distribution 336 

of the ∆ 𝐸 𝑃⁄  between P1 and P2 is different from 𝐸଴ 𝑃⁄ . 𝐸 𝑃⁄  decreased slightly in S1 and 337 

increased significantly in the humid and semi-humid areas in S4 and S5. Moreover, the map of 𝑛 338 

obtained by solving the Choudhury–Yang equation revealed that 𝑛 was relatively low in high 339 

altitude S1, whereas it was relatively high in the arid area in S3 and S4, and the humid area in S5 340 

and S6. From P1 to P2, ∆𝑛 exhibited a substantial increase in S4-S6, while it decreased 341 

considerably in S1-S3. The index 𝑛 determines the overall shape characteristics of the Budyko 342 

curve, and is influenced by local vegetation, topography, and soil. Higher 𝑛 under the same 343 

aridity condition (𝐸଴ 𝑃⁄ ) indicates that the local landscape is more efficient in utilizing 344 

precipitation for evaporation. This increased efficiency can be attributed to vegetation growth 345 

since the features of topography and soil are relatively stable over time. 346 
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 347 

Figure 6 Map of hydrometeorological indicators and their differences in the two periods. 𝐸଴ 𝑃⁄  348 

(a), 𝐸 𝑃⁄  (d), 𝑛 (g) in 1950-1999; 𝐸଴ 𝑃⁄  (b), 𝐸 𝑃⁄  (e), and 𝑛 (h) in 2000-2020; the difference 349 

values of 𝐸଴ 𝑃⁄  (c), 𝐸 𝑃⁄  (f), and 𝑛 (i) between the two periods. 𝐸଴ 𝑃⁄  is the ratio of potential 350 

evaporation to precipitation; 𝐸 𝑃⁄  is the ratio of actual evaporation to precipitation; 𝑛 is the 351 

landscape factor by solving Choudhury–Yang equation.  352 

Figure 7 presents the annual mean values of 𝐸଴ 𝑃⁄  and 𝐸 𝑃⁄  in the seven sections and the 353 

seven clusters of vegetation change patterns for the two periods. The zonal mean differences 354 

between P1 and P2 for ∆ 𝐸଴ 𝑃⁄ , ∆ 𝐸 𝑃⁄ , and ∆𝑛, are provided in Table 3. The analysis based on 355 

the seven sections helps clarify the spatial distribution patterns, while the analysis based on the 356 

clustering benefits the understanding of the impacts of the different vegetation change patterns. 357 

Among the seven sections, S1 had the smallest change and showed a humidification trend 358 

(∆ 𝐸଴ 𝑃⁄ = −0.04). The aridity factor 𝐸଴ 𝑃⁄  increased the most in S3 (∆ 𝐸଴ 𝑃⁄ = 0.79), followed 359 
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by S7 (∆ 𝐸଴ 𝑃⁄ = 0.72). The landscape factor 𝑛 increased the most in S4, S5, and S6, with ∆𝑛 360 

being 0.48, 0.39, and 0.58, respectively. Among the seven clusters, the aridity increment of the 361 

cluster driven by climate change (CC) was the lowest (∆ 𝐸଴ 𝑃⁄ = 0.18), and so was the 362 

improvement in landscape related to vegetation changes (∆𝑛 = 0.12). The aridity increment was 363 

the highest in the agriculture-driven AU (∆ 𝐸଴ 𝑃⁄ = 0.77), followed by that in AD (∆ 𝐸଴ 𝑃⁄ =364 0.67). As for the four revegetation-driven groups, RA had the most significant aridification trend 365 

(∆ 𝐸଴ 𝑃⁄ = 0.60). The mean ∆𝑛 of RSH was 0.40, and the mean ∆𝑛 of RSA was 0.39, larger than 366 

the other five clusters. The humid region of the YRB had larger vegetation coverage initially, 367 

and hence, had limited potential for improvement in 𝑛 compared to the semi-arid and semi-368 

humid transitional zones. Similarly, the arid area had a lower potential for 𝑛 increment due to 369 

water and heat constraints. In addition to the fact that revegetation may lead to increased drought 370 

risk, it is important to note that AU and AD have a significant increase in both (∆ 𝐸଴ 𝑃⁄ = 0.77 371 

and 𝑛. The drastic changes in these two clusters highlight the need to focus on agricultural water 372 

use while managing vegetation and water resources in the YRB. 373 

 374 

Figure 7 Budyko curves for the seven sections (a) and the seven clusters (b). P1 is for the period 375 

