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Abstract14

Differences among total solar irradiance (TSI) estimates are most pronounced during the15

so-called “ACRIM Gap” of 1989–1991, when available satellite observations disagree in16

trend and no observations exist from satellites with on-board calibration. Different ap-17

proaches to bias-correcting noisy satellite observations lead to discrepancies of up to 0.718

W/m2 in the change in TSI during the Gap. Using a Bayesian hierarchical model for To-19

tal Solar Irradiance (BTSI), we jointly infer TSI during the ACRIM Gap from satellite20

observations and proxies of solar activity. In addition, BTSI yields estimates of noise and21

drift in satellite observations and calibration for proxy records. We find that TSI across22

the ACRIM Gap changes by only 0.01 W/m2, with a 95% confidence interval of [-0.07,23

0.09] W/m2. Our results are consistent with the PMOD CPMDF and Community Con-24

sensus TSI reconstructions and inconsistent with the 0.7 W/m2 trend reported in the25

ACRIM composite reconstruction. Constraints on the trend across the ACRIM Gap are26

primarily obtained through constraints on the drift in the Nimbus-7 satellite that are af-27

forded by overlapping satellite and proxy observations.28

Plain Language Summary29

Total solar irradiance is a measure of the solar power per unit area received by Earth30

from the Sun. Accurately estimating total solar irradiance, and its variations, has been31

a longstanding methodological challenge due to the difficulty of correcting for satellite32

observations of total solar irradiance, especially during periods without many overlap-33

ping observers for comparison, such as during the so-called “ACRIM Gap” of 1989–199134

when no satellites with on-board calibration were observing total solar irradiance. We35

demonstrate the effectiveness of a Bayesian statistical model in objectively correcting36

satellite error during the ACRIM Gap by simultaneously taking in observations from both37

satellites and indirect measures of total solar irradiance such as sunspot number. This38

model is the first to simultaneously correct and use direct and indirect observations to39

reconstruct total solar irradiance. The results of the model are consistent with some past40

reconstructions of total solar irradiance in finding little or no change in irradiance dur-41

ing the ACRIM Gap, contrary to the ACRIM composite that estimated a large increase42

over this period.43

1 Introduction44

Direct measurements of total solar irradiance (TSI) from space borne instruments45

began in 1978. These satellite observations are necessary to determine the structure and46

magnitude of TSI variation in time, and have been used to produce several TSI recon-47

struction products (e.g. Yeo et al., 2014; Coddington et al., 2016; Dudok de Wit et al.,48

2017; Yeo et al., 2017; Dewitte et al., 2022). A significant source of uncertainty over the49

satellite TSI era, however, is the so-called ACRIM Gap, when observations from the Ac-50

tive Cavity Radiometer Irradiance Monitoring experiments are unavailable for 27 months51

between 1989–1991. During the ACRIM Gap, TSI observations are only reported by the52

Earth Radiation Budget Satellite (ERBS) and Nimbus-7, two satellites without on-board53

calibration for instrumental drift. Furthermore, Nimbus-7 shows an upward trend from54

1989 to 1991, whereas ERBS shows a downward trend, and it has been unclear what cor-55

rections should be made to either satellite record (Lockwood & Fröhlich, 2008; Scafetta56

et al., 2019).57

Following from the discrepancies in the underlying data, estimates of TSI trends58

from satellite observations differ according to methodological choices. The assessed change59

in TSI across the the ACRIM Gap is 0.71 W/m2 in the ACRIM TSI composite (Willson,60

1997; Willson & Mordvinov, 2003; Scafetta & Willson, 2019), where we define TSI change61

in the ACRIM Gap as the difference between mean TSI in the 365 days after the ACRIM62

Gap and mean TSI in the 365 days before the ACRIM Gap. The ACRIM composite es-63
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timates TSI during the gap by relying upon the Nimbus-7 experiment to serve as a com-64

mon comparison-point for the ACRIM1 and ACRIM2 missions whose observations form65

the basis for the majority of the ACRIM composite.66

In contrast, the change in TSI over the ACRIM Gap in the latest estimates from67

the Composite Physikalisch-Meteorologisches Observatorium Davos - Data Fusion (CP-68

MDF, (Montillet et al., 2022)) and the Community Consensus TSI Composite (Dudok de69

Wit et al., 2017) is approximately zero. The CPMDF reconstruction pre-processes ERBS,70

Nimbus-7, ACRIM1, and ACRIM2 data using corrections by Fröhlich (2006), then av-71

erages several composites of TSI created using a Gaussian process regression upon the72

pre-processed satellite data. The Community Consensus TSI Composite uses a wavelet-73

based analysis to infill missing data from individual satellite records and then combines74

these records using an expectation-maximization approach (Dudok de Wit et al., 2017).75

Notably, these foregoing approaches do not permit for correcting time-evolving satellite76

errors that are evident from the disagreeing trends shown by satellites (Scafetta & Will-77

son, 2019; Lockwood & Ball, 2020).78

Another approach to assessing TSI change during the ACRIM Gap is to first es-79

timate a relationship between TSI and proxies, such as sunspots and Mg-II core-to-wing80

ratios, then correct for satellites based upon the divergence of satellite observations from81

proxy models (Krivova et al., 2009; Scafetta & Willson, 2009; Gueymard, 2018; Woods82

et al., 2018). Such an approach to calibrating TSI proxies, however, risks missing a sec-83

ular change in TSI that may not be accounted for by proxies, which are often floored dur-84

ing solar cycle minima (Scafetta et al., 2019). As a result, the ACRIM composite team85

argues that in the absence of evidence that explicitly rejects the observations of the Nimbus-86

