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Abstract1

In 2004, the Alfred P. Sloan Foundation launched a new program focused on incubating a new field, “Microbiology of the Built2

Environment” (MoBE). By the end of 2017, the program had supported the publication of hundreds of scholarly works, but it3

was unclear to what extent it had stimulated the development of a new research community. We identified 307 works funded4

by the MoBE program, as well as a comparison set of 698 authors who published in the same journals during the same period of5

time but were not part of the Sloan Foundation-funded collaboration. Our analysis of collaboration networks for both groups6

of authors suggests that the Sloan Foundation’s program resulted in a more consolidated community of researchers, specifically7

in terms of number of components, diameter, density, and transitivity of the coauthor networks. In addition to highlighting8

the success of this particular program, our method could be applied to other fields to examine the impact of funding programs9

and other large-scale initiatives on the formation of research communities.10

Introduction11

In 2004, the Alfred P. Sloan Foundation launched a program focusing on the “Microbiology of the Built12

Environment”, sometimes known as “MoBE”. The aims of this program were to catalyze research on microbes13

and microbial communities in human built environments, such as homes, vehicles, and water systems; and to14

develop the topic into a whole field of inquiry. Prior to 2004, many new developments (e.g., major advances15

in DNA sequencing technology) had catalyzed innovation in studies of microbes found in other environments16

(e.g., those living in and on humans and other animals, those found in the soil, those found in the oceans),17

but these innovations had not spread rapidly enough to studies of the microbes in the built environment.18

Similarly, many developments had occurred in studies of the built environment (e.g., the spread of low cost19

sensor systems), but focus had not yet been placed on the living, microbial components of built environments.20

This is not to say there had been no studies on the MoBE topic prior to 2004, but rather that the pace of21

advances in the area were modest at best compared to advances in other areas of microbiology and built22

environment studies. The MoBE area was founded on the belief that institutionally supported, integrated,23

trans-disciplanary scientific inquiry could address these shortfalls and lead to major benefits in areas such24

as indoor health, disease transmission, biodefense, forensics, and energy efficiency.25

The Sloan Foundation’s program ultimately lasted 15 years and invested more than $50 million on work26

in the MoBE field. A key goal of this program was to bring together the highly disparate fields of mi-27

crobiology (especially the area focused on studies of entire ecosystems of microbes) and building science28

(e.g. with a focus on building, maintaining, regulating, and studying built environments) with their different29

approaches, cultures, incentives, and rewards. Grants were given to many projects and a diverse collection of30

people covering many fields including microbiology, architecture, building science, software development, and31

meeting organization (a list of all grants from the program can be found at https://sloan.org/grants-32
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database?setsubprogram=2). The products of these grants included a diverse collection of programs and33

projects, dozens of new collaborations, many novel and sometimes large data sets on various MoBE topics,34

new software and tools for MoBE studies, and hundreds of scholarly publications.35

Recent reviews of the state of the field (e.g. [1][2]) have qualitatively highlighted the success of this program.36

In this paper we report a quantitative assessment of the Sloan MoBE program and the MoBE field using a37

network analysis of scholarly literature. Specifically, the aim of this study was to compare the community38

of researchers funded by the Sloan Foundation’s MoBE program to their scientific peers. If the Sloan39

Foundation’s program was successful at cultivating a new research community around MoBE topics, we40

hypothesized that we would see the evolution of an increasingly dense and more tightly connected network41

over the duration of the funding program.42

Programs explicitly dedicated to funding interdisciplinary research may have an important role to play43

in the development of new research communities. [3] finds that interdisciplinary research proposals are44

less likely to be funded by the Australian Research Council’s Discovery Programme, which is designed to45

fund basic research across the disciplines but is not explicitly interdisciplinary. This indicates an incentive46

for researchers to propose — and then conduct — disciplinary research, which is more likely to build on47

established research communities. By contrast, [4] finds evidence of both novel collaborations as well as48

cross-disciplinary citations and publications for researchers funded by the US National Robotics Initiative49

program, which is explicitly interdisciplinary.50

[5] proposes that coauthor networks can be used to examine the emergence of Kuhnian “normal science”51

