7. REFERENCES
1. Hayashi H, Sakai T. Animal models for the study of liver fibrosis:
new insights from knockout mouse models. American Journal of
Physiology-Gastrointestinal and Liver Physiology. 2011;300(5):G729-G38.
https://doi.org/10.1152/ajpgi.00013.2011.
2. Sacchi M, Bansal R, Rouwkema J. Bioengineered 3D models to
recapitulate tissue fibrosis. Trends in biotechnology.
2020;38(6):623-36.
https://doi.org/10.1016/j.tibtech.2019.12.010.
3. El Hussein MT, Rankin JA, Then KL. Mnemonic to assist in management
of liver cirrhosis. The Journal for Nurse Practitioners.
2018;14(10):732-8.
https://doi.org/10.1016/j.nurpra.2018.08.032.
4. Pinzani M, Rosselli M, Zuckermann M. Liver cirrhosis. Best practice
& research Clinical gastroenterology. 2011;25(2):281-90.
https://doi.org/10.1016/j.bpg.2011.02.009.
5. Alaqaili HI, AlJuraysan AI, Hawsawi RMA, Abuzaid FA, Alharbi MA,
Mughallis AEA, et al. Review on liver cirrhosis complications and
treatment. The Egyptian Journal of Hospital Medicine.
2017;69(8):3092-103. https://doi.org/10.12816/0042860.
6. Naveau S, Perlemuter G, Balian A. Épidémiologie et histoire naturelle
de la cirrhose: Cirrhose. La Revue du praticien (Paris).
2005;55(14):1527-32. PMID: 16255293.
7. Mondal D, Das K, Chowdhury A. epidemiology of liver Diseases in
india. Clinical Liver Disease. 2022;19(3):114.
https://doi.org/10.1002/cld.1177.
8. Sharma S, Khalili K, Nguyen GC. Non-invasive diagnosis of advanced
fibrosis and cirrhosis. World journal of gastroenterology: WJG.
2014;20(45):16820. https://doi.org/10.3748/wjg.v20.i45.16820.
9. Crespo Yanguas S, Cogliati B, Willebrords J, Maes M, Colle I, Van den
Bossche B, et al. Experimental models of liver fibrosis. Archives of
toxicology. 2016;90(5):1025-48.
https://doi.org/10.1007/s00204-015-1543-4.
10. Shackel N, Patel K, McHutchison J. Genomics in Pathogenesis of
Cirrhosis. Essentials of Genomic and Personalized Medicine: Elsevier;
2010. p. 645-60.
https://doi.org/10.1016/B978-0-12-374934-5.00050-7.
11. Dhar D, Baglieri J, Kisseleva T, Brenner DA. Mechanisms of liver
fibrosis and its role in liver cancer. Exp Biol Med (Maywood).
2020;245(2):96-108. https://doi.org/10.1177/1535370219898141.
12. Thawley V. Acute liver injury and failure. Veterinary Clinics: Small
Animal Practice. 2017;47(3):617-30.
https://doi.org/10.1016/j.cvsm.2016.11.010.
13. Newcomer BW. Toxicologic Insults to the Bovine Liver. Veterinary
Clinics: Food Animal Practice. 2022;38(3):421-32.
https://doi.org/10.1016/j.cvfa.2022.07.003.
14. Shehu AI, Ma X, Venkataramanan R. Mechanisms of drug-induced
hepatotoxicity. Clinics in liver disease. 2017;21(1):35-54.
https://doi.org/10.1016/j.cld.2016.08.002.
15. Parsons CJ, Takashima M, Rippe RA. Molecular mechanisms of hepatic
fibrogenesis. Journal of gastroenterology and hepatology.
2007;22:S79-S84. https://doi.org/10.1111/j.1440-1746.2006.04659.x.
16. Braet F, Wisse E. Structural and functional aspects of liver
sinusoidal endothelial cell fenestrae: a review. Comparative hepatology.
2002;1(1):1-17. https://doi.org/10.1186/1476-5926-1-1.
17. Deaciuc IV, D’Souza NB, Fortunato F, Hill DB, Sarphie TG, McClain
CJ. Alcohol-induced sinusoidal endothelial cell dysfunction in the mouse
is associated with exacerbated liver apoptosis and can be reversed by
caspase inhibition. Hepatology research. 2001;19(1):85-97.
https://doi.org/10.1016/S1386-6346(00)00087-5.