7 satellite, those observations should be used as published by the original mission sci-87

entists (Scafetta & Willson, 2014).88

Our approach shares similarities with the proxy correction approach, but where cal-89

ibration of the proxy and satellite drift corrections are simultaneously and objectively90

estimated through a Bayesian hierarchical model. Such an approach was previously rec-91

ommended by Dudok de Wit et al. (2017):92

One obvious, but mathematically demanding improvement [to current reconstruc-93

tions], is to move from a maximum-likelihood approach to a Bayesian one (e.g.,94

(Tingley et al., 2012)). This would provide a more natural way of merging ob-95

servations that scale differently to each other, such as the Mg-II core-to-wing in-96

dex or the sunspot number record.97

More specifically, we combine satellite and proxy observations together in a framework98

that is similar to that of Tingley and Huybers (2010) but where time-evolving TSI is es-99

timated using a Bayesian Kalman filter.100

2 Data101

Because our model design is predicated upon the nature of available observations,102

we first describe the data. For June 1984 through October 1996, a period spanning the103

five years before and after the ACRIM Gap, we draw from a combination of direct satel-104

lite observations of TSI and indirect magnetic activity proxies (Fig. 3 (a) and (b)). Di-105

rect TSI observations are from the five satellite observing platforms whose data are pub-106

licly available and commonly used in TSI reconstructions, namely: Nimbus-7/HF (Hoyt107

et al., 1992), ACRIM1/SMM (version 1) (Willson & Hudson, 1991), ERBS/ERBE (Lee108

et al., 1987), ACRIM2/UARS (Pap et al., 1994), and SOHO/VIRGO A+B fused TSI109

(version v8-2022-1-5) (Finsterle et al., 2021).110
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Figure 1. BTSI diagram. TSI (xt) is represented as an auto-regressive order two process

that is not directly observable (gray hidden layer). The Carter Kohn algorithm employed in

BTSI uses information from across the entire time series in drawing from the conditional poste-

rior distribution, hence the forward and backward arrows connecting the discrete times for which

x is represented. An observation model including inferred noise and bias characteristics for each

observer maps xt into satellite observations (yt,s) and proxy observations (yt,p).

Two proxies for TSI are used in addition to direct satellite observations: the com-111

posite Mg-II index from the University of Bremen (version 5) (Viereck et al., 2001) and112

SILSO (Sunspot Index and Long-term Solar Observations) international sunspot num-113

ber (version 2) (SILSO World Data Center, 1984-1996). To mitigate potential issues due114

to matrix operations on ill-conditioned matrices, the proxy data are normalized, scal-115

ing each variable to have a mean of zero and a standard deviation of one. Here, we re-116

port the posterior estimates of proxy parameters after rescaling back to original units.117

These datasets are available at daily resolution, or bi-weekly for the ERBS/ERBE118

mission. Unless otherwise specified, we use the published dataset indicated as best ac-119

counting for instrumental bias and error. Observations are block-averaged to monthly120

resolution to facilitate computation and to focus on longer-term trends in the data, re-121

sulting in an observation array with 149 rows and 7 columns of monthly observations.122

To test the possibility of monthly data aliasing high-frequency TSI variability, we also123

ran BTSI using observations averaged over 27-day Carrington periods, but with no re-124

sulting qualitative difference in our findings relative to using monthly periods.125

3 Methodology126

Our Bayesian hierarchical model for Total Solar Irradiance, BTSI, infers TSI through127

a hierarchical, two-layer approach (Fig. 1). We first describe the layer representing the128

observations, which involves different representations for the proxy and direct satellite129

observations. The second layer represents the hidden, evolving value of TSI over time,130

and involves the use of a Kalman filter.131
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3.1 Observation Models132

The first layer of BTSI relates observations to the underlying time-series of TSI.133

An observation from satellite s at time step t is represented as:134

yt,s =
[
as 1 cs

]︸ ︷︷ ︸
Hs

 1
xt

τt,s


︸ ︷︷ ︸

Zt

+ϵt,s. (1)135

The observation matrix (Hs) and predictor matrix (Zt) combine to represent the expec-136

tation of yt,s as the sum of a constant offset (as), TSI (xt), and a linear drift in time (csτt,s).137

The time trend (τt,s) is taken as the age of the satellite since its initial published obser-138

vation. The values of TSI used for xt correspond to the most recently updated estimate,139

which is obtained from the other layer in the hierarchy. Model TSI is initialized with the140

simple mean of de-meaned satellite TSI observations, and the first 500 iterations of the141

model are discarded to remove sensitivity to initial conditions.142

The satellite offset term, as, is motivated by physical differences in aperture con-143

struction for TSI observing instruments over time. Since the launch of the Nimbus-7/HF144

instrument in 1978, estimates of the baseline solar constant have changed markedly as145

updated instruments have been launched, from an initial estimate of 1376 W/m2 (Hickey146

et al., 1980) to a most recent estimate of 1360.8 W/m2 (Kopp & Lean, 2011). In com-147

parison, solar-cycle magnitude varies on the order of 1 W/m2. The sources of offsets among148

satellites are well-described as a result of improvements in the apertures and cavities used149

for observations (Butler et al., 2008; Kopp & Lean, 2011). We report and plot TSI as150

an anomaly relative to the 1985–1995 mean because BTSI assesses relative offsets be-151

tween satellites. Note that if these satellite offsets also reflect scaling errors in TSI vari-152

ability measurements, estimating non-unitary scaling for satellite sensitivity to TSI would153

have only a slight effect, as (1376-1361)/1361 indicates that scaling errors are on the or-154

der of 1%.155

Linear drift in satellite observations of TSI are of first-order concern. We use a lin-156

ear drift term, csτt,s, to account for the harsh conditions of the space environment that157

can degrade space-borne TSI instruments over time (Kopp, 2014). Effects include so-158

lar degradation of the observing cavity, aperture degradation, and changes to the ther-159

mal background (Fröhlich, 2006; Kopp & Lean, 2011). These drifts have also been em-160

pirically observed through the direct inter-comparison of overlapping satellite missions161

and have been shown to be dominated by a linear component (Fröhlich, 2009; Willson,162

2014; Lockwood & Ball, 2020). Solar-exposure degradation can be corrected through re-163

dundant sensors, but there remain effects that can bias satellite observations. For ex-164

ample, two successive updates of TSI from the VIRGO (Variability of solar IRradiance165

and Gravity Oscillations) mission exhibited a trend difference of 0.14 W/m2 per decade166

(Kopp, 2016), and linear drifts of up to 0.5 W/m2 per decade are evident in satellite-167

satellite comparisons of instruments with onboard calibration (Lockwood & Ball, 2020).168