[6]. Specifically, they relate the formation of a giant component — in which a single connected component52

of the network contains a supermajority of authors — to the formation of the kind of research community53

Kuhn described. [5] focuses on three topological statistics for coauthor networks: (1) the diameter (average54

shortest path length between pairs of nodes) of the largest component, (2) the fraction of edges in the largest55

component, and (3) “densification,” the exponent of a power law model relating edge and node counts across56

time for a given dynamic network. While diameter and edge fraction are dynamic, calculated at each time57

step (e.g., annually) as the coauthor network changes, densification is a summary across time. [7] uses topic58

modeling to subdivide papers from the arXiv, the physics repository, into various subfields, then applies the59

approach of [5] to examine the dynamics of coauthor networks in each subfield. Following [5], [7] also uses60

the diameter of the largest component as a key statistic, but also examines the fraction of nodes, rather than61

edges, in the largest component.62

As [5] acknowledges, Kuhn’s notion of a paradigm and normal scientific research is controversial. In addition,63

network topology alone cannot provide insight into the normative aspects of a Kuhnian paradigm. That is,64

in Kuhn’s view, a paradigm provides a rules and standards for good scientific research. The term paradigm65

comes from linguistics, in which a paradigm characterizes rules and standards for a specific construction. For66

example, “amo, amas, amat, amamus, amatis, amant” is a paradigm for the first conjugation of Latin verbs.67

Similarly, the paradigms for a normal science (e.g., protocols for experimental design and statistical analysis)68

provide shared rules and standards for good research — at least for the research community operating under69

the paradigm. The fact that a network of researchers are working with each other does not tell us whether70

they have this kind of shared normative framework.71

However, the fact that a network of researchers are working with each other (or not) does provide insight72

into the structural possibilities for the circulation of ideas and information among researchers. Information73

flow within and across the boundaries of scientific communities has long been a major topic in science and74

technology studies (STS) and philosophy of science [8]; [9]; [10]. Increased information flow is also often75

a key goal of research funding programs, especially information flow across disciplinary boundaries [11].76

Insofar as a scientific community is defined in terms of information flow, a transition from a disconnected or77

loosely-connected collaboration network to a highly-connected one does provide evidence for the formation78

of a scientific community.79

[12] moves from coauthor networks to institutional collaboration networks (if X and Y are coauthors, then80
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their respective institutions are collaborators) to examine the development of the field of strategic man-81

agement. [12] calculates several dynamic network statistics for institutional networks, including average82

clustering, diameter, “connectedness” and “fragmentation” (which unfortunately are not defined, and have83

various incompatible definitions in the network analysis literature), and the number and fraction of nodes84

in the largest component.85

[13] examines the role of funded researchers (“PIs”) in the collaboration network in Slovenia from 1970-2016.86

Part of their analysis focuses on the relationship among several statistics over overlapping time periods,87

including the fraction of nodes in the giant component, the mean fraction of each node’s neighbors who are88

PIs, the number of connected components when PIs are removed from the giant component, and the relative89

size of the largest component when PIs are removed.90

All of these studies use dynamic analysis of coauthor networks to examine development and change in91

research communities over time. However, none of these studies is designed to examine the effect of a92

particular funding program on the research community, and only [13] situates the group of researchers of93

interest (“PIs” or funded researchers) in the context of their peers (i.e., authors who were not funded).94

In contrast, [14] uses coauthor and institutional collaboration networks, among other bibliometric methods,95

to examine the impact of a US National Aeronautics and Space Administration (NASA) program focused on96

astrobiology; while [15] uses a coauthor network, again among other methods, to study the early impacts of97

the US National Science Foundation (NSF) Science of Science Policy (SciSIP) program. Because these are98

early assessments of their respective funding programs, both of these studies use static rather than dynamic99

collaboration networks.100

[16] and [17] use dynamic network methods to analyze individual-level funding program impacts. [16] com-101

pares participants in two fellowship programs, funded by Japan Science and Technology Agency and Japan102

Society for the Promotion of Science, to their peers in a large literature database, focusing on individual103

betweeness centrality over time. [17] tests several hypotheses concerning the relationship between local topo-104

logical features of the network (e.g., the size of a researcher’s neighborhood) and patent applications under105

a Chinese program to fund photovoltaic research.106

Of these four program assessment studies, only [16] incorporates a comparison group of researchers.107