1 1950-1999; P2 is for the period 2000-2020. S1-S7 are the 7 sections based on the division of 376 

the Yellow River; RH is for Revegetation - Humid Area; RSH is for Revegetation - Semi-Humid 377 

area; RSA is for Revegetation - Semi-Humid area; RA is for Revegetation - Semi-Arid area; AU 378 

is for Agricultural alteration – Upstream (AU); AD is for Agricultural alteration – Downstream 379 

(AU); CC is for Climate Change. 380 

 381 
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Table 3 Zonal statistic of hydrometeorological indicators variation in the seven sections and the 382 

seven clusters 383 
Section ΔE/P ΔE0/P Δn Cluster ΔE/P ΔE0/P Δn 

S1 -0.02 -0.04 -0.02 RH 0.07 0.49 0.30 
S2 0.02 0.10 0.07 RSH 0.08 0.55 0.40 
S3 0.02 0.79 0.23 RSA 0.07 0.53 0.39 
S4 0.07 0.66 0.48 RA 0.02 0.60 0.24 
S5 0.08 0.57 0.39 AU 0.04 0.77 0.36 
S6 0.12 0.65 0.58 AD 0.07 0.67 0.36 
S7 0.06 0.72 0.29 CC 0.02 0.18 0.12 

4.3 Vegetation’s influence on runoff change 384 

We evaluated the impact of various vegetation change patterns on runoff by utilizing an 385 

elasticity method based on the Choudhury-Yang equation. Figure 8 displays the distributions of 386 

precipitation elasticity of runoff (𝜀௉), potential evaporation elasticity of runoff (𝜀ாబ), and 387 

landscape elasticity of runoff (𝜀௡). The spatial distribution patterns of 𝜀௉ and 𝜀ாబ were similar, 388 

with relatively large absolute values observed in both arid and humid regions. The distribution 389 

pattern of 𝜀௡ was comparable to that of aridity shown in Figure 6, with small absolute values in 390 

the source area and gradually increasing from southeast to northwest. 391 

 392 

Figure 8 Elasticity of runoff related to (a) precipitation, (b) potential evaporation, and (c) 393 

landscape index n. 394 

Figure 9 displays the daily runoff depth differences (∆𝑅) between P1 and P2 induced by 395 

the changes in precipitation, potential evaporation, and landscapes. The mean ∆𝑅 values in the 396 

seven sections and the seven clusters were presented in Figure 10. Among the seven sections 397 

(Figure 10 a), only S1 experienced an increase in runoff, which is mainly due to precipitation 398 

changes. The ∆𝑅௉ in S1 is 0.07mm, and the contribution rate of precipitation reached 95.5%, 399 
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consistent with prior research on increasing runoff trend in the Yellow River source region 400 

caused by warming and humidification of the Qinghai-Tibet Plateau (Wang et al., 2018). S2 was 401 

the only section where evaporation had the most significant impact on changes in runoff, with a 402 

total ∆𝑅 of approximately 0.05mm, of which ∆𝑅ாబ accounted for 47.8%, and ∆𝑅௡ accounted for 403 

35.3%. The total ∆𝑅 in S3-S6 increased successively and was positively related to local humidity, 404 

indicating that precipitation changes had a more substantial impact on runoff reduction in wetter 405 

regions. 406 

According to the mean values of seven clusters (Figure 10 b), ∆𝑅௉ of the climate-driven 407 

cluster CC was 0.09 mm, indicating that precipitation changes led to an increase in runoff. We 408 

observed a slight reduction in runoff due to potential evaporation, with mean absolute ∆𝑅ாబ  in 409 

all seven groups less than 0.05 mm. Conversely, vegetation changes caused a significant decline 410 

in the runoff. The ∆𝑅௡ of the four clusters under revegetation, RH, RSH, RSA, and RA, were -411 

0.12, -0.13, -0.11, and -0.03 mm, respectively. Notably, in the two clusters under agricultural 412 

alteration patterns, the ∆𝑅௡ was -0.08 mm in AU and -0.12 mm in AD, approaching that caused 413 

by vegetation restoration. In contrast, the ∆𝑅௡ of CC was -0.04 mm. Among the six human 414 

activity-driven clusters, precipitation contributed 20.3% to 41.8% to runoff variation, while 415 

landscape changes contributed 44.1% to 60.7%.  416 

 417 
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Figure 9 Changes of daily runoff depth caused by changes in precipitation (a), potential 418 

evaporation (b), landscape index n (c), and total runoff depth change (d) from 1950-1999 to 419 