We report satellite drift cs in units of W/m2 per decade in order to provide a sense of169

the satellite drift that is inferred to occur over solar cycle timescales.170

Normal priors are assigned to the offset magnitude, as, and linear time-dependent171

drift scaling, cs. The prior expectation for the offset parameter as (µa0) is the simple172

average of the observations, relative to the average TSI of the ACRIM2 mission, whose173

instrument provides the longest record with on-board calibration in the interval exam-174

ined. σ2
a0 is set to 5 W/m2. We set the prior expected linear drift (µc0) to zero for each175

satellite, with prior uncertainty assigned a standard deviation of 0.5 W/m2 per decade,176

which is larger than the empirical estimates of satellite drift found in foregoing studies177

(Dewitte & Nevens, 2016; Woods et al., 2018). Whereas these priors constrain the search178

space to allow for convergent posterior estimates, they are also chosen to permit for a179

wide range of plausible trends. Lastly, for the satellites, BTSI specifies that observations,180
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yt,s, result from the sum of observation model predictions and Gaussian noise (ϵt,s), in181

keeping with Dudok de Wit et al. (2017) and Montillet et al. (2022).182

Similar to the satellites, an observation from proxy p at time step t is represented183

as,184

yt,p =
[
ap bp 0

]︸ ︷︷ ︸
Hp

 1
xt

τt,p


︸ ︷︷ ︸

Zt

+ϵt,p. (2)185

The proxy observation model differs from the satellite observation model in two respects.186

First, whereas we assume that satellites correctly scale the amplitude of TSI variations,187

the fact that proxies are not in units of TSI is accounted for by a scaling coefficient (bp).188

Combined with an offset term (ap), proxies are modeled as linearly dependent upon TSI,189

in keeping with a long history of this assumption (Lean et al., 1995; Lean, 2000; Fröhlich190

& Lean, 2004; Coddington et al., 2016). Although sunspots are directly causal of an im-191

mediate reduction of irradiance, on monthly and longer timescales they are highly cor-192

related with increased solar activity and thus TSI (Lean, 2000; Kopp et al., 2016), such193

that we expect bp to be positive on monthly timescales. When BTSI is run using only194

the Mg-II record, and not the sunspot record, there is no qualitative difference in results195

save greater overall uncertainty.196

The second distinction between the satellite and proxy observation models is that197

no time trend is included for sunspot and Mg-II observations. We are unaware of a phys-198

ical reason to assume a linear time-dependent drift in proxy observations. Although the199

Mg-II index is also derived from satellite data, it is calculated from a largely indepen-200

dent set of instruments, and its computation as a spectral ratio makes the index less sen-201

sitive to instrumental degradation effects (Thuillier et al., 2012).202

Normal priors are specified for proxy coefficients ap and bp. The priors for ampli-203

tude scaling, bp, are determined by regressing the proxy record upon the NRLTSI2 TSI204

reconstruction (Coddington et al., 2016) over the study interval. The expectation for bp205

(µb0) is the estimated regression coefficient, and the prior uncertainty (σb0) is a quar-206

ter the magnitude of µb0. The prior expectation for ap (µa0) is zero and prior uncertainty207

for ap (σa0) is half the magnitude of the scaling estimate, µb0. Gaussian noise (ϵp) is also208

fit for proxy observers. In practice, proxies tend to be noisier indicators of TSI than satel-209

lites with on-board calibration, resulting in BTSI generally down-weighting proxy con-210

tributions. Importantly, however, proxies allow for a stable reference by which satellite211

drifts can be inferred and corrected.212

3.2 Inferring Observation Model Parameters213

The parameter space of BTSI is sampled using a Markov Chain Monte Carlo Gibbs214

sampler. For each observer n, which can be either a satellite s or proxy p, a Bayesian215

regression is performed using observations and a preliminary estimate of TSI to infer the216

observation model, Hn, and noise parameters, ϵn. Specifically, under the assumption that217

residual errors in the model are Gaussian, posterior estimates of the model coefficient218

parameters, Hn, are made through the convolution of the parameter priors and the or-219

dinary least squares estimate for the coefficients based upon the data and predictors,220

 an
bn
cn


︸ ︷︷ ︸

Hn

∼ N

 ân
b̂n
ĉn

 ,Σn

 , (3)221
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where Σn is a covariance matrix for Hn. The expectation and covariance matrices of Hn

are defined as,  ân
b̂n
ĉn

 =

(
Σ−1

0n +
1

ϵ2n
Z⊺

nZn

)−1(
Σ−1

0nH0n +
1

ϵ2n
Z⊺

nyn

)
, (4)

222

Σn =

(
Σ−1

0n +
1

ϵ2n
Z⊺

nZn

)−1

. (5)223

Σ0n is a diagonal prior covariance matrix whose entries are populated by prior uncer-224

tainties, σ2
a0, σ

2
b0, and σ2

c0. H0n is the prior expectation for Hn, composed of µa0, µb0,225

and µc0 entries.226

ϵ2n is the estimate of observer uncertainty produced by the latest iteration of the227

Gibbs sampler. We follow common practice from Bayesian regression techniques and draw228

ϵn from the inverse-gamma distribution, with shape parameter, An, and scale param-229

eter, θn,230

ϵn ∼ Inv-Gamma

(
An

2
,
θn
2

)
. (6)231

Because the noise parameters, ϵn, are dependent upon a hidden TSI process and are thus232

difficult to constrain, stronger priors are needed than for the observation model coeffi-233

cients. An is assigned to be 4
3 times the number of observations by an observer, such that234

the prior estimate is assigned a third as much weight as observations in constraining the235

posterior estimate. For each satellite, the hyperprior (θ0s) (and thus the prior expecta-236

tion for ϵs) is established by finding the average variance of the residuals between that237

satellite and overlapping satellites and assigning half the observed pairwise variance to238

the satellite in question. Priors for ϵp are estimated from the average variance of the resid-239

uals of linear regression of contemporaneous satellite observations upon the proxy record.240

The posterior distribution of ϵn, for either satellites or proxies, is drawn from the241

inverse-gamma distribution, such that θn is obtained as,242

θn = θ0n + (yn − ŷn)
⊺
(yn − ŷn) . (7)243

ŷn is the observation model prediction of yn and is defined as ŷn = H⊺
nZn, where Zn244

is instantiated with the latest estimate for x. Thus, θn is the sum of the prior, θ0n, and245

the squared residuals between observations and predictions (Table 1).246

Table 1. Prior and posteriors for inverse-gamma parameters. Hyperparameters A0 and

θ0 parameterize inverse-gamma distributions for the prior observer errors. A0 are chosen such

that the prior has a third as much weight as observations, and θ0 for satellites are chosen such

that the prior distribution for ϵ20s is centered at half the mean observed residual variance for each

observer and overlapping observers.