In the present study, we use the theoretically-informed approach developed in [5] and [7] to examine the108

community-level impact of a specific funding program, namely, the MoBE program. By comparing MoBE-109

funded researchers to their peers, and incorporating robustness checks for the way peers are identified, we can110

have more confidence in the interpretation of our results as identifying causal effects of the MoBE program.111

In addition, by deploying a wider variety of network statistics, we identify changes in the coauthor networks112

that would be missed by the smaller set of statistics used in [5] and [7].113

Compared to the literature reviewed above, our study is distinctive for using network analysis methods114

and a comparison group of researchers to analyze the community-level impacts of a particular research115

funding program. To be clear, we make no claims here about the impacts of research funding programs more116

generally, but we do think that the MoBE program is an interesting case of an explicit attempt to create117

an interdisciplinary, multi-institution research community. Insofar as we find that the MoBE program was118

successful in this attempt, future research might identify specific features of the program that contributed119

to this success and could be generalized to other such programs.120

Methods and Materials121

Corpus Selection122

Publications funded by the Sloan Foundation’s MoBE program provided the starting point for our data123

collection and analysis. We evaluate the effect of this program by analyzing these publications in the context124
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Table 1: Organizations that received 3 or more awards under the MoBE program. Awards include research
funding as well as funds for meeting organization, data infrastructure development, outreach, and other
categories. n: Number of awards received.

organization n

University of Colorado, Boulder 15
University of California, Berkeley 12
The University of Chicago 7
University of California, Davis 7
University of Oregon 7

Yale University 7
The University of Texas, Austin 5
Virginia Polytechnic Institute and State University 5
J. Craig Venter Institute 4
Marine Biological Laboratory 4

National Academy of Sciences 4
Cornell University 3
Harvard University 3
Illinois Institute of Technology 3
Ohio State University 3

University of California, San Diego 3
University of Maryland, Baltimore 3
University of Toronto 3

of previous work by the same authors, as well as a “control” or comparison set of authors working in the125

same general areas. We identify the comparison set as authors publishing frequently in the same journals as126

MoBE-funded publications.127

Identifying Sloan Foundation-Funded Publications128

A list of awards made within the Sloan-funded MoBE program is available at https://sloan.org/grants-129

database?setsubprogram=2. The MoBE program awarded USD 51,000,000 in grants ranging from USD130

3,500 to USD 2,500,000 (mean USD 335,000, median USD 125,000). Table 1 lists organizations than received131

3 or more awards from this program. Figure 1 shows the number of new and active awards and publications132

within the MoBE program over time. While the earliest research awards were awarded in 2004, the number133

of new research awards expanded rapidly starting in 2011, with peak activity (most active research awards)134

in 2014. The first MoBE-funded publications did not appear until 2008, and peak publication occurred in135

2016, indicating a lag of 2-3 years between research activities and the publication record.

Figure 1: Awards and publications under the MoBE program. A: New awards made each year. B: Active
awards in each year. C: Publications in each year. Dark gray vertical lines indicate the end of 2017, when
MoBE-funded publications were identified. Colors indicate award types in A and B; color is not meaningful
in C.

136

A list of publications associated with the MoBE program was compiled through a combination of strate-137

gies. An initial set of papers was identified by manually searching for acknowledgement of Sloan Founda-138

tion funding in any publications authored by the grantees during the program period. Additional publica-139
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tions were identified by searching Google Scholar for relevant MoBE papers and identifying those authored140

by grantees during the program period. Finally, each grantee (as well as sometimes their lab members141

(n=˜50)) was contacted directly and asked whether the publication list we had for them was both accu-142

rate and complete. This feedback led to some publications being removed from the list (as having not143

derived from the Sloan Foundation’s program) and others being added. In addition, we posted requests144

for feedback in various social media settings (e.g., blogs, Twitter) asking for feedback on the list (https:145

