
1

A quick introduction to version control with Git and
GitHub
John D. Blischak(1), Emily R. Davenport(2), Greg Wilson(3)
(1) Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL, USA
(2) Department of Molecular Biology & Genetics, Cornell University, Ithaca, NY, USA
(3) Software Carpentry Foundation, Toronto, Ontario, Canada

0.1 Introduction to version control

Many scientists write code as part of their research. Just as experiments are logged in laboratory note-
books, it is important to document the code you use for analysis. However, a few key problems can
arise when iteratively developing code that make it difficult to document and track which code version
was used to create each result. First, you often need to experiment with new ideas, such as adding new
features to a script or increasing the speed of a slow step, but you do not want to risk breaking the
currently working code. The simplest

:::
One

:::::
often

::::::::
utilized solution is to make a copy of the script before

making new edits. However, this can quickly become a problem because it clutters your filesystem with
uniformative

::::::::::::
uninformative

:
filenames, e.g. analysis.sh, analysis_02.sh, analysis_03.sh, etc. It is

difficult to remember the differences between the versions of the files, and more importantly which version
you used to produce specific results, especially if you return to the code months later. Second, you will
likely share your code with multiple lab mates or collaborators and they may have suggestions on how
to improve it. If you email the code to multiple people, you will have to manually incorporate all the
changes each of them sends.

Fortunately, software engineers have already developed software to manage these issues: version
control. Version control software

::
A

:::::::
version

:::::::
control

:::::::
system

::::::
(VCS)

:
allows you to track the iterative

changes you make to your code. Thus you can experiment with new ideas but always have the option
to revert to a specific past version of the code you used to generate particular results. Furthermore,
you can record messages as you save each successive version so that you (or anyone else) reviewing the
development history of the code is able to understand the rationale for the given edits. Also, it facilitates
collaboration. Using version control software

:
a
:::::
VCS, your collaborators can make and save changes to

the code, and you can automatically incorporate these changes to the main code base. The collaborative
aspect is enhanced with the emergence of websites that host version controlled code.

In this quick guide, we introduce you to one version control system (VCS)
::::
VCS, Git (git-scm.com),

and one online hosting site, GitHub (github.com), both of which are currently popular among scientists
and programmers in general. More importantly, we hope to convince you that although mastering a given
VCS takes time, you can already achieve great benefits by getting started using a few simple commands.
Furthermore, not only does using a VCS solve many common problems when writing code, it can also
improve the scientific process. By tracking your code development with a VCS and hosting it online, you
are performing science that is more transparent, reproducible, and open to collaboration [1, 2]. There is
no reason this framework needs to be limited only to code; a VCS is well-suited for tracking any plain-text
files: manuscripts, electronic lab notebooks, protocols, etc.

0.2 Version your code

The first step is to learn how to version your own code. In this tutorial, we will run Git from the
command line of the Unix shell. Thus we expect readers are already comfortable with navigating a
filesystem and running basic commands in such an environment. You can find directions for installing
Git for the operating system running on your computer by following one of the links provided in Table 1.
There are many graphical user interfaces (GUIs) available for running Git (Table 1), which we encourage
you to explore, but learning to use Git on the command line is necessary for performing more advanced

https://www.authorea.com/users/5990
https://www.authorea.com/users/16152
https://www.authorea.com/users/18131
https://git-scm.com/
https://github.com


2

operations and using Git on a remote machine.
For the purposes of this tutorial, imagine you have

::
To

::::::
follow

::::::
along,

:::::
first

::::::
create

:
a folder in your

home directory named thesis, which contains three files . .
::::::

Next
:::::::::
download

:::
the

:::::
three

::::
files

:::::::::
provided

::
in

::::::::::
Supporting

:::::::::::
Information

::::
and

:::::
place

::::::
them

::
in

::::
the

:
thesis

::::::::
directory.

::::::::
Imagine

:::::
that

:::
as

::::
part

:::
of

::::
your

::::::
thesis

:::
you

:::
are

:::::::::
studying

:::
the

::::::::::::
transcription

::::::
factor

:::::::
CTCF,

::::
and

:::
you

:::::
want

:::
to

:::::::
identify

::::::::::::::
high-confidence

::::::::
binding

::::
sites

::
in

::::::
kidney

:::::::::
epithelial

::::::
cells.

::::
To

:::
do

::::
this,

::::
you

::::
will

:::::::
utilize

::::::::
publicly

::::::::
available

:::::::::
ChIP-seq

:::::
data

:::::::::
produced

:::
by

:::
the

::::::::::
ENCODE

::::::::::
consortium

:::::
[3] .

::::::::::
ChIP-seq

::
is
::

a
::::::::

method
:::
for

:::::::
finding

::::
the

:::::
sites

:::
in

:::
the

::::::::
genome

::::::
where

::
a

:::::::::::
transcription

::::::
factor

:::
is

:::::::
bound,

::::
and

:::::
these

:::::
sites

::::
are

:::::::
referred

:::
to

:::
as

::::::
peaks

:::::
[4] .

:
process.sh runs some

common bioinformatics tools on your raw data ,
:::::::::
downloads

::::
the

:::::::::
ENCODE

:::::::
CTCF

::::::::
ChIP-seq

:::::
data

:::::
from

:::::::
multiple

:::::
types

:::
of

::::::
kidney

:::::::
samples

::::
and

:::::
calls

::::::
peaks, clean.py removes bad samples and combines the data

into a matrix
::::
filters

::::::
peaks

:::::
with

:
a
::::
fold

:::::::
change

:::::
cutoff

::::
and

:::::::
merges

::::::
peaks

::::
from

::::
the

::::::::
different

::::::
kidney

:::::::
samples,

and analyze.R runs a statistical test and plots the result
::::::
creates

:::::::::
diagnostic

:::::
plots

:::
on

::::
the

::::::
length

::
of
::::

the

:::::
peaks

::::
and

:::::
their

::::::::::
distribution

::::::
across

::::
the

:::::::
genome.