18. Kolios G, Valatas V, Kouroumalis E. Role of Kupffer cells in the
pathogenesis of liver disease. World journal of gastroenterology: WJG.
2006;12(46):7413. 10.3748/wjg.v12.i46.7413.
19. Kim MY, Baik SK, Lee SS. Hemodynamic alterations in cirrhosis and
portal hypertension. The Korean journal of hepatology. 2010;16(4):347.
PMID: 21415576.
20. Hong WK, Shim KY, Baik SK, Kim MY, Cho MY, Jang YO, et al.
Relationship between tetrahydrobiopterin and portal hypertension in
patients with chronic liver disease. Journal of Korean medical science.
2014;29(3):392-9. https://doi.org/10.3346/jkms.2014.29.3.392.
21. Fauerholdt L, Schlichting P, Christensen E, Poulsen H, Tygstrup N,
Juhl E, et al. Conversion of Micronodular Cirrhosis into Macronodular
Cirrhosis. Hepatology. 1983;3(6):928-31.
https://doi.org/10.1002/hep.1840030607.
22. Nayak NC, Ramalingaswami V. Indian childhood cirrhosis. Clin
Gastroenterol. 1975;4(2):333-49.
http://dx.doi.org/10.1136/gut.22.4.295.
23. Horsti J, Uppa H, Vilpo JA. Poor agreement among prothrombin time
international normalized ratio methods: comparison of seven commercial
reagents. Clinical chemistry. 2005;51(3):553-60.
https://doi.org/10.1373/clinchem.2004.043836.
24. de Franchis R, Primignani M. Why do varices bleed? Gastroenterol
Clin North Am. 1992;21(1):85-101.
https://doi.org/10.1016/S0889-8553(21)00179-5.
25. Iredale JP. Models of liver fibrosis: exploring the dynamic nature
of inflammation and repair in a solid organ. The Journal of clinical
investigation. 2007;117(3):539-48.
https://doi.org/10.1172/JCI30542.
26. Smith GP. Animal models of fibrosis in human disease. Animal Models
for the Study of Human Disease: Elsevier; 2013. p. 435-58.
https://doi.org/10.1016/B978-0-12-415894-8.00019-1.
27. Ahmad F, Tabassum N. Experimental models used for the study of
antihepatotoxic agents. Journal of Acute Disease. 2012;1(2):85-9.
https://doi.org/10.1016/S2221-6189(13)60021-9.
28. Delgado-Montemayor C, Cordero-Pérez P, Salazar-Aranda R,
Waksman-Minsky N. Models of hepatoprotective activity assessment.
Medicina universitaria. 2015;17(69):222-8.
https://doi.org/10.1016/j.rmu.2015.10.002.
29. Ilaiyaraja N, Khanum F. Amelioration of alcohol-induced
hepatotoxicity and oxidative stress in rats by Acorus calamus. Journal
of Dietary Supplements. 2011;8(4):331-45.
https://doi.org/10.3109/19390211.2011.615805.
30. Gao B, Seki E, Brenner DA, Friedman S, Cohen JI, Nagy L, et al.
Innate immunity in alcoholic liver disease. American Journal of
Physiology-Gastrointestinal and Liver Physiology. 2011;300(4):G516-G25.
https://doi.org/10.1152/ajpgi.00537.2010.
31. Simeonova R, Kondeva-Burdina M, Vitcheva V, Mitcheva M. Some in
vitro/in vivo chemically-induced experimental models of liver oxidative
stress in rats. BioMed research international. 2014;20-26.
https://doi.org/10.1155/2014/706302.
32. Jaeschke H, Gores GJ, Cederbaum AI, Hinson JA, Pessayre D, Lemasters
JJ. Mechanisms of hepatotoxicity. Toxicological sciences.
2002;65(2):166-76. https://doi.org/10.1093/toxsci/65.2.166.
33. Moustafa AHA, Ali EMM, Moselhey SS, Tousson E, El-Said KS. Effect of
coriander on thioacetamide-induced hepatotoxicity in rats. Toxicology
and industrial health. 2014;30(7):621-9.
https://doi.org/10.1177/0748233712462470.
34. Akhtar T, Sheikh N. An overview of thioacetamide-induced
hepatotoxicity. Toxin Reviews. 2013;32(3):43-6.
https://doi.org/10.3109/15569543.2013.805144.