//www.microbe.net/2017/09/07/sloan-funded-mobe-reference-collection/; https://www.microbe.146

net/2018/03/15/one-last-call-for-help-with-sloan-funded-mobe-paper-collection/). The final147

list contained 327 publications. 20 of these publications did not have digital object identifiers (DOIs) on148

record and were excluded from further analysis.149

Identifying Peer Authors150

We sought to compare MoBE researchers to peers who were not funded by the MoBE program, in order to151

control for ordinary developments in both individual careers (e.g., more senior researchers are likely to have152

more collaborators) and research communities (e.g., more researchers are trained and join the community).153

In what follows, researchers funded by the Sloan Foundation’s program are referred to as the “collaboration”154

authors; their peers are the “comparison” authors.155

Several methods were considered for developing this comparison set. Keyword searches were judged to be too156

noisy, producing significant numbers of false positive and false negative matches, as well as highly sensitive157

to the particular keywords used. Forward-and-backward citation searches using the 307 MoBE articles158

(compare [18]) produced lists on the order of 1,000,000 publications, which was judged to be impractically159

large. As an alternative, peer authors were identified as authors who are highly prolific in the same journals160

as the 307 MoBE articles.161

Specifically, using the rcrossref package [19] to access the Crossref API (application programming interface;162

https://github.com/CrossRef/rest-api-doc), metadata were retrieved for 572,362 articles published in163

111 journals between 2008 and 2018 inclusive. (PLOS One was dropped prior retrieving these metadata, due164

to its general nature and extremely high publication volume.) 14 journals published at least 10,000 articles165

during this time period; these appeared to be high-volume, general or broad-scope journals, such as Science166

or Environmental Science & Technology. The 345,546 articles from these 14 journals were removed, leaving167

226,816 articles from 97 journals. Because Crossref does not provide any standardized author identifiers,168

simple name matching was used to estimate the number of articles published by each author. (This method169

means “Maria Rodriguez” and “M. Rodriguez” would be counted as different authors at this stage.) The170

same method was used to roughly identify authors of MoBE-funded papers. After filtering out authors of171

MoBE-funded papers, the 1,000 most prolific authors were selected as candidates for the comparison set.172

See fig. 2.173

Next, to retrieve standardized author identifiers, a covering set of papers was identified such that each174

candidate name appeared as an author of at least one paper in the covering set. This covering set included175

all candidates by name, and no filtering was applied in identifying the covering set. Metadata for these176

papers was retrieved from the Scopus API (https://dev.elsevier.com), which incorporates an automated177

author matching system and standardized identifiers, referred to as author IDs. These author IDs were then178

used to characterize researchers as members of the MoBE collaboration or comparison set. Collaboration179

authors were defined as any author who either (a) was an author of at least two MoBE-funded papers or (b)180

was the author of at least one MoBE-funded paper and appeared in the candidates list (total n=393 distinct181

names for the collaboration; 438 distinct author IDs). Candidates for the comparison set were removed if182

they were classified as part of the collaboration (total n=770 distinct author IDs for the comparison set).183

(In what follows, we do not distinguish between authors and author IDs.)184
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Figure 2: Flow diagram for comparison set construction.

Table 2: Counts of papers in the analysis dataset, grouped by author type and whether they were funded
by the MoBE program. Author groups are based only on authors included in either the collaboration or
comparison set. For example, a non-MoBE paper by two collaboration authors and a third author (not
included in either the collaboration set or the comparison set) would be counted as ”collaboration authors
only.”

Paper group n

Comparison authors only 67030
Collaboration authors only, non-MoBE 14610
Mixed comparison-collaboration, non-MoBE 1938
MoBE funded 286

Author Histories185

Author histories (up to 200 publications since 1999 inclusive) for all 1,208 authors were retrieved using186

the Scopus API. These histories include both MoBE-funded and non-MoBE-funded papers, published in187

all journals indexed by Scopus. This resulted in an analysis dataset of 85,306 papers. Besides standard188

metadata, each paper was identified as MoBE-funded (or not). Table 2 shows the distribution of papers189

in the analysis dataset across 4 author combinations: only comparison authors; only collaboration authors,190

with separate counts for MoBE and non-MoBE funded papers; and “mixed” papers, with authors from both191

sets.192

Disciplinary Identification193

As discussed in the introduction, one of the primary aims of the MoBE program was to promote inter-194

