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Abstract19

Limited observations of total water storage (TWS) changes derived from the Gravity20

Recovery and Climate Experiment (GRACE) have impeded our understanding of21

their full range and long-term variability. In this study, we apply a deep learning22

model called RecNet to reconstruct global TWS products from 1923 to 2022. RecNet23

is trained using a novel Weighted Modified Nash-Sutcliffe Efficiency (WMNSE) loss24

function. Our results reveal that RecNet, trained with WMNSE, yields a more25

consistent reconstruction than RecNet trained with the commonly-used mean square26

error loss function. We further show that RecNet achieves superior or comparable27

performance with four existing global reconstruction datasets and two hydrological28

models. In addition, these long-term TWS datasets generally exhibit reliable29

performance in humid regions but pose challenges in arid regions. This study offers30

alternative centenary TWS change dataset, while highlighting the need for caution31

when utilizing them in arid regions.32

Plain Language Summary33

Since 2002, the Gravity Recovery and Climate Experiment (GRACE) and its34

Follow-On (GRACE-FO) mission, have been keeping a close eye on how much water35

is being stored in different regions of the world. However, the data collected only36

covers a relatively short period of about 20 years, which makes it difficult to study37

long-term changes in water storage. Recently, deep learning methods have shown38

great promise in helping scientists better understand the Earth's systems. This study39

uses a deep learning model called RecNet to reconstruct global total water storage40

(TWS) changes from 1923 to 2022. RecNet is trained using precipitation and41

temperature as the inputs and GRACE-derived TWS changes as the target. Our results42

show that RecNet reconstructs the past TWS changes in humid regions, but it has43

relatively poor performance in arid regions. These findings are also found in existing44

reconstruction datasets and hydrological models. Therefore, the poor performance is45

probably attributed to the weak TWS signals in arid regions rather than RecNet itself.46

This work provides a global reconstruction of centenary TWS changes by the deep47

learning model. At the same time, it emphasize important considerations for using the48

long-term TWS datasets in arid regions.49



1. Introduction50

Since 2002, the Gravity Recovery and Climate Experiment (GRACE) and its51

Follow-On (GRACE-FO) missions have offered the first observations of total water52

storage (TWS, the sum of water stored in surface water bodies, snow, soil moisture,53

and groundwater), which have been extensively used to study global climate changes54

and variability (Awange et al., 2016; Rodell et al., 2018; Forootan et al., 2019; Tapley55

et al., 2019; Rodell & Li, 2023), hydrological cycle (Awange et al., 2013; Chen et al.,56

2020; Rodell & Reager, 2023), and human-induced groundwater depletion (Agutu et57

al., 2019; Feng et al., 2022; Ali et al., 2024). However, a relatively short record of58

TWS data (about 20 years) from GRACE and GRACE-FO (referred to as GRACE59

unless explicitly mentioning GRACE-FO) has hindered our comprehensive analysis60

of its complete range and long-term variability. While pre-2002 TWS changes can be61

obtained through hydrological models and in-situ water level measurements (Huang et62

al., 2013), these methods are unable to provide the same level of accuracy as GRACE63

because of intrinsic limitations, such as data availability or uncertainty, and64

difficulties in modeling intricate water storage dynamics (Li et al., 2020, 2021).65

Driven by the high demand for long-term TWS data in the scientific66

community (Huang et al., 2013; Chen et al., 2019), a growing array of studies have67

been conducted to reconstruct global historical TWS changes (e.g., Table 1). Most68

recently, Yin et al. (2023) attempted to extend GRACE-derived TWS changes to 194069

by employing different machine learning models (e.g., random forest and neural70

networks). To evaluate the performance of these models, they randomly split the71

entire GRACE data into training and testing parts. However, this approach72

overestimated the models' performance because reconstructing the past TWS data is73

an extrainterpolation task. The random split strategy incorrectly transformed it into an74

interpolation task. Deng et al. (2020) produced long-term TWS data using a75

bias-corrected method to align the reconstruction with the spatiotemporal76

characteristics of GRACE data, inevitably introducing the issue of reconstructive77

dependency. Li et al. (2020, 2021) utilized spatiotemporal decomposition techniques78

to separate the spatial patterns and temporal modes of GRACE TWS, and then79

reconstructed TWS by establishing relationships between the temporal modes and80

potential predictors, assuming that the predominant spatial patterns remain constant81

over time. Subsequently, they selected 26 major river basins of the world to evaluate82



the reconstructive performance, 'deliberately' focusing on those predominantly83

distributed in humid climates and ignoring the arid regions.84

Both anthropogenic activities and climate variability influence changes in85

TWS derived from GRACE. Despite distinct predictors having been used in previous86

studies to build their empirical relationship with GRACE data (e.g., Humphrey &87