2000-2020.  420 

 421 

Figure 10 Runoff depth changes in (a) the seven sections and (b) the seven clusters. S1-S7 are 422 

the 7 sections based on the division of the Yellow River; RH is for Revegetation - Humid Area; 423 

RSH is for Revegetation - Semi-Humid area; RSA is for Revegetation - Semi-Aumid area; RA is 424 

for Revegetation - Semi-Arid area; AU is for Agricultural alteration – Upstream (AU); AD is for 425 

Agricultural alteration – Downstream (AU); CC is for Climate Change. 426 

5 Discussion 427 

5.1 Agricultural vulnerability in YRB 428 

According to our analysis, the Yellow River Basin (YRB) is facing a severe water 429 

shortage, which is further exacerbated by the emergence of a significant drought trend. The 430 

upstream and downstream irrigation areas (in S3 and S7) exhibited the most notable drought 431 

trend in the YRB, which represents a threat to both water and food security. Our findings 432 

emphasize the crucial role of agriculture in the water-food-ecology conflicts that persist in the 433 

YRB. Our analysis indicates that agricultural activities are a major contributor to severe water 434 

depletion, similar to the greening driven by ecological engineering as reported by many 435 

researchers.  436 
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The impact of agricultural change on runoff, as quantified as ∆𝑅௡ in the two clusters 437 

under agricultural alteration patterns AU and AD, is close to that in the revegetation clusters. 438 

Despite the focus on agricultural water conservation since the 1990s, the actual effect appears to 439 

be weak. In the downstream irrigation area, agricultural mechanization and expansion of the 440 

wheat planting area led to increased agricultural water use. Conversely, agricultural water 441 

consumption had decreased substantially in the upstream irrigation area through the development 442 

of water-saving irrigation technologies and changes in planting crops. However, the mean 443 

groundwater depth still dropped rapidly in the upstream irrigation area. One of the reasons for 444 

this is that the desert oasis requires water to sustain groundwater levels, and the irrigation water 445 

considered as waste is necessary to maintain the oasis's ecological functions. In other words, 446 

elevating irrigation efficiency in arid areas could be harmful. 447 

Furthermore, the agricultural vulnerability in the YRB tends to increase with the 448 

combined effect of climate change and ecological projects, which lead to decreasing 449 

precipitation and increasing evaporation from improved vegetation. Although the climate of AU 450 

and AD varied greatly, the aridity factor increments between P1 and P2 (∆ 𝐸଴ 𝑃⁄ ) in the two 451 

agricultural clusters reached 0.77 and 0.67, respectively, which are larger than that of any other 452 

cluster. The decreasing precipitation and increasing evaporation contributed significantly to 453 

runoff reduction in both AU and AD, increasing the likelihood of drought in the YRB. In the 454 

central plain around Henan, China's principal crop-production area in YRB, 1.05 million hectares 455 

were damaged by drought in 2022, (https://www.henan.gov.cn/2022/08-24/2566944.html; in 456 

Chinese). Water demand also increased rapidly with ecological engineering and socioeconomic 457 

development in the YRB. Given the increasing frequency of extreme weather events and the 458 

close relationship between grain yields in the YRB and national food security, it is imperative to 459 

prepare for an uncertain future. 460 

5.2 Measures to alleviate water-food-ecology conflicts in the YRB 461 

The water-food-ecology conflicts directly challenge the sustainable development goals 462 

including Target 2 (Zero Hunger), 6 (Clean Water and Sanitation), and 15 (Life on Land) (Zhou 463 

et al., 2023). With the increasing aridification trend in the YRB and growing water demand, 464 

those conflicts will be exacerbated further. Consequently, there is an urgent need for 465 

comprehensive strategies that balance the trade of development and ecological protection. Given 466 
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that agriculture is the largest water use sector in the YRB, improving the efficiency of 467 

agricultural water use is undoubtedly necessary. However, excessive water conservation in arid 468 

areas can lead to local drought, and elevating agricultural water efficiency in the upstream 469 

regions to levels comparable to those in humid downstream regions is challenging.  470 

In addition to advances in agricultural technologies, replacing high-water-consuming 471 

crops such as wheat with low-water-consuming alternatives like potatoes and beans is a feasible 472 

way to reduce water consumption, particularly in downstream croplands. It is worth noting that 473 

ecological greening projects can significantly increase evaporation, and in such severe water 474 

shortage, optimizing current tree species in revegetation areas, such as replacing trees with 475 

shrubs for less evaporation in semi-arid or semi-humid areas, could prove effective in alleviating 476 

the conflicts. Another strategy that can help reduce water scarcity in the YRB is using water 477 

from outside the river basins through water diversion projects instead of relying solely on local 478 

freshwater resources. Accelerating the operation of the west route of the South Water to North 479 