disciplinary collaboration between microbiologists, on the one hand, and researchers in fields such as civil195

engineering and indoor air quality, on the other. To assess the success of the program in this respect, we196

attempted to collect data on researchers’ disciplinary self-identification. We contacted 80 MoBE-funded197

researchers via email, asking them what percentage of their research/work they would consider related to198

microbiology, building science, or “other.” 30 researchers responded. We conducted an exploratory analysis,199

looking for associations between area self-identification and researchers’ publications in the analysis dataset,200

based on (a) the All Science Journal Classification [ASJC] subject areas identified by Scopus, (b) all words201

used in paper abstracts, and (c) the 1000 most-informative words used in paper abstracts (where “informa-202

tive” was calculated in terms of entropy over the self-identified disciplines). In each case, principal component203

analysis indicated that there were no useful associations that could be used to classify all authors within this204

disciplinary space (e.g., using a machine learning model). In light of these unpromising exploratory results205

and limited resources, efforts to interdisciplinary collaboration were not pursued further.206

Network Analysis207

The analysis dataset of 85,306 papers was used as the basis for constructing time-indexed collaboration208

networks. Each author forms a node (distinguished by author ID); edges correspond to papers published in209

a given year, so that two authors are connected by an edge for a given year if they coauthored at least one210

paper published in that year. All collaboration authors had at least one edge; 72 comparison authors did211

not have at least one edge (i.e., at least one paper coauthored with another author in the dataset), and were212

dropped from the network analysis (remaining comparison n = 698). Authors who collaborated on multiple213

papers in a given year were connected with multiple edges, except when calculating density (see below).214
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After constructing the combined (collaboration + comparison) network, separate cumulative-annual networks215

were constructed for each set of authors. For example, two authors would be connected in the 2011 network216

if and only if (1) they were in the same author set and (2) they had coauthored at least one publication217

between 1999 and 2011 inclusive. Cumulative networks were used to reduce noise in the most recent years,218

due to incomplete data for 2018 and as the Sloan Foundation’s funding program was starting to wind down.219

Analyzing separate cumulative networks allows the examination of the development of research communities220

through time and between the author sets.221

For network analysis, we extended the approach developed by [5] and [7]. Specifically, both of these studies222

proposed that community formation can be measured in terms of giant component coverage and mean223

distance or shortest path length: increasing coverage combined with decreased distance indicates community224

consolidation. Neither [5] nor [7] used a control or comparison group (neither study aimed to to examine225

the impact of a specific funding program or other intervention). In the study, we calculated a total of226

eight network topological statistics and directly compare the two author sets. Specifically, we calculated the227

number of authors, number of components, coverage of the giant component (as a fraction of authors included228

in the largest component), entropy (H) of the component size distribution, diameter, density (fraction of all229

possible edges actually realized), mean distance, and transitivity in each year.230

Number of authors simply measures the total size of each network. Because these are cumulative networks,231

the number of authors necessarily increases. The number of components, coverage of the giant component,232

and entropy of the component distribution are measures of the large-scale structure of the network. More233

components indicate that the network is divided into subcommunities that do not interact (at least in234

terms of coauthoring papers); fewer components indicates consolidation of the research community. Giant235

component coverage and entropy measure the relative sizes of these different components; higher giant236

component coverage and lower entropy indicate that more authors can be found in a single component,237

which in turn indicates research community consolidation.238

Diameter, density, and mean distance can be interpreted as measures of the ability of information to flow239

through the network. Lower diameter, higher density, and lower mean distance indicate that it is easier for240

information to move between any two given researchers, as there are fewer intermediary coauthors and a241

higher probability of a direct connection. These therefore indicate research community consolidation.242

Transitivity is an aggregate measure of the local-scale structure of the network. Low transitivity indicates243

that the network is comprised of loosely connected clusters; there is collaboration across groups of researchers,244

but it is relatively rare. High transitivity, by contrast, indicates that the network cannot be divided into245

distinguishable clusters. High transitivity therefore indicates research community consolidation.246