35. Low TY, Leow CK, Salto‐Tellez M, Chung MC. A proteomic analysis of
thioacetamide‐induced hepatotoxicity and cirrhosis in rat livers.
Proteomics. 2004;4(12):3960-74.
https://doi.org/10.1002/pmic.200400852.
36. Chooi KF, Rajendran DBK, Phang SSG, Toh HHA. The dimethylnitrosamine
induced liver fibrosis model in the rat. JoVE (Journal of Visualized
Experiments). 2016(112):e54208. https://doi.org/10.3791/54208.
37. Kitamura K, Nakamoto Y, Akiyama M, Fujii C, Kondo T, Kobayashi K, et
al. Pathogenic roles of tumor necrosis factor receptor p55–mediated
signals in dimethylnitrosamine-induced murine Liver fibrosis. Laboratory
investigation. 2002;82(5):571-84.
https://doi.org/10.1038/labinvest.3780452.
38. Ding Z, Zhuo L. Attenuation of hepatic fibrosis by an imidazolium
salt in thioacetamide‐induced mouse model. Journal of gastroenterology
and hepatology. 2013;28(1):188-201.
https://doi.org/10.1111/j.1440-1746.2012.07265.x.
39. Sharma A, Sharma V, Kansal L. Amelioration of lead-induced
hepatotoxicity by Allium sativum extracts in Swiss albino mice. Libyan
journal of Medicine. 2010;5(1).
https://doi.org/10.3402/ljm.v5i0.4621.
40. Sharma V, Pandey D. Protective role of Tinospora cordifolia against
lead-induced hepatotoxicity. Toxicology international. 2010;17(1):12.
https://doi.org/10.4103/0971-6580.68343.
41. El-Nekeety AA, El-Kady AA, Soliman MS, Hassan NS, Abdel-Wahhab MA.
Protective effect of Aquilegia vulgaris (L.) against lead
acetate-induced oxidative stress in rats. Food and chemical toxicology.
2009;47(9):2209-15. https://doi.org/10.1016/j.fct.2009.06.019.
42. Ganai AA, Husain M. Genistein attenuates D-GalN induced liver
fibrosis/chronic liver damage in rats by blocking the TGF-β/Smad
signaling pathways. Chemico-biological interactions. 2017;261:80-5.
https://doi.org/10.1016/j.cbi.2016.11.022.
43. Tekkesin N, Taga Y, Sav A, Almaata I, İbrisim D. Induction of HGF
and VEGF in hepatic regeneration after hepatotoxin-induced cirrhosis in
mice. Hepatogastroenterology. 2011;58(107-108):971-9. PMID: 21830426
44. Ganai AA, Ganaie IA, Verma N, Farooqi H. Regression of
fibrosis/cirrhosis by Glycine propionyl-l-carnitine treatment in
d-Galactosamine induced chronic liver damage. Chemico-Biological
Interactions. 2016;260:117-28.
https://doi.org/10.1016/j.cbi.2016.11.008.
45. Pan Y, Cao M, You D, Qin G, Liu Z. Research progress on the animal
models of drug-induced liver injury: current status and further
perspectives. BioMed Research International. 2019;2019.
https://doi.org/10.1155/2019/1283824.
46. Taguchi K, Tokuno M, Yamasaki K, Kadowaki D, Seo H, Otagiri M.
Establishment of a model of acetaminophen-induced hepatotoxicity in
different weekly-aged ICR mice. Laboratory animals. 2015;49(4):294-301.
https://doi.org/10.1177/0023677215573041.
47. Jaeschke H, Xie Y, McGill MR. Acetaminophen-induced liver injury:
from animal models to humans. Journal of clinical and translational
hepatology. 2014;2(3):153. PMID: 26355817.
48. Ni HM, Bockus A, Boggess N, Jaeschke H, Ding WX. Activation of
autophagy protects against acetaminophen‐induced hepatotoxicity.
Hepatology. 2012;55(1):222-32. https://doi.org/10.1002/hep.24690.
49. Boelsterli UA, Lee KK. Mechanisms of isoniazid‐induced idiosyncratic
liver injury: Emerging role of mitochondrial stress. Journal of
gastroenterology and hepatology. 2014;29(4):678-87.
https://doi.org/10.1111/jgh.12516.
50. Metushi IG, Nakagawa T, Uetrecht J. Direct oxidation and covalent
binding of isoniazid to rodent liver and human hepatic microsomes:
humans are more like mice than rats. Chemical research in toxicology.