Gudmundsson, 2019; Satish Kumar et al., 2023; Wang et al., 2023), they dominantly88

present the climatic drivers, as human-induced changes in TWS are not adequately89

observed and cannot be incorporated into these models. For instance, Humphrey et al.90

(2016) and Humphrey et al. (2017) indicated that changes in TWS are tightly related91

to fluctuations in precipitation and temperature and thus can be statistically92

reconstructed from them. In Humphrey's subsequent study, they used precipitation and93

temperature data to reconstruct the past climate-driven TWS changes based on a94

linear water store model (Humphrey & Gudmundsson, 2019), thereby neglecting the95

potential nonlinear associations between the climatic drivers and TWS changes. Wang96

et al. (2023) proposed a deep learning model called RecNet to reconstruct centenary97

TWS changes over the Yangtze River Basin and demonstrated its superior98

performance than Humphrey and Gudmundsson (2019)'s approach.99

In this study, we extend Wang et al. (2023)'s method from a specific basin to a100

global reconstruction. Specifically, we train RecNet using precipitation, temperature,101

and GRACE observations to capture the potential nonlinear relationships.102

Subsequently, we apply the trained network to reconstruct global TWS changes from103

1923 to 2022. The reconstructive performance is validated by comparing the results to104

those of hydrological models and existing reconstruction datasets, with an additional105

focus on discussing the reliability of these datasets in humid and arid regions.106



Table 1. Global reconstructions of GRACE-derived TWS changes107

Reference Method Data processing Predictors Period

Humphrey and
Gudmundsson

(2019)

Based on a linear water
store model

Detrend and
deseasonal

Precipitation and
temperature

1901-2019

Deng et al. (2020) Empirical orthogonal
function decomposition
and linear regression

Separate the polar
and non-polar

regions

Soil moisture, snow
depth, precipitation,

temperature, and glacial
water mass changes

1981-2020

Li et al. (2020,
2021)

Multiple linear regression,
artificial neural network,

and autoregressive
exogenous model

Detrend and
separate the spatial

patterns and
temporal modes of

data

Precipitation, temperature,
sea surface temperature,
and climate indices

1979-2020

Yin et al. (2023) Machine learning models Randomly split the
datasets

Hydrological and
meteorological variables,
land cover, and vegetation

indicators

1940-2022

This study Deep learning model Detrend and discard
the polar regions

Precipitation and
temperature

1923-2022

2. Datasets108

2.1. Precipitation and temperature data109

The monthly precipitation and temperature data are obtained from the Climate110

Research Unit gridded Time-Series datasets (CRU TS v4.07) at the University of East111

Anglia, UK (Harris et al., 2020), which provides high-resolution gridded datasets for112

multiple variables on a 0.5° × 0.5° or finer grid. The data from 2002 to 2022 is used113

during the model development period, whereas the data from 1923 to 2002 is used for114

the reconstruction task. We also use the precipitation and temperature data from the115

Global Land Data Assimilation System (GLDAS) (Beaudoing & Rodell, 2020) to116

check the robustness of our main results.117

2.2. GRACE and GRACE-FO data118

The GRACE-derived TWS data from April 2002 to June 2017 and119

GRACE-FO data from June 2018 to December 2022 are sourced from the Jet120

Propulsion Laboratory (JPL) Mascons with the Costal Resolution Improvement (CRI)121

filter. Compared to conventional spherical-harmonic solutions, this dataset is less122

susceptible to leakage errors and requires few empirical postprocessing steps (Wiese123

et al., 2019). To verify RecNet's reconstructive capability, the data from April 2008 to124

December 2022 (70%), from April 2005 to March 2008 (15%), and from April 2002125

to March 2005 (15%) are utilized as the training, validation, and testing datasets,126



respectively. We also test the robustness of the choice of mascon datasets, including127

CSR (Save et al., 2016) and GSFC mascon solutions (Loomis et al., 2021).128

2.3. Auxiliary datasets129

To evaluate RecNet's reconstruction, we compare its results with those of130

GLDAS, and WaterGAP Global Hydrology Model (WGHM) (Müller et al., 2021),131

and previous studies, including Humphrey and Gudmundsson. (2019) (GRACE-REC),132

Deng et al. (2020) (Rec-Deng), Li et al. (2020, 2021) (Rec-Li), and Yin et al. (2023)133