Observer A0 | A θ0 | θ

Nimbus-7/HF
ACRIM1/SMM
ERBS/ERBE
ACRIM2/UARS
SOHO/VIRGO
Sunspot number
Mg-II index

35 | 139
21 | 82
48 | 190
21 | 82
3 | 12
50 | 199
50 | 199

1.8 | 10.4
0.6 | 1.3
3.1 | 19.0
0.7 | 2.5
0.1 | 0.3
1.1E5 | 2.2E5
4.7E-4 | 8.4E-4
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3.3 State-Space Model247

In the second, hidden layer of each Gibbs sampler iteration, values observed accord-248

ing to Eq. 1 and 2 are inverted to produce TSI estimates, x, through a Carter-Kohn Kalman249

filter algorithm.250

Given the complex structure of solar variability at all timescales from minutes to251

decades (Shapiro et al., 2017), we make the methodological choice to model TSI as an252

autoregressive order two process, with monthly to sub-monthly variability treated as noise.253

This autoregressive representation is meant to capture the autocorrelated and quasi-cyclic254

behavior of TSI with a minimum number of free parameters (Pankratz, 2012). We note255

that we find no qualitative change in results if we instead use an AR(1) or AR(3) model.256

The autoregressive order two representation of the time evolution of TSI anomalies is257

used to generate the prior expectation for TSI before concurrent observations are assim-258

ilated,259

x̂t = α1x
′
t−1 + α2x

′
t−2. (8)260

Along with a prior expectation (x̂t), we also generate a prior estimate of the vari-261

ance of the noise in the TSI estimate (ηt). Given that month-to-month changes in TSI262

are closely related to the phase of solar cycle activity, we model ηt as linearly dependent263

upon xt, the monthly TSI anomaly relative to the 11-year running mean of TSI,264

η̂t = q +mxt, (9)265

266

q ∼ N (µq, σ
2
q ), m ∼ N (µm, σ2

m), (10)267

where q and m are regression parameters for the intercept and slope, respectively, of the268

expectation of noise variance η̂t as a function of xt. The observations of ηt used to fit269

this regression are determined by finding the residuals between x and x̂ for the most re-270

cent estimate of x. The careful specification of priors for ηt is important, as a hidden layer271

model conditioned upon only the data is unable to discern between the TSI uncertainty272

implied in satellite TSI records versus proxy models of TSI that miss real components273

of solar variability, such as the added noise from superimposing sunspot darkening with274

facular brightening, and are thus more smoothly varying and autocorrelated. The pri-275

ors for q and m are estimated by fitting Eq. 9 to the monthly TSI innovations of the NRLTSI2276

TSI reconstruction over the 1984–1996 period and using the resulting likelihood distri-277

bution as a prior distribution (Table 2).278

This formulation for the hidden layer gives a time-varying estimate of TSI variabil-279

ity, including during sparse data intervals such as the ACRIM Gap. Because nearly half280

of observations in the study interval are from proxies that predict lower month-to-month281

variability than satellites, the posterior estimates of ηt are lower than the prior. These282

posterior estimates serve as caution against using BTSI for reconstruction of high fre-283

quency TSI variability: the average month-to-month autocorrelation of BTSI monthly284

estimates is r = 0.95, whereas the inferred month-to-month autocorrelations of the CP-285

MDF and ACRIM composite TSI records are r = 0.80 and r = 0.87, respectively. While286

the posterior TSI uncertainty of BTSI is inaccurate, autocorrelated process models for287

TSI have been successfully implemented in the past and high-frequency variability can288

be reintroduced in such models (Montillet et al., 2022). For the purposes of estimating289

the change in TSI over a longer period such as the ACRIM Gap, however, reintroduc-290

tion of high-frequency variability is unnecessary, as will be shown in Sec. 4.291

BTSI obtains a posterior distribution of xt, called x′
t, by updating the prior expec-292

tation, x̂t, with observations,293

x′
t = x̂t +

ns∑
s=1

Ks

(
yt,s − ŷt,s|x̂t

)
︸ ︷︷ ︸
sat.-based innovation

+

np∑
p=1

Kp

bp

(
yt,p − ŷt,p|x̂t

)
︸ ︷︷ ︸
proxy-based innovation

. (11)294
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Table 2. Prior and posterior estimates of state-space model parameters q and m

are in units of W/m2, while the α1 and α2 parameters are dimensionless. Note that while a

conjugate prior distribution is not specified for α1 or α2, we ensure stability of the model by

resampling α if |α| ≥ 1.

Parameter Prior [95% CI] Posterior [95% CI]

α1 – 0.92 [0.67, 1.17]
α2 – 0.05 [-0.19, 0.30]
q 0.0025 [0, 0.038] 0.015 [0, 0.026]
m 0.16 [0.11, 0.21] 0.07 [0.04, 0.11]

The last two groupings in Eq. 11 describe the adjustment of the prediction using observationally-295

derived estimates. The Kalman gains (Ks and Kp) are dimensionless values represent-296

ing the relative weighting of satellite and proxy data relative to x̂t, where weights increase297

with the inferred accuracy of an observer. The inclusion of bp in the last grouping re-298

flects a necessary conversion of proxy units to W/m2.299

3.4 Inferring State-Space Model Parameters300

For each realization of the Gibbs sampler, the first two autoregressive parameters301

(α1 and α2) are computed from the most recent estimate for the state vector, x,302 [
α1

α2

]
︸ ︷︷ ︸

α

∼ N
([

α̂1

α̂2

]
, Vα

)
. (12)303

The expectations α̂1 and α̂2 are determined from multiple linear regression of x upon304

lag-1 and lag-2 realizations of x, and Vα is a diagonal matrix whose nonzero entries are305

the scaled variance of the residuals of the autoregression model. Stability of the autore-306

gressive model is enforced by redrawing estimates of α1 and α2 if |α| ≥ 1.307

For satellites, the Kalman gain is calculated as a function of the prior TSI variance308