2012;25(11):2567-76. https://doi.org/10.1021/tx300341r.
51. Metushi IG, Uetrecht J. Isoniazid-induced liver injury and immune
response in mice. Journal of immunotoxicology. 2014;11(4):383-92.
https://doi.org/10.3109/1547691X.2013.860644.
52. Nwidu LL, Teme RE. Hot aqueous leaf extract of Lasianthera africana
(Icacinaceae) attenuates rifampicin-isoniazid-induced hepatotoxicity.
Journal of integrative medicine. 2018;16(4):263-72.
https://doi.org/10.1016/j.joim.2018.05.001.
53. Guo YX, Xu XF, Zhang QZ, Li C, Deng Y, Jiang P, et al. The
inhibition of hepatic bile acids transporters Ntcp and Bsep is involved
in the pathogenesis of isoniazid/rifampicin-induced hepatotoxicity.
Toxicology mechanisms and methods. 2015;25(5):382-7.
https://doi.org/10.3109/15376516.2015.1033074.
54. Yao X-M, Li Y, Li H-W, Cheng X-Y, Lin A-B, Qu J-G. Bicyclol
attenuates tetracycline-induced fatty liver associated with inhibition
of hepatic ER stress and apoptosis in mice. Canadian Journal of
Physiology and Pharmacology. 2016;94(1):1-8.
https://doi.org/10.1139/cjpp-2015-0074.
55. Deng Z, Yan S, Hu H, Duan Z, Yin L, Liao S, et al. Proteomic profile
of carbonylated proteins in rat liver: Discovering possible mechanisms
for tetracycline‐induced steatosis. Proteomics. 2015;15(1):148-59.
https://doi.org/10.1002/pmic.201400115.
56. Choi Y-J, Lee C-H, Lee K-Y, Jung S-H, Lee B-H. Increased Hepatic
Fatty Acid Uptake and Esterification Contribute to Tetracycline-Induced
Steatosis in Mice. Toxicological Sciences. 2015;145(2):273-82.
https://doi.org/10.1093/toxsci/kfv049.
57. Liu X, Huang D, Lai C, Zeng G, Qin L, Zhang C, et al. Recent
advances in sensors for tetracycline antibiotics and their applications.
TrAC Trends in Analytical Chemistry. 2018;109:260-74.
https://doi.org/10.1016/j.trac.2018.10.011.
58. Dewanjee S, Joardar S, Bhattacharjee N, Dua TK, Das S, Kalita J, et
al. Edible leaf extract of Ipomoea aquatica Forssk.(Convolvulaceae)
attenuates doxorubicin-induced liver injury via inhibiting oxidative
impairment, MAPK activation and intrinsic pathway of apoptosis. Food and
Chemical Toxicology. 2017;105:322-36.
https://doi.org/10.1016/j.fct.2017.05.002.
59. Sakr SA, Abo-El-Yazid SM. Effect of fenugreek seed extract on
adriamycin-induced hepatotoxicity and oxidative stress in albino rats.
Toxicology and Industrial Health. 2012;28(10):876-85.
https://doi.org/10.1177/0748233711425076.
60. Prasanna PL, Renu K, Valsala Gopalakrishnan A. New molecular and
biochemical insights of doxorubicin-induced hepatotoxicity. Life
Sciences. 2020;250:117599.
https://doi.org/10.1016/j.lfs.2020.117599.
61. Spallarossa P, Garibaldi S, Altieri P, Fabbi P, Manca V, Nasti S, et
al. Carvedilol prevents doxorubicin-induced free radical release and
apoptosis in cardiomyocytes in vitro. Journal of molecular and cellular
cardiology. 2004;37(4):837-46.
https://doi.org/10.1016/j.yjmcc.2004.05.024.
62. Cohen SM, Lippard SJ. Cisplatin: From DNA damage to cancer
chemotherapy, Progress in Nucleic Acid Research and Molecular Biology,
Academic Press, 67, 2001,
93-130,https://doi.org/10.1016/S0079-6603(01)67026-0.
63. Karadeniz A, Simsek N, Karakus E, Yildirim S, Kara A, Can I, et al.
Royal jelly modulates oxidative stress and apoptosis in liver and
kidneys of rats treated with cisplatin. Oxidative Medicine and Cellular
Longevity, vol. 2011, Article ID 981793, 10 pages, 2011.
https://doi.org/10.1155/2011/981793.