(Rec-Yin) (Table 1). We present key comparison results in the main text, with134

additional details provided in the supporting information.135

3. Methods136

RecNet, a lightweight deep learning model, has been successfully applied to137

reconstruct the past TWS changes over the Yangtze River Basin (Wang et al., 2023). It138

consists of an encoder path and a decoder path connected through bottleneck layer.139

The encoder path downsamples the input image, while the decoder path subsequently140

restores it to its original dimensions (Figure 1a). We refer interested readers to Wang141

et al. (2023) for further information.142

In this study, we apply RecNet to reconstruct global TWS changes from 1923143

to 2022 excluding Greenland and Antarctic regions. Considering the water144

accumulation time-lag effect (Figure S1 and S2), the precipitation and temperature145

data of current month and previous 11 months are used as inputs, resulting in 24 input146

channels. A linear trend is removed from GRACE observations, assuming that it is147

predominantly caused by human factors (Li et al., 2021; Wang et al., 2023). The input148

and target data are resampled into 1° × 1° grid, and a random crop of 64 × 64 is used149

at the training and validation periods. These choices allow RecNet to fit within150

memory. We show that RecNet is robust to crop sizes like 32 × 32 and 96 × 96. We151

also propose a novel Weighted Modified Nash-Sutcliffe Efficiency (WMNSE) loss152

function as follows,153

WMNSE = �=1
� �� ��−���

�=1
� �� ��−��

(1)154

where o and p are the observed and predicted value, respectively; the overbar denotes155

mean values; n is the number of target data for testing, while ω is the sigmoid weight156



derived from JPL Mascon data uncertainty, assuming that the higher the uncertainty,157

the lower the weight. We find that WMNSE exhibits more consistent results than the158

commonly-used mean square error loss function (Figure 1c). The correlation159

coefficient (CC) is used to measure the phase consistency between our reconstruction160

and GRACE observations, and NSE used for phase and amplitude measurements.161

CC = �=1
� (��−��)(��−��)�

�=1
� (��−��)2� (��−��)2

(2)162

NSE = 1 − �=1
� (��−��)2�

�=1
� (��−��)2�

(3)163

Figure 1. (a) The RecNet model architecture. Each box corresponds to a164
multi-channel feature map. The three numbers around the box denote the feature165
map's channels, height, and width, respectively. The arrows indicate the different166
operations performed. Conv for convolution; ConvG, grouped convolution; BN, batch167
normalization; ConvT, transposed convolution. (b) The aridity index with the black168
contours denotes the arid regions. (c) The NSE and CC values between GRACE169
observations and RecNet trained with WMNSE or MSE during the testing period170
2002-2005.171



4. Results172

4.1. Comparing RecNet's reconstruction with GRACE observations173

It is widely recognized that the way the training and testing datasets are split174

can significantly impact the performance of deep learning models (Medar et al., 2017).175

Since we focus on reconstructing the past TWS changes, the GRACE data from April176

2005 to December 2022 is used as the training (70%) and validation sets (15%),177

whereas the data from April 2002 to March 2005 (15%) is used as the testing set. As178

shown in Figure 1c, RecNet achieves satisfactory performance during the testing179

period in terms of spatial NSE and CC values between its results and GRACE180

observations. Relatively poor performance is observed in arid regions, where the181

aridity index, calculated by the ratio between long-term mean precipitation and182

potential evapotranspiration (Zhang et al., 2019), is less than 0.5 (Figure 1b). In183

addition, RecNet trained with WMNSE exhibits more consistent performance184

compared with that trained with MSE. RecNet's performance is also robust to mascon185

solutions, precipitation and temperature products, and crop sizes (Figure S3).186

4.2. Comparing RecNet's reconstruction with GRACE-REC187

Compared with Humphrey & Gudmundsson (2019)'s study, RecNet frees us188

from explicitly building the relationship between the GRACE observations and their189

climatic drivers. To assess potential benefits from the non-linearity introduced by190