(vt) and observer error, ϵs:309

Ks = vt
(
vt + ϵ2s

)−1
. (13)310

For proxies, the Kalman gain must also consider the scaling of proxy units to those of311

TSI:312

Kp = b2pvt
(
b2pvt + ϵ2p

)−1
. (14)313

The prior for TSI variance, vt, is a covariance matrix containing the covariance struc-314

ture of xt and xt−1. vt carries over the posterior variance estimated for the last time step,315

v′t−1, and adds to the first diagonal entry the prior expectation of TSI variance at time316

step t, η2t :317

vt = α⊺vt−1α+ η2t . (15)318

Similar to the update for the expectation of TSI, the updated estimate of the TSI vari-319

ance (v′t) is found by updating the prior estimate of TSI variance according to the ob-320

servations:321

v′t = vt − vt

(
ns∑
s=1

Ks +

np∑
p=1

Kp

)
. (16)322

After one iteration of the Kalman filter is run for all time steps t = 1, 2, ..., T , the323

Carter-Kohn algorithm is used to efficiently sample from the posterior conditional dis-324

tribution for xt (Carter & Kohn, 1994). Because both observational and process noise325
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Table 3. Observer error structure used in synthetic TSI experiment. Observation

model parameters for an (in units of W/m2 for satellites) are randomly drawn from N (0, 0.5)

and added to the mean offset from the ACRIM2 average. Scaling for bp is estimated from re-

gression on the NRLTSI2 reconstruction, and cn (in units of W/m2 per decade) is assigned by

randomly permuting the linear drifts inferred by BTSI.

Observer an bn cn

Nimbus-7/HF 11.0 1 0.17
ACRIM1/SMM 6.3 1 0.62
ERBS/ERBE 4.1 1 -0.41
ACRIM2/UARS 4.2 1 0.08
SOHO/VIRGO -0.3 1 0.24
Sunspot number -42 145 0
Mg-II index -4.9E-3 0.013 0

is assumed to be Gaussian, the joint posterior distribution of TSI, conditional upon the326

data, p (x | y), is multivariate normal and can be factorized,327

p (x | y) = p (xT | y)
T−1∏
t=1

p (xt | xt+1,y) . (17)328

Once the Kalman filter is fully run forward such that the expectation and variance es-329

timates, x′
T and v′T , have been estimated for the final time step T , an estimate is drawn330

for the last time step xT from p (xT | y). Estimates are then sequentially drawn for t =331

T −1, ..., 1 in order to generate xt from p (xt | xt+1,y) for all time steps. The Carter-332

Kohn approach has been successfully implemented in many Bayesian Kalman filter mod-333

els, most prominently in monetary policy modeling by Bernanke et al. (2005). See Ch. 3334

of Blake et al. (2012) for a more-detailed walk through of the Carter-Kohn algorithm im-335

plementation used in BTSI.336

We run a Gibbs sampler for 10,500 iterations of the two-layer model on a single chain,337

discarding the first 500 iterations as a burn-in period. This approach leads to adequate338

sampling of the 149 monthly TSI parameters and 24 model parameters contained within339

BTSI. We assess the capability of a 10,000 iteration run to obtain a stable posterior marginal340

distribution by calculating the potential scale reduction metric (R̂). R̂ is an estimate of341

the factor by which the scale of the posterior distribution would be corrected by allow-342

ing the chains to fully range over the distributions if the number of iterations is allowed343

to approach infinity (Gelman et al., 2013). Running three initially-dispersed chains then344

splitting each chain in half to generate six intervals for comparison, we calculate that the345

potential scale reduction metric R̂ is between 1 and 1.015 for all parameters of interest346

when using a 10,000 iteration chain, suggesting that our posterior estimates are close to347

convergence with the exact posterior marginal distribution.348

4 Evaluation of Model through Synthetic Data Experiments349

We test the performance of BTSI under three scenarios for TSI history between350

1984 – 1996: that CPMDF represents true TSI anomalies (referred to as CPMDF-All),351

that the ACRIM composite is true (ACRIM-All), and a hybrid scenario where proxies352

record TSI anomalies from CPMDF but satellites record TSI from the ACRIM compos-353

ite (ACRIM-Satellite/CPMDF-Proxy). CPMDF-All represents a null case where essen-354

tially no secular change in TSI occurs during the ACRIM Gap, with TSI 0.02 W/m2 larger355

in the year after the gap compared to the year before. ACRIM-All, in contrast, repre-356
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Figure 2. BTSI inferred ACRIM Gap under three TSI scenarios. (a) Observer er-

ror structure of satellites used in all three scenarios. Solid lines indicate the offsets and linear

drifts imposed in all realizations of synthetic data, and dashed lines are an example of a single

synthetic dataset that includes AR(1) noise. BTSI is run upon 1000 synthetic datasets for each

of three scenarios and the resulting histograms of differences in TSI across the gap are shown

in (b). The three scenarios are for the ACRIM-All (blue), CPMDF-All (orange), and ACRIM-

Satellite/CPMDF-Proxy (dashed red) scenarios. The true gap magnitudes for the ACRIM-

All and CPMDF-All scenarios are shown by a vertical line. BTSI estimates of the ACRIM-

Satellite/CPMDF-Proxy ACRIM Gap are above the 95% level of the CPMDF-All scenario for all

1000 estimates.
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sents a TSI increase of 0.71 W/m2 in the year after the gap compared to the year be-357

fore. ACRIM-Satellite/CPMDF-Proxy represents a scenario wherein proxies function as358

a red herring: they are sensitive to solar cycle variability, but insensitive to inter-cycle359

variability in the true value of TSI that only satellites are able to record.360

To test each scenario, we produce synthetic datasets of observations using the ob-361

servation model framework given in Eqs. 1 and 2. Thus, synthetic satellite and proxy362

records are produced by multiplying an observation matrix Hn with a predictor matrix363

Zn instantiated with the TSI history from one of the three scenarios. To allow for sim-364

ple comparison, all synthetic datasets are initialized with the same set of observation ma-365

trices, H (Table 3).366

After realizing observation matrix parameters, we generate one thousand synthetic367

datasets of TSI for each scenario with the same coverage as the actual observational record,368

i.e. data gaps and observations occur at the same time as in the actual record. Each syn-369

thetic dataset is uniquely generated by adding random observer noise to the results from370