64. Naqshbandi A, Khan W, Rizwan S, Khan F. Studies on the protective
effect of flaxseed oil on cisplatin-induced hepatotoxicity. Human &
experimental toxicology. 2012;31(4):364-75.
https://doi.org/10.1177/0960327111432502.
65. Abbasnezhad A, Salami F, Mohebbati R. A review: Systematic research
approach on toxicity model of liver and kidney in laboratory animals.
Animal Model Exp Med. 2022;5(5):436-44.
https://doi.org/10.1002/ame2.12230.
66. El-Beshbishy HA. Lipoic acid attenuates DNA fragmentation, oxidative
stress and liver injury induced by tamoxifen in rats. Traditional Asian
medicine. 2007;2(5):175-88.
http://asianjtm.syphu.edu.cn/CN/Y2007/V2/I5/175.
67. Albukhari AA, Gashlan HM, El-Beshbishy HA, Nagy AA, Abdel-Naim AB.
Caffeic acid phenethyl ester protects against tamoxifen-induced
hepatotoxicity in rats. Food and Chemical Toxicology.
2009;47(7):1689-95. https://doi.org/10.1016/j.fct.2009.04.021.
68. Björnsson E. Hepatotoxicity associated with antiepileptic drugs.
Acta Neurologica Scandinavica. 2008;118(5):281-90.
https://doi.org/10.1111/j.1600-0404.2008.01009.x.
69. Higuchi S, Yano A, Takai S, Tsuneyama K, Fukami T, Nakajima M, et
al. Metabolic activation and inflammation reactions involved in
carbamazepine-induced liver injury. Toxicological sciences.
2012;130(1):4-16. https://doi.org/10.1093/toxsci/kfs222.
70. Fricke-Galindo I, LLerena A, Jung-Cook H, López-López M.
Carbamazepine adverse drug reactions. Expert review of clinical
pharmacology. 2018;11(7):705-18.
https://doi.org/10.1080/17512433.2018.1486707.
71. Henry TR. The history of valproate in clinical neuroscience.
Psychopharmacology bulletin. 2003;37:5-16. PMID: 14624229.
72. Sokmen BB, Tunali S, Yanardag R. Effects of vitamin U (S-methyl
methionine sulphonium chloride) on valproic acid induced liver injury in
rats. Food and Chemical Toxicology. 2012;50(10):3562-6.
https://doi.org/10.1016/j.fct.2012.07.056.
73. Tong V, Teng XW, Chang TK, Abbott FS. Valproic acid I: time course
of lipid peroxidation biomarkers, liver toxicity, and valproic acid
metabolite levels in rats. Toxicological Sciences. 2005;86(2):427-35.
https://doi.org/10.1093/toxsci/kfi184.
74. Behl M, Nyska A, Chhabra RS, Travlos GS, Fomby LM, Sparrow BR, et
al. Liver toxicity and carcinogenicity in F344/N rats and B6C3F1 mice
exposed to Kava Kava. Food and chemical toxicology. 2011;49(11):2820-9.
https://doi.org/10.1016/j.fct.2011.07.067.
75. Pinazo-Bandera JM, García-Cortés M, Segovia-Zafra A, Lucena MI,
Andrade RJ. Recreational Drugs and the Risk of Hepatocellular Carcinoma.
Cancers (Basel). 2022;14(21).
https://doi.org/10.3390/cancers14215395.
76. Anstee QM, Goldin RD. Mouse models in non‐alcoholic fatty liver
disease and steatohepatitis research. International journal of
experimental pathology. 2006;87(1):1-16.
https://doi.org/10.1111/j.0959-9673.2006.00465.x.
77. Jahn D, Kircher S, Hermanns HM, Geier A. Animal models of NAFLD from
a hepatologist’s point of view. Biochimica et Biophysica Acta
(BBA)-Molecular Basis of Disease. 2019;1865(5):943-53.
https://doi.org/10.1016/j.bbadis.2018.06.023.
78. Bertola A. Rodent models of fatty liver diseases. Liver Research.
2018;2(1):3-13. https://doi.org/10.1016/j.livres.2018.03.001.
79. Santhekadur PK, Kumar DP, Sanyal AJ. Preclinical models of
non-alcoholic fatty liver disease. Journal of hepatology.
2018;68(2):230-7. https://doi.org/10.1016/j.jhep.2017.10.031.