RecNet, we compute the CC and NSE values between RecNet/GRACE-REC and191

GRACE data. Since GRACE-REC did not reconstruct the seasonal signals, we apply192

the seasonal and trend decomposition using the loess (STL) method to deseasonalize193

the detrended TWS changes (Humphrey et al., 2016). Similar processing is applied to194

the TWS data derived from GLDAS and WGHM. As for the CC values, all four195

models reveal comparable performance (Figure 2a, c, e, and g). RecNet,196

GRACE-REC, and WGHM observe relatively higher performance in humid regions197

compared to arid regions. However, apparent discrepancies are observed among the198

four models concerning the NSE values. GRACE-REC reveals negative NSE values199

across most regions globally, suggesting it probably struggles to reconstruct the200

amplitude in GRACE-derived TWS changes. WGHM and GLDAS show more201

positive NSE values compared to GRACE-REC, while notable negative NSE values202

are observed in many arid regions. Nevertheless, RecNet displays generally positive203



NSE values in both arid and humid regions, indicating its better reconstructive204

performance than GRACE-REC. This is attributed to the introduced non-linearity, as205

RecNet and GRACE-REC employ the same explanatory variables (i.e., precipitation206

and temperature). Similar to WGHM and GLDAS, RecNet still observes relatively207

high NSE values in humid regions compared to arid regions.208

Figure 2. CC and NSE values between GRACE-derived interannual TWS changes209
with those from RecNet (a-b), GRACE-REC (c-d), WGHM (e-f), and GLDAS (g-h).210
The box plot to the right summarizes the corresponding metrics in arid (A) and humid211
(H) regions, respectively.212

4.3. Evaluating RecNet's reconstruction in humid and arid regions213

We employ the deep ensemble technique to demonstrate the reconstructive214

reliability of RecNet. Specifically, we train 100 RecNet models, each initialized with215

different parameters. The ensemble uncertainty is obtained by calculating the variance216

of predictions made by each model. We also calculate the ensemble NSE between217

RecNet's reconstruction and GRACE observations during the testing period and218

empirically categorize RecNet's performance into great (NSE > 0.6), satisfactory219

(0.25 < NSE ≤ 0.6), good (0.0 < NSE ≤ 0.25), fair (-0.25 < NSE ≤ 0 ), poor220

(-0.6<NSE≤− 0.25), and bad (NSE≤-0.6). As shown in Figure 3, RecNet exhibits221



reliable reconstruction in humid regions (e.g., high-latitude areas), whereas its222

performance is comparatively less satisfactory in arid regions such as Australia.223

Ensemble NSE values are positive in the humid regions, whereas many arid regions224

show negative NSE values.225

We further compare RecNet's reconstruction with existing long-term TWS226

changes datasets derived from Rec-Deng, Rec-Li, Rec-Yin, WGHM, and GLDAS227

over 52 basins in arid regions and 81 basins in humid regions (selected by the area228

larger than the footprint of GRACE). GRACE-REC is excluded because it only229

reconstructed the interannual signals. Each dataset is detrended for a fair comparison.230

Considering the overlapping time coverage, we compare the data from January 1981231

to March 2002. The heat map reveals a general consistency among those datasets232

(Figure 3). Importantly, all exhibit relatively higher CC and NSE values in humid233

regions compared to arid regions. Three basins in humid regions (Congo, Amazon,234

and Yangtze) and three in arid regions (Gobi Interior, North Interior in Africa, and235

Murray-Darling) are shown as example basins. Generally consistent reconstructions236

are observed in these humid regions, while significant differences are found in the237

arid regions. In addition, Figure 3 also shows that the reconstructions derived from238

other datasets align well within the range of uncertainty estimated in our study. These239

findings indicate that relatively reliable reconstruction can be achieved in humid240

regions, while significant challenges persist in arid regions.241



Figure 3. RecNet's reconstruction performance, with showing the comparisons with242
the detrended TWS changes derived from Rec-Deng, Rec-Li, Rec-Yin, WGHM, and243
GLDAS in example basins. The light-blue envelope represents the uncertainty ranges244
of RecNet, which is estimated using deep ensembles. The heat maps in the left side245
compare RecNet's reconstruction with Rec-Deng/Li/Yin, WGHM, and GLDAS in the246
81 basins within humid regions (upper triangle) and 52 basins within the arid regions247
(lower triangle).248

5. Discussions249

5.1. Reconstructing long-term trends in TWS changes250

GRACE-derived TWS changes represent the combined influence of human251

activities and climate variability. In the past two decades, apparent TWS trends have252

been attributed to factors such as groundwater abstraction and the proliferation of253

reservoirs (Rodell et al., 2018). Previous studies have primarily utilized non-human254

factors like precipitation and temperature to reconstruct the TWS changes (Li et al.,255