H⊺
nZn. Synthetic proxies are given Gaussian noise with variance equal to the noise vari-371

ance, ϵ2p, that BTSI infers for the proxy records. Synthetic satellite records are gener-372

ated by adding AR(1) noise, in keeping with the autocorrelation that has been empir-373

ically found in satellite residuals (Dudok de Wit et al., 2017). The AR(1) parameter for374

the satellite noise generation process is set to 0.34, the value we empirically estimate to375

be the AR(1) parameter of detrended residuals of overlapping satellite records from this376

time period. The variance of the AR(1) time series for each satellite is set to match the377

inferred noise variance, ϵ2s, BTSI infers for each satellite from real observations. The pres-378

ence of AR(1) noise in the synthetic satellite record differs from the observation model379

assumption of BTSI, wherein observational noise in satellites is assumed independent.380

By adding AR(1) noise, we test the ability of BTSI to accurately infer changes to TSI381

even in the event of autocorrelated noise in satellite observing instruments.382

For each synthetic dataset, we run BTSI and record the inferred magnitude of the383

change in TSI over the ACRIM Gap, as well as the 95% confidence interval of that es-384

timate provided by the model. The distribution of ACRIM Gap magnitudes inferred from385

the resulting 1000 BTSI runs are plotted as histograms (Fig. 2 (b)). BTSI distinguishes386

between the ACRIM-All and CPMDF-All scenarios in all cases. The mean and 95% range387

of CPMDF-All is 0.02 [-0.04, 0.09] W/m2, whereas it is 0.71 [0.60, 0.84] W/m2 for ACRIM-388

All. Both 95% ranges encompass the true change in TSI across the ACRIM Gap for their389

respective scenarios and exhibit no bias. The 95% confidence intervals estimated by BTSI390

exhibit good coverage, with 984/1000 of 95% confidence intervals in the CPMDF-All ex-391

periment and 944/1000 of the 95% confidence intervals in the ACRIM-All experiment392

inclusive of the true ACRIM Gap. This is due to the confidence intervals being closely393

aligned with the empirically-derived 95% range, with the average 95% confidence inter-394

val estimated as 0.17 W/m2 for CPMDF-All and 0.23 W/m2 for ACRIM-All, compared395

to the empirically-derived range of 0.14 W/m2 for the CPMDF-All experiment and 0.24396

W/m2 for ACRIM-All.397

The ACRIM-Satellite/CPMDF-Proxy scenario results illustrate the mechanics of398

how BTSI performs in practice. Because BTSI determines satellite drift through both399

satellite-satellite comparison and satellite-proxy comparison, information about a sec-400

ular change in TSI is still retained by the model through satellite comparison even in the401

event that the proxies contain no information about long-term TSI change. Thus, the402

estimate of the ACRIM Gap in this scenario is between the CPMDF-All and ACRIM-403

All scenarios (0.27 [0.18, 0.41] W/m2), consistent with BTSI assigning roughly equal weight404

to both satellite and proxy sources. The ACRIM-Satellite/CPMDF-Proxy scenario es-405

timates of the ACRIM-Gap are significantly displaced from the CPMDF-All scenario,406

with all 1000 BTSI estimates of the ACRIM-Satellite/CPMDF-Proxy scenario signifi-407

cantly different at the p = 0.05 level from the CPMDF-All estimates. This supports408

a conclusion that, even if proxies are not sensitive to a secular shift in TSI, no shift in409
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Table 4. Prior and posterior estimates of observation model parameters. Prior and

posterior maximum likelihoods are provided along with posterior 95% confidence intervals in

brackets. Priors are indicated by the subscripted 0, for example in a0s. Offsets, a0s and as, are

in units of W/m2 relative to a mean value of 1364.3 W/m2, as estimated from ACRIM2, which is

taken as a reference level. Proxy scalings, b0p and bp, are in units converting W/m2 to the units

of the observing index. Linear satellite drifts, c0s and cs, are in units of W/m2 per decade. For

proxies, each ϵp is scaled by bp such that both ϵs and ϵp are in units of W/m2.

Source a0s as b0s bs c0s cs ϵ0s ϵs

Nimbus-7/HF 7.8 7.5 [7.4, 7.6] 1 1 0 0.62 [0.37, 0.85] 0.2 0.27 [0.24, 0.31]
ACRIM1/SMM 3.0 3.0 [2.9, 3.1] 1 1 0 -0.41 [-0.71, -0.11] 0.23 0.13 [0.11, 0.16]
ERBS/ERBE 1.0 0.8 [0.8, 0.9] 1 1 0 0.17 [0.02, 0.33] 0.18 0.32[0.28, 0.35]
ACRIM2/UARS 0 0 (reference-level) 1 1 0 0.07 [-0.28, 0.43] 0.17 0.18 [ 0.15, 0.21]
SOHO/VIRGO -3.6 -3.3 [-3.5, -3.2] 1 1 0 0.24 [-0.75, 1.22] 0.23 0.15 [0.09, 0.26]

Source a0p ap b0p bp c0p cp ϵ0p ϵp

Sunspot number 89 66 [56, 76] 145 167 [150, 185] 0 0 0.33 0.20 [0.17, 0.23]
Mg-II index 0.16 0.16 [0.15, 0.16] 0.013 0.014[0.013, 0.016] 0 0 0.26 0.14 [0.12, 0.17]

long-term TSI of the magnitude proposed by the ACRIM composite occurred during the410

ACRIM Gap if BTSI estimates are consistent with zero change in TSI during the gap.411

The synthetic experiments lend confidence to applying BTSI to the actual set of obser-412

vations.413

5 Results of Application to Actual Observations414

Application of BTSI to our collection of satellite and proxy observations indicates415

minimal changes in TSI across the ACRIM Gap and strong evidence against the increase416

of 0.71 W/m2 indicated by the ACRIM composite. Specifically, TSI across the ACRIM417

Gap is estimated to increase slightly by 0.01 W/m2, with a 95% confidence interval of418