Project to release the water pressure in the upper reaches of the YRB could be a meaningful step 480 

in this direction.  481 

5.3 Comparison with previous work 482 

Diverse hydrological methods and models have been employed to investigate the 483 

dramatic hydrological changes in the YRB. Our study differs from previous research in two main 484 

aspects: first, we identified the patterns of vegetation changes and, second, we conducted a 485 

distributed attribution analysis of runoff changes based on the Budyko hypothesis. Vegetation 486 

was selected as the key indicator in this study as it provides crucial feedback on environmental 487 

changes in the YRB. Through clustering the inter-annual and intra-annual characteristics of 488 

vegetation changes, we identified seven distinct vegetation change patterns and corresponding 489 

distributions.  490 

Compared to the simple basin division based on the upstream-downstream relationship, 491 

clustering resulted in lower heterogeneity within the pixel clusters, which facilitated the analysis 492 

of hydrometeorological responses to various driving factors of vegetation change. By 493 

incorporating phenology-represented vegetation intra-annual characteristics, we analyzed 494 

vegetation changes in both croplands and revegetation areas under the same framework. While 495 

previous research has focused on the impact of vegetation changes in revegetation areas on the 496 
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Loess Plateau, where vegetation shows significant inter-annual changes due to increasing 497 

coverage (Chen et al., 2015; Feng et al., 2016), our study demonstrates that agricultural activities 498 

also have a significant impact on the hydrology of the YRB, even though the change in 499 

vegetation coverage due to agriculture is relatively weak. Given the increasing threats from 500 

climate change and growing ecological water demand, it is crucial to pay attention to agriculture 501 

in the water-food-ecology conflicts of the YRB. 502 

Another novel aspect of our study is the use of the gridded reanalysis product ERA5-503 

Land to perform gridded runoff change attribution analysis at the scale of the entire YRB. By 504 

replacing site observation data with ERA5-Land, we performed a distributed hydrological 505 

analysis based on the Budyko hypothesis, in which the runoff changes on every pixel with the 506 

size of 0.1°×0.1° was calculated. With the advantage of earth model foundation, the results have 507 

good continuity and effectively presented the spatial differentiation in the YRB. The distributed 508 

runoff change analysis supports the investigation of the hydrological responses of the scattered 509 

seven vegetation change clusters. In contrast to previous studies that typically focused on small 510 

sub-basins of the YRB due to the limits of site data, our results are consistent with the site-data-511 

based analysis in the distribution and value range of aridity, landscape parameter 𝑛, elasticities, 512 

and runoff changes (Li et al., 2019). Furthermore, this method requires fewer data and is easier to 513 

apply than complicated process-based physical models, making it more suitable for large-scale 514 

basin analysis. 515 

6 Conclusions 516 

To address the challenging water-food-ecology conflicts in the YRB, we developed an 517 

analysis framework based on vegetation change and the Budyko hypothesis.  (a) Seven 518 

vegetation change patterns were identified based on inter-annual and intra-annual vegetation 519 

changes: four are driven by revegetation activities, presenting the different feedbacks of 520 

revegetation projects in humid, semi-humid, semi-arid, and arid areas; two are driven by 521 

agricultural alteration which are the planting structure changes represented by the upstream 522 

Hetao irrigation area and agricultural mechanization represented by the downstream North Plain 523 

irrigation area; the last one is driven by climate changes and mainly distributed in the source 524 

region. (b) The landscape index n increased most in the semi-humid and semi-arid areas under 525 

revegetation, while the aridity increased most in the upstream and downstream irrigation areas. 526 
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(c) Human-driven vegetation changes contributed to 44.1% ̶ 60.7% of local runoff reduction 527 

according to the attribution analysis based on the Budyko hypothesis. Specifically, the daily 528 

runoff depth reduction caused by agricultural changes is 0.08 mm upstream and 0.12 mm 529 

downstream, equivalent to 29-44 mm on an annual scale, approaching that caused by vegetation 530 

restoration. (d) Agriculture tended to be more vulnerable due to the combined effect of climate 531 

change and greening driven by ecological engineering. To alleviate water-food-ecology conflicts, 532 

we have to pay attention to food security and be prepared for the future with increasing drought 533 

risk. 534 
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