2021; Yin et al., 2023; Wang et al., 2023). Therefore, human-induced TWS changes256

may have been under-reconstructed or unreconstructed in these studies due to the257

absence of long-term observations specifically reflecting human activities. In other258

words, reconstructed trends in previous studies may have been underestimated or259

deemed unreliable. Li et al. (2020, 2021) reconstructed the long-term trends using260

trends estimated from the GRACE period. This approach may be inappropriate given261



the intensified impacts of human activities in recent years compared to the relatively262

moderate economic development and wealth levels before 2000. Our study focuses on263

reconstructing detrended TWS changes driven by precipitation and temperature264

without detrending these variables. By so doing, we preserve the trends attributed to265

these climatic variables, as the period before the GRACE era likely experienced266

predominantly climate-driven TWS changes due to relatively moderate human267

activities. The possibility of reconstructing the long-term trend will be investigated in268

our future works. In contrast to Humphrey & Gudmundsson (2019)'s work, which269

only reconstructed the interannual component, our study simultaneously reconstructs270

the seasonal signal to provide as comprehensive a range of TWS changes as possible.271

5.2. Selection of explanatory variables272

Several studies have proposed various models (e.g., linear model, random273

forest, and neural networks) to reconstruct long-term TWS changes data before274

GRACE era by learning their empirical relationship with different driving factors (e.g.,275

Humphrey & Gudmundsson, 2019; Satish Kumar et al., 2023; Wang et al., 2023; Yin276

et al., 2023). For example, Yin et al. (2023) utilized a large set of variables, including277

land cover, vegetation conditions, and wind speed, to reconstruct the TWS changes,278

while Li et al. (2020, 2021) utilized precipitation, temperature, sea surface279

temperature (SST), and climate indices. They found that incorporating climate indices280

and SST into the reconstruction models can reproduce the ENSO signals.281

Nevertheless, as depicted in Figure 3, we consistently observe robust results across282

our reconstruction based solely on precipitation and temperature, as well as other283

reconstructions utilizing diverse variables and hydrological models. This finding284

aligns with Humphrey et al. (2016), who indicated that TWS changes can be285

reconstructed from precipitation and temperature alone. The probable reason for this286

is that major climate patterns significantly influence precipitation and temperature287

anomalies, inherently containing information regarding climate patterns. Moreover,288

changes in TWS are balanced by the rate of precipitation, evapotranspiration, and289

runoff, where precipitation is the key recharge source for TWS and runoff changes,290

whereas temperature plays a significant role in influencing evapotranspiration (Chen291

et al., 2020).292

5.3. Reconstructing TWS changes in humid and arid regions293



We found better reconstructive performance in humid regions compared to294

arid ones. This outcome is somewhat anticipated due to the relatively abundant295

precipitation and TWS changes in humid regions, in contrast to the weak TWS signals296

in arid regions resulting from limited precipitation and high evapotranspiration. TWS297

changes in arid regions (e.g., Murray-Darling basin) may have many small and298

unstable trends caused by irregular precipitation, leading to high uncertainties in these299

areas (Figure 3). These findings emphasize cautions when applying the reconstructed300

long-term TWS change datasets (our reconstruction and others) in arid regions.301

Conversely, the relatively reliable reconstruction in humid regions holds promise for302

studying long-term TWS changes while discerning the influences of human and303

natural variability on them. It is important to note that these findings are based on the304

assumption that GRACE observations serve as the ground truth. Large lakes (e.g.,305

Lake Victoria in Africa), reservoirs, and glaciers may also influence reconstruction,306

but comprehensively studying their influence is not trivial and will be explored in307

future with more effort.308

6. Conclusions309

This study employs RecNet to reconstruct global, excluding the Greenland and310

Arctic regions, climate-driven TWS changes for 1923-2022. RecNet is trained using311

precipitation, temperature, GRACE observations, and WMNSE loss function. Our312

analysis highlights several key findings:313

(i) RecNet, when trained with WMNSE, exhibits a more consistent314

reconstruction than that trained with MSE.315

(ii) Despite using only precipitation and temperature data, RecNet316

demonstrates superior performance over GRACE-REC, which similarly used317

these two variables to perform the global reconstruction.318

(iii) The coherence observed between RecNet's reconstructions and four319

existing datasets, along with two hydrological models, underscores its320

efficacy.321

(iv) While long-term TWS data, derived from both hydrological models and322

the reconstruction datasets, exhibit relative reliability in humid regions, their323

reliability in arid regions is more uncertain. Consequently, caution must be324

exercised when utilizing these datasets in arid regions.325
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