80. Ge X, Antoine DJ, Lu Y, Arriazu E, Leung T-M, Klepper AL, et al.
High mobility group box-1 (HMGB1) participates in the pathogenesis of
alcoholic liver disease (ALD). Journal of Biological Chemistry.
2014;289(33):22672-91. https://doi.org/10.1074/jbc.M114.552141.
81. Karaa A, Thompson KJ, McKillop IH, Clemens MG, Schrum LW.
S-adenosyl-L-methionine attenuates oxidative stress and hepatic stellate
cell activation in an ethanol-LPS-induced fibrotic rat model. Shock.
2008;30(2):197-205.
https://doi.org/10.1097/shk.0b013e318160f417.
82. Mueller S, Millonig G, Seitz HK. Alcoholic liver disease and
hepatitis C: a frequently underestimated combination. World journal of
gastroenterology: WJG. 2009;15(28):3462.
https://doi.org/10.3748/wjg.15.3462.
83. Aroor AR, Jackson DE, Shukla SD. Elevated Activation of ERK1 and
ERK2 Accompany Enhanced Liver Injury Following Alcohol Binge in
Chronically Ethanol-Fed Rats. Alcoholism: Clinical and Experimental
Research. 2011;35(12):2128-38.
https://doi.org/10.1111/j.1530-0277.2011.01577.x.
84. Ohashi T, Nakade Y, Ibusuki M, Kitano R, Yamauchi T, Kimoto S, et
al. Conophylline inhibits high fat diet-induced non-alcoholic fatty
liver disease in mice. PLoS One. 2019;14(1):e0210068.
https://doi.org/10.1371/journal.pone.0210068.
85. Zhong F, Zhou X, Xu J, Gao L. Rodent models of nonalcoholic fatty
liver disease. Digestion. 2020;101(5):522-35.
https://doi.org/10.1159/000501851.
86. Jensen VS, Hvid H, Damgaard J, Nygaard H, Ingvorsen C, Wulff EM, et
al. Dietary fat stimulates development of NAFLD more potently than
dietary fructose in Sprague–Dawley rats. Diabetology & metabolic
syndrome. 2018;10(1):1-13.
https://doi.org/10.1186/s13098-018-0307-8.
87. Asgharpour A, Cazanave SC, Pacana T, Seneshaw M, Vincent R, Banini
BA, et al. A diet-induced animal model of non-alcoholic fatty liver
disease and hepatocellular cancer. Journal of Hepatology.
2016;65(3):579-88. https://doi.org/10.1016/j.jhep.2016.05.005.
88. Hansen HH, Feigh M, Veidal SS, Rigbolt KT, Vrang N, Fosgerau K.
Mouse models of nonalcoholic steatohepatitis in preclinical drug
development. Drug Discovery Today. 2017;22(11):1707-18.
https://doi.org/10.1016/j.drudis.2017.06.007.
89. Nevzorova YA, Boyer-Diaz Z, Cubero FJ, Gracia-Sancho J. Animal
models for liver disease–A practical approach for translational
research. Journal of hepatology. 2020;73(2):423-40.
https://doi.org/10.1016/j.jhep.2020.04.011.
90. Kawasaki T, Igarashi K, Koeda T, Sugimoto K, Nakagawa K, Hayashi S,
et al. Rats fed fructose-enriched diets have characteristics of
nonalcoholic hepatic steatosis. The Journal of nutrition.
2009;139(11):2067-71. https://doi.org/10.3945/jn.109.105858.
91. Nanji AA. Animal models of nonalcoholic fatty liver disease and
steatohepatitis. Clinics in liver disease. 2004;8(3):559-74.
https://doi.org/10.1016/j.cld.2004.04.002.
92. D’Souza El‐Guindy NB, Kovacs EJ, De Witte P, Spies C, Littleton JM,
De Villiers WJ, et al. Laboratory models available to study
alcohol‐induced organ damage and immune variations: choosing the
appropriate model. Alcoholism: Clinical and Experimental Research.
2010;34(9):1489-511.
https://doi.org/10.1111/j.1530-0277.2010.01234.x.
93. Thiele TE, Crabbe JC, Boehm SL. “Drinking in the Dark”(DID): a
simple mouse model of binge‐like alcohol intake. Current protocols in
neuroscience. 2014;68(1):9.49. 1-9.12.
https://doi.org/10.1002/0471142301.ns0949s68.