Two robustness checks were incorporated into our analysis. First, to account for the possibility of data errors247

or missingness, perturbed networks were generated for each year by randomly switching the endpoints of 5% of248

edges. Second, the construction of the comparison set is likely to exclude students, postdoctoral researchers,249

and other early-career researchers. Insofar as these types of authors are included in the collaboration set,250

the collaboration network may appear to be more well-connected than the comparison set. To account for251

this possibility, we construct and analyze filtered versions of the annual cumulative networks. Authors are252

included in the filtered versions only if they have 50 or more papers total in the analysis analysis dataset.253

Acknowledgment sections and other sources of funding information are not included in the metadata retrieved254

for this analysis. We are therefore unable to identify funding sources except for MoBE-funded papers, for255

which we have our own metadata. The comparison method is thus designed to test only whether or not the256

removal of MoBE-funded research produces a response effect in the shape of the overall discursive space.257

It does not consider independent relationships between MoBE and other sources nor relationships between258

non-MoBE sources. An underlying assumption of the analysis is, therefore, that the rates of impact from259

other sources of research funding are constant and that there is no underlying relationship between MoBE260

funding and other funding sources such that the removal of MoBE funding results in uneven removal of261

another source(s) of funding. Examining these relationships is potential direction for future study.262
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All data collection and analysis was carried out in R [20]. Complete data collection and analysis code, as263

well as the list of MoBE-funded publications, is available at https://doi.org/10.5281/zenodo.2548839.264

Results/Discussion265

Qualitative Analysis266

The development of the combined network is shown in Fig. 3. MoBE-funded authors and papers are shown267

in blue; non-MoBE-funded authors and papers are shown in red. All together, we believe that Fig. 3 shows268

the consolidation of the MoBE collaboration within a consolidating larger research community.

Figure 3: Consolidation of the MoBE collaboration over time. Panels show time slices (non-cumulative)
of the giant component of the combined coauthor network. Blue nodes and edges are MoBE authors and
papers; red nodes and edges are non-MoBE authors and papers. Network layouts are calculated separate for
each slice using the Fruchterman-Reingold algorithm with default values in the igraph package.

269

Prior to the beginning of the MoBE funding in 2004, subset of MoBE researchers are actively working with270

each other; but many MoBE researchers are isolated in this network, and the largest component is only271

loosely connected. Qualitatively, the combined network has a sparse “lace” structure, with many long loops,272

as well as an “archipelago” of numerous small disconnected components.273

During the early years of the funding period (2005-2008 and 2009-2013), a tighter cluster of MoBE researchers274

appears on the margins of the overall research community; but many MoBE researchers can be found275

scattered among the comparison authors and in disconnected components. The combined network has a276

“hairy ball” appearance, with a dense central “ball” and many peripheral “hairs,” and again an extensive277

“archipelago.” Part of the MoBE collaboration appears as a somewhat coherent “sub-ball.” We infer that278

this indicates that this part of the MoBE collaboration is highly integrated within the larger community.279

During the peak period of MoBE funding (2015-2018), the vast majority of MoBE researchers appear to280

form one or two large, coherent communities at the center of the giant component — well-defined “blobs”281

of blue within a larger blob of red. Very few MoBE researchers appear outside of this coherent community.282

We suggest that this indicates tight integration involving almost all members of the MoBE collaboration.283

However, because qualitative features of a visualized network are heavily dependent on the visualization284

method, this qualitative analysis should not be overinterpreted. Below we provide a quantitative analysis,285

less susceptible to overinterpretation.286

Note that a few comparison set authors remain in small disconnected components even in the final time287

slice. These likely reflect “false positives” in the construction of the comparison set: authors who appear288

relatively frequently in the same journals as the MoBE publications, but do not actually conduct research in289

relevant research areas. We manually identified some such false positives, including authors of news stories290

in journals such as Current Biology or Nature Biotechnology as well as a few neuroscientists.291

Quantitative Analysis292

Fig. 4 shows statistics over time for the cumulative collaboration networks in each author set. Overall,293

both the MoBE research community and the comparison research community consolidated over time; but294

the MoBE research community consolidated faster and more thoroughly than the comparison set.295

