Matthew Kemp

and 4 more

The Hawaiian Island chain in the middle of the Pacific Ocean is a well-studied example of hotspot volcanism caused by an underlying upwelling mantle plume. However, the thermal and compositional nature of the plume is still uncertain. The depth and amplitude of seismic discontinuities can show how the plume effects phase transitions in mantle minerals, providing insights into the plume’s thermo-chemical properties. This study utilises >5000 high quality receiver functions from Hawaiian island stations to detect P-to-s converted phases. These receiver functions are stacked in a variety of ways in order to image seismic discontinuities between 200 to 800 km depth. In the mantle transition zone, we find that to the southwest of the Big Island the 660 discontinuity is split. This is inferred to represent the position of the hot plume at depth, with the upper discontinuity caused by an olivine phase transition and the lower by a garnet phase transition. In the upper mantle, the so-called X-discontinuity, which has an enigmatic origin, is found across the region at depths varying between 290 to 350 km. To the east of the Big Island the X-discontinuity lies around 336 km and is particularly strong in amplitude, to such an extent that the discontinuity around 410 km disappears. Synthetic modelling reveals that such observations can be explained by a silica phase transition from coesite to stishovite. This suggests there is widespread ponding of silica-saturated material (such as eclogite, which is silica-rich relative to pyrolite) spreading out from the plume to the east, a hypothesis which is consistent with dynamical models. We suggest that this seemingly thermochemical plume could be sampling recycled basalt, now in the form of eclogite, from lower in the mantle. Therefore these results support the presence of a significant garnet and eclogite component within the Hawaiian mantle plume. We will briefly highlight further work comparing Hawaii with other hotspot locations around the world to consider whether this is also occurring in other plumes and what heterogeneous plumes may imply about the recycling of material in the mantle.

Euan Mutch

and 4 more

In order to reconcile petrological and geophysical observations in the temporal domain, the uncertainties of diffusion timescales need to be rigorously assessed. Here we present a new diffusion chronometry method: Diffusion chronometry using Finite Elements and Nested Sampling (DFENS). This method combines a finite element numerical model with a nested sampling Bayesian inversion meaning the uncertainties of the parameters that contribute to diffusion timescale estimates can be rigorously assessed, and that observations from multiple elements can be used to better constrain a single timescale. By accounting for the covariance in uncertainty structure in the diffusion parameters, estimates on timescale uncertainties can be reduced by a factor of 2 over assuming that these parameters are independent of each other. We applied the DFENS method to the products of the Skuggafjöll eruption from the Bárðarbunga volcanic system in Iceland, which contains zoned macrocrysts of olivine and plagioclase that record a shared magmatic history. Olivine and plagioclase provide consistent pre-eruptive mixing and mush disaggregation timescales of less than 1 year. The DFENS method goes some way to improving our ability to rigorously address the uncertainties of diffusion timescales, but efforts still need to be made to understand other systematic sources of uncertainty such as crystal morphology, appropriate choice of diffusion coefficients, growth, and the petrological context of diffusion timescales.