94. Bakiri L, Wagner EF. Mouse models for liver cancer. Molecular
oncology. 2013;7(2):206-23.
https://doi.org/10.1016/j.molonc.2013.01.005.
95. Lamas-Paz A, Hao F, Nelson LJ, Vázquez MT, Canals S, Del Moral MG,
et al. Alcoholic liver disease: Utility of animal models. World journal
of gastroenterology. 2018;24(45):5063.
http://dx.doi.org/10.3748/wjg.v24.i45.5063.
96. McCaskill ML, Hottor HT, Sapkota M, Wyatt TA. Dietary diallyl
disulfide supplementation attenuates ethanol-mediated pulmonary vitamin
D speciate depletion in C57Bl/6 mice. BMC nutrition. 2015;1(1):1-10.
https://doi.org/10.1186/s40795-015-0012-z.
97. Liangpunsakul S, Rahmini Y, Ross RA, Zhao Z, Xu Y, Crabb DW.
Imipramine blocks ethanol-induced ASMase activation, ceramide
generation, and PP2A activation, and ameliorates hepatic steatosis in
ethanol-fed mice. American Journal of Physiology-Gastrointestinal and
Liver Physiology. 2012;302(5):G515-G23.
https://doi.org/10.1152/ajpgi.00455.2011.
98. Georgiev P, Jochum W, Heinrich S, Jang J, Nocito A, Dahm F, et al.
Characterization of time-related changes after experimental bile duct
ligation. Journal of British Surgery. 2008;95(5):646-56.
https://doi.org/10.1002/bjs.6050.
99. Heinrich S, Georgiev P, Weber A, Vergopoulos A, Graf R, Clavien P-A.
Partial bile duct ligation in mice: a novel model of acute cholestasis.
Surgery. 2011;149(3):445-51.
https://doi.org/10.1016/j.surg.2010.07.046.
100. Aller MA, Duran M, Ortega L, Arias JL, Nava MP, Prieto I, et al.
Comparative study of macro‐and microsurgical extrahepatic cholestasis in
the rat. Microsurgery: Official Journal of the International
Microsurgical Society and the European Federation of Societies for
Microsurgery. 2004;24(6):442-7.
https://doi.org/10.1002/micr.10153.
101. Aller M, Nava M, Arias J, Durán M, Prieto I, Llamas M, et al.
Microsurgical extrahepatic cholestasis in the rat: a long-term study.
Journal of Investigative Surgery. 2004;17(2):99-104.
https://doi.org/10.1080/08941930490422537.
102. Schreiber RA, Kleinman RE, Barksdale Jr EM, Maganaro TF, Donahoe
PK. Rejection of murine congenic bile ducts: a model for immune-mediated
bile duct disease. Gastroenterology. 1992;102(3):924-30.
https://doi.org/10.1016/0016-5085(92)90178-2.
103. Petersen M, Drews U, Schweizer P. Induction of bile ducts in
embryonic liver by mesenchyme: a new perspective for the treatment of
biliary atresia? European journal of pediatric surgery.
2001;11(06):382-90. https://doi.org/10.1055/s-2001-19731.
104. Pan Y, Cao M, You D, Qin G, Liu Z. Research Progress on the Animal
Models of Drug-Induced Liver Injury: Current Status and Further
Perspectives. BioMed Research International. 2019;2019:1283824.
https://doi.org/10.1155/2019/1283824.
105. Prior N, Inacio P, Huch M. Liver organoids: from basic research to
therapeutic applications. Gut. 2019;68(12):2228-37.
http://dx.doi.org/10.1136/gutjnl-2019-319256.
106. Brown ZJ, Heinrich B, Greten TF. Mouse models of hepatocellular
carcinoma: an overview and highlights for immunotherapy research. Nature
Reviews Gastroenterology & Hepatology. 2018;15(9):536-54.
https://doi.org/10.1038/s41575-018-0033-6.
107. Palma E, Doornebal EJ, Chokshi S. Precision-cut liver slices: a
versatile tool to advance liver research. Hepatology International.
2019;13(1):51-7. https://doi.org/10.1007/s12072-018-9913-7.
108. Underhill GH, Khetani SR. Bioengineered Liver Models for Drug
Testing and Cell Differentiation Studies. Cellular and Molecular
Gastroenterology and Hepatology. 2018;5(3):426-39.e1.
https://doi.org/10.1016/j.jcmgh.2017.11.012.