The most notable differences between the two author sets appear with the number of components, diameter,296

density, and transitivity. The comparison set stabilizes at 15-20 distinct components, while the MoBE297
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Figure 4: Network statistics over time. See text for explanation of the different statistics calculated
here. Solid lines correspond to observed values; shaded ribbons correspond to 90% confidence intervals
on rewired networks, where 5% of the observed edges are randomly rewired while maintaining each node’s
degree distributions. 100 rewired networks are generated for each author set-year combination. Dashed
lines correspond to observed values for authors with 50 or more total papers in the data. Blue corresponds
to the MoBE collaboration; red corresponds to the peer comparison set of authors. Vertical lines indicate
2004, the first year of research funding by the MoBE program. Due to publication lags, we would not expect
to see effects from 2004 funding until 2006-07.

collaboration approaches fewer than 5 components. However, for both author sets giant component coverage298

approaches 1 and H approaches 0, indicating that both networks contain a single giant component; the299

comparison set simply has several disconnected components with isolated researchers. As observed in the300

qualitative analysis, we believe this is plausibly due to “false negatives” in constructing the comparison set.301

The remaining statistics are generally robust to the inclusion of such “false negatives.”302

Prior to 2010, the MoBE and comparison sets have a similar diameter: increasing during 1999-2005 as new303

researchers are added; then roughly stable until about 2010. Diameter remains above 10 for the comparison304

set, with a notable increase in 2008 followed by a decrease after 2013. By contrast, starting around 2010,305

the MoBE collaboration diameter is consistently less and decreasing.306

However, diameter might be criticized as sensitive to network size. The relatively low diameter of the MoBE307

collaboration might be explained by the fact that this network has about half as many researchers as the308

comparison set.309

Density and transitivity are automatically normalized against network size, and so avoid this potential310

confounder. For the collaboration set, transitivity peaks near 90% in 2012, indicating that at this time the311

connected components of the MoBE collaboration have almost no internal structure: everyone involved in312

the collaboration in 2012 is working directly with almost everyone else. Density plateaus at about 10% at313

this same time, and remains roughly stable over the remaining years of the study period. Transitivity and314

density then drop somewhat, but still remain remarkably high, indicating a highly interconnected research315

community even as the number of authors approaches its peak of just over 400. Transitivity is greater than316

60% for both author sets in 2008-2009, but then diverges, dropping to around 50% in the comparison set by317

2018. Density is consistently below about 2.5% for the comparison set throughout the entire study period.318

Because of the delay between research and journal article publication, these network statistics provide a319

lagging indicator of community formation, of roughly 2-3 years. Taking this lag into account, our network320

analysis indicates that the MoBE research community consolidated around the period 2008-2010.321

Shaded regions in Figure 4 indicate that most comparisons between the MoBE and comparison sets are322

robust to data errors. Diameter and number of components are somewhat more sensitive to possible data323

errors than the other statistics; but even here the comparison set statistics are consistently greater than the324

MoBE set statistics, indicating less consolidation in the comparison set.325

The dashed lines in Figure 4 indicate that the comparisons are also robust to excluding early-career re-326

searchers. Other than the number of authors — which necessarily will decrease when authors are filtered327

— the only noteworthy effect of filtering is to increase the density of the collaboration network. There is no328

practical difference in the other statistics, especially for comparing the two networks of authors. Intuitively,329

filtering less productive authors is likely to remove less-connected authors from the margins of the network.330

These authors are less likely to provide important ties connecting otherwise separated communities.331
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Conclusions332

Overall, we believe our results support the hypothesis that the Sloan Foundation-funded researchers consoli-333

dated as a community over the course of the program during 2008-2010. Whereas at the start of the program334

there were relatively few connections between researchers, especially across domains, by the end of our study335

period the network was dense and highly interconnected. In particular, while the Sloan Foundation-funded336

community was initially less connected than the control community it reached a similar level of consolidation337

by the end of the study period. This suggests to us that the program was successful in the stated goal of338

increasing collaboration between researchers.339

We note that the most dramatic differences between the MoBE collaboration and the comparison set could340

not have been detected using the two statistics calculated by [7], namely, giant component coverage and mean341

distance. Giant component coverage approached unity for both networks, and the difference in mean distance342

was relatively small. Mean distance could also be criticized as too sensitive to network size. By contrast, the343

most striking differences in this case appeared in density and transitivity, which are automatically normalized344

for network size.345
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