[-0.07, 0.09] W/m2 (Fig. 3 (c)). Specifically, the 95% confidence interval for the change419

in TSI during the ACRIM Gap encompasses the CPMDF and Community Consensus420

TSI Composite estimates and excludes the estimate from the ACRIM composite.421

Differing magnitudes of standard error are inferred among observing satellites (Fig. 4422

(c)). The ERBE and Nimbus-7 instruments have a median inferred standard error of 0.32423

and 0.27 W/m2, respectively, whereas the ACRIM1, ACRIM2, and SOHO satellites are424

inferred to have standard errors of 0.13, 0.18, and 0.15 W/m2, respectively. Such differ-425

ences in standard error are expected because, unlike later satellites, ERBS and Nimbus-426

7 satellites were unable to perform on-board calibration. The inferred precision of each427

observer directly affects their relative contribution towards estimates of TSI (Fig. 5).428

Estimates of satellite drifts are also key in determining the trend across the ACRIM429

Gap (Fig. 4 (b)). Drift estimates are obtained through a joint intercomparison between430

overlapping satellite estimates as well as proxy observations. Satellites with longer ob-431

serving intervals generally afford greater constraint upon associated estimates of linear432

drift. ERBS, with 142 months of recorded observations in our dataset, has a 95% con-433

fidence interval for posterior linear drift of 0.31 W/m2 per decade, whereas the VIRGO434

instrument aboard SOHO, with only 9 months of observations in the study period, has435

a 95% confidence interval for posterior linear drift of 1.97 W/m2 per decade, despite hav-436

ing a lower standard error.437
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Figure 3. Data used in our analysis and comparison of TSI variability in selected

reconstructions. (a) Monthly SILSO sunspot number (blue) and Univ. of Bremen Mg-II index

values (orange) used in BTSI. (b) Monthly satellite TSI observations used in BTSI. Maximum

likelihood estimates of offset and linear drift are shown in red with 99% confidence interval

in pink. (c) Comparison of selected reconstructions. All TSI reconstructions are displayed as

6-month-smoothed average anomalies from the 1985-1995 mean. Reconstructions include CP-

MDF (Montillet et al., 2022) (blue), two versions of the Community Consensus TSI Composite

v 1.1 (Dudok de Wit et al., 2017), with Fröhlich (2006) pre-corrections (pink) and without pre-

corrections (magenta), and ACRIM composite (Willson & Mordvinov, 2003) (green). The most

likely estimate from BTSI is displayed in black, with 80% and 95% confidence intervals in dark

and light gray, respectively. Dashed lines bracket the ACRIM Gap.
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Based upon the inferred precision of the available observers, BTSI assigns roughly438

60% weighting to the sunspot count and Mg-II index during the ACRIM Gap and 40%439

to the Nimbus-7/HF, and ERBS/ERBE records (Fig. 5). Correcting for an estimated440

0.62 W/m2 per decade drift in Nimbus-7 observations and assigning weight to ERBS/ERBE441

observations essentially nullifies the positive trend between the nadirs of Solar Cycles 21442

and 22 found in the ACRIM composite and, to a lesser-extent, the Community-Consensus443

TSI Composite. Correcting for smaller drifts in ERBS and ACRIM2 TSI records leads444

to a slight upward adjustment in the amplitude of Solar Cycle 22 compared to the CP-445

MDF and Community Consensus composites.446

The BTSI approach is novel in its ability to determine time-dependent uncertainty447

in TSI, as evidenced by the confidence intervals estimated in the synthetic data exper-448

iments. From the posterior distributions of our Bayesian approach, composed of 10,000449

draws of TSI estimates at each timestep, time-dependent estimates of uncertainty are450

produced. Fig. 3 (c) shows the resulting BTSI estimate after correction for observer ar-451

tifacts, including the maximum likelihood estimate (black) and the 80% and 95% con-452

fidence interval (dark and light gray). The peak two-sigma uncertainy of 0.44 W/m2 oc-453

curs in April 1991 due to the confluence of an active solar cycle period when solar ac-454

tivity is larger and the loss of high-fidelity instruments during the ACRIM Gap. The min-455

imum two-sigma uncertainty of 0.29 W/m2 occurs in September 1986, during a period456

of reduced solar activity. The 95% confidence intervals produced by BTSI encompass al-457

most all observations from the CPMDF reconstruction, whereas ACRIM composite TSI458

estimates deviate significantly.459

6 Discussion and Conclusion460

BTSI results contrast with the ACRIM composite in that we find no evidence of461

a secular change in TSI during the ACRIM Gap. The ACRIM composite relies upon ob-462

servations from the ACRIM satellites and infilling from the Nimbus-7 satellite during463

periods when observations from an ACRIM mission are unavailable, including the ACRIM464

Gap. The ACRIM composite relies on spliced intervals of satellite observations where465

satellite offsets are corrected but, critically, where no provision is made for drifts in satel-466

lite observations.467

Central to our findings is the inferred drift of Nimbus-7. Drift is constrained both468

in in relation to proxy estimates and to the ACRIM satellites with on-board calibration.469

The demeaned Nimbus-7 observations are plotted against the TSI indicated by other con-470

temporaneous observers in Fig. 6 after correcting the other observers for offsets, scaling,471

and drift according to results from BTSI. Due to the inferred observational noise in the472

uncalibrated ERBE instrument aboard ERBS, the observations of Nimbus-7 do not con-473

sistently deviate from ERBS at a statistically significant level. For the calibrated ACRIM1474

and ACRIM2 satellites, however, as well as the predictions of TSI from Mg-II and in-475

ternational sunspot number, Nimbus-7 shows clear signs of drift before and after the ACRIM-476

Gap. Nimbus-7 observations of TSI are consistently below the adjusted estimates from477

all contemporaneous observers during 1988 – 1990, and the October 1988 – January 1989478

period shows Nimbus-7 observations below the 90% range of all non-ERBS observers.479

In contrast, after the ACRIM Gap, every monthly observation of Nimbus-7 contempo-480

raneous with ACRIM2 is above the ACRIM2 best estimate, with 6 out of 16 monthly481

observations outside the 99% confidence interval of ACRIM2 estimates.482

The offsets between Nimbus-7 and other observers underlie the BTSI estimate of483

a drift in Nimbus-7 of 0.62 [0.37, 0.85] W/m2 per decade. Various alternative implemen-484

tations of BTSI result in similarly significant drift estimates, including running BTSI with-485

out any observations from ERBS, which results in a Nimbus-7 drift estimate and 95%486

confidence interval of 0.53 [0.28, 0.77] W/m2 per decade. Our results differ from the ACRIM487

composite in point of incorporating Nimbus-7 observations after correcting for instru-488
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Figure 4. Priors and posteriors for satellite parameters. (a) Priors (flat curves) and

posteriors (sharp curves) for offsets as. The ACRIM2 mean TSI value is taken as a reference

level, hence its appearing as a delta function. (b) Priors and posteriors for time-dependent linear

drifts, cs. The normal prior distribution (black) and smoothed empirical posterior distributions

are plotted. All satellites begin with the same prior expectation of 0 W/m2 per decade and stan-

dard deviation 0.5 W/m2 per decade. (c) Posterior inverse-gamma distributions for observational

noise ϵs. Note that the hyperparameters of the inverse-gamma prior distributions are provided in

Table 1 but are not shown here for readability.

mental drift. Nimbus-7 receives 11% to 16% of the weighting of BTSI predictions before489

the ACRIM Gap and 16% to 21% during the ACRIM Gap (Fig. 5).490
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Figure 5. Contribution of each observer to the TSI estimate. Fractional contributions

from proxies (bold dashed) and satellite TSI observations (solid) to the monthly innovation of the

TSI process. Contributions are computed as the mean across all iterations of the Gibbs sampler

and are smoothed with a 36-month filter. Dashed lines bracket the ACRIM Gap.

The findings of BTSI generally lend support to the CPMDF reconstruction. The491

CPMDF reconstruction is based on corrected Nimbus-7, ERBS, and ACRIM1 satellite492

observations, where corrections are based upon comparison to proxies and degradation493

curves for instruments of similar design (Fröhlich, 2006). The linear drifts inferred by494

BTSI for Nimbus-7 and ERBS — the two satellite records observing for the longest du-495

ration within the 1984 to 1996 period that we focus on — are consistent with those in-496

ferred by Fröhlich et al. (2006). Fröhlich et al. (2006) estimate a linear drift of 0.81 W/m2
497

per decade for Nimbus-7 and 0.23 W/m2 per decade for ERBS. The 95% confidence in-498

tervals of linear drift by BTSI for Nimbus-7 and ERBS are inclusive of both estimates.499

The Fröhlich corrections to ACRIM1 include a hyperbolic correction in response to a hy-500

pothesized darkening of the aperture early on during its mission. Because BTSI assumes501

linear corrections, it is more difficult to compare the Fröhlich ACRIM1 correction and502

the BTSI linear correction. Although BTSI is based on linear corrections to satellites,503

an examination of the residuals between the data and the model predictions reveals that504

a nonlinear function could potentially offer a more accurate representation of satellite505

errors for some observers, such as ACRIM1. However, the added complexity of a non-506

linear satellite error model may be difficult to constrain and does not appear necessary507

for this particular analysis.508

A number of other studies have examined proxies of TSI in relation to satellite ob-509

servations, and they generally agree with CPMDF, the Community Consensus Compos-510

ite, and BTSI results in finding no substantial change in TSI across the ACRIM Gap (Gueymard,511

2018; Lee III et al., 1995; Woods et al., 2018). The utility of BTSI lies in the ability to512

consider information from satellite and proxy sources simultaneously. Satellites and prox-513

ies are combined in a consistent statistical framework to calibrate the proxies and iden-514

tify drift and offsets in satellites. We highlight that BTSI would be expected to identify515

changes in TSI across the ACRIM Gap, were a substantial change to exist, even if the516

proxies did not register such a change, as illustrated in the synthetic ACRIM-Satellite/CPMDF-517

Proxy (Fig. 2) Our synthetic results also suggests BTSI would detect major nonlinear518

or secular changes in the relationship between proxies and TSI.519

Over the full satellite era of 1978 to present, the longer observing periods of satel-520

lites, larger number of satellite instruments examined, and higher rates of satellite over-521
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Figure 6. Comparison of Nimbus-7 observations against other TSI indicators.

Nimbus-7 observations (red dotted) are compared against other contemporaneous TSI indicators.

All observations are demeaned, and other TSI indicators are additionally scaled or corrected for

linear drifts. The maximum likelihood estimate of TSI is shown (black lines) along with 90%

(dark gray) and 99% confidence intervals (light gray). Confidence intervals are calculated by

including the uncertainty in drift, offset, and observational noise as indicated by 10,000 draws of

BTSI. Dashed lines bracket the ACRIM Gap period.
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lap should all lead to higher-confidence posterior estimates of satellite noise and bias struc-522

ture. The use of BTSI over longer intervals thus holds promise for inferring TSI variabil-523

ity over multidecadal periods inclusive of uncertainty estimates. The BTSI methodol-524

ogy may also be applicable on multi-centennial timescales, where proxies would then form525

the basis of TSI reconstructions.526

Open Research527

BTSI output over the ACRIM Gap is available as a NetCDF file from the Harvard528

Dataverse repository (doi:10.7910/DVN/JBDZYQ). BTSI was written in Matlab R2020b,529

with all code used to generate the figures and output published on the Harvard Data-530

verse as well as GitHub (https://github.com/tamdur/ACRIM-Gap). Satellite data for531

the ACRIM1/SMM, ACRIM2/UARS, ERBS/ERBE, and Nimbus-7/HF missions were532

accessed from the NOAA National Centers for Environmental Information at https://533

www.ngdc.noaa.gov/stp/solar/solarirrad.html (last accessed 20 March 2023). Data534

for the fused A+B corrected series version 8.0 of the VIRGO Experiment on the coop-535

erative ESA/NASA Mission SoHO from VIRGO Team through PMOD/WRC, Davos,536

Switzerland, are retrieved from ftp://ftp.pmodwrc.ch/pub/data/irradiance/virgo/537

TSI/ (last accessed 13 October 2022). Daily total sunspot numbers are retrieved from538

https://www.sidc.be/silso/datafiles (last accessed 20 March 2023). The Univer-539

sity of Bremen composite Mg-II Index version 5 is retrieved from https://www.iup.uni540

-bremen.de/UVSAT/Datasets/mgii (last accessed 20 March 2023).541
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