If you have just installed Git, the first thing you need to do is provide some information about yourself,
since it records who makes each change to the file(s). Set your name and email by running the following
lines, but replacing ”First Last” and ”

:::::
“First

:::::
Last”

::::
and

::
“user@domain”

:
”
:
with your full name and email

address, respectively.

$ git config --global user.name "First Last"

$ git config --global user.email "user@domain"

To start versioning your code with Git, navigate to your newly created or existing project directory(in
this case

::::::::
directory, ~/thesis). Start tracking your code by running

:
.
::::
Run

:
the command git init , which

initializes a new Git repository in
:
to

:::::::::
initialize the current folder

::
as

:
a
::::

Git
::::::::::
repository

:::::::
(Figure

::
1,

::::
2A). A

repository
:::
(or

:::::
repo,

:::
for

::::::
short) refers to the current version of the tracked files as well as all the previously

saved versions (Box 1).
::::
Only

::::
files

:::::
that

:::
are

:::::::
located

::::::
within

::::
this

:::::::::
directory

:::::
(and

::::
any

:::::::::::::
subdirectories)

:::::
have

:::
the

::::::::
potential

:::
to

::
be

:::::::
version

::::::::::
controlled,

:::
i.e.

::::
Git

::::::
ignores

:::
all

::::
files

:::::::
outside

::
of

:::
the

::::::::::
initialized

::::::::
directory.

::::
For

::::
this

::::::
reason,

::::::::
projects

::::::
under

:::::::
version

::::::
control

:::::
tend

:::
to

::
be

::::::
stored

:::::::
within

::
a

:::::
single

:::::::::
directory

::
to

:::::::::::
correspond

::::
with

::
a

:::::
single

:::
Git

::::::::::
repository.

::::
For

:::::::::
strategies

:::
on

::::
how

::
to

:::::
best

::::::::
organize

::::
your

::::
own

:::::::::
projects,

:::
see

::::::
Noble,

:::::
2009

::::
[5] .

:

$ cd ~/thesis

$ ls

analyze.R clean.py process.sh

$ git init

Initialized empty Git repository in ~/thesis/.git/

Now you are ready to start tracking
:::::::::
versioning your code (Figure 1). Conceptually, Git saves snapshots

of the changes you make to your files whenever you instruct it to. For instance, after you edit a script
in your text editor, you save the updated script to your thesis thesis folder. If you tell Git to save a
shapshot of the updated document, then you will have a permanent record of the file in that exact version
even if you make subsequent edits to the file. In the Git framework, any changes you have made to a
script, but have not yet recorded as a snapshot with Git, reside in the working diretory

::::::::
directory

::::
only

(Figure 1). To follow what Git is doing as you record the initial version of your files, use the informative
command git status.

$ git status

On branch master

Initial commit

Untracked files:



3

(use "git add <file>..." to include in what will be committed)

analyze.R

clean.py

process.sh

nothing added to commit but untracked files present (use "git add" to track)

There are a few key things to notice from this output. First, the three scripts are recognized as
untracked files because you have not told git

::
Git

:
to take snapshots of anything yet. Second, the word

”commit” means ”
::::::::
“commit”

:::
is

:::
Git

::::::::::::
terminology

:::
for

:::::::::
snapshot.

::::
As

::
a
:::::
noun

:::
it

::::::
means

::
“a version of the

code”
:
”, e.g. ”

:
“the figure was generated using the commit from yesterday”

:
”
:
(Box 1). This word can also

be used as a verb, in which case it means ”to save”
:::
“to

:::::
save”, e.g. ”

:
“to commit a change.” Lastly, it

:
”

::::::
Lastly,

:::
the

:::::::
output explains how you can start tracking your files. You need to use the command git add.

Add the file process.sh.

$ git add process.sh

And check its new status.

$ git status

On branch master

Initial commit

Changes to be committed:

(use "git rm --cached <file>..." to unstage)

new file: process.sh

Untracked files:

(use "git add <file>..." to include in what will be committed)

analyze.R

clean.py

Now
::::
Since

::::
this

::
is

:::
the

::::
first

:::::
time

::::
that

::::
you

:::::
have

::::
told

:::
Git

::::::
about

:
the file process.shhas

:
,
:::
two

::::
key

::::::
things

::::
have

::::::::::
happened.

:::::
First,

::::
this

:::
file

:::
is

::::
now

:::::
being

::::::::
tracked,

::::::
which

::::::
means

:::
Git

::::::::::
recognizes

::
it

::
as

::
a
:::
file

::::
you

:::::
wish

::
to

::
be

:::::::
version

:::::::::
controlled

:::::
(Box

:::
1).

::::::::
Second,

::::
the

:::::::
changes

:::::
made

:::
to

:::
the

::::
file

:::
(in

::::
this

::::
case

::::
the

:::::
entire

::::
file

:::::::
because

:
it
::
is
::::
the

::::
first

::::::::
commit)

:::::
have been added to the staging area , while both and remain unstaged

::::::
(Figure

::
1).

Adding a file to the staging area will result in the changes to that file being included in the next commit,
or snapshot of the code (Figure 1

:::
Box

::
1). As an analogy, adding files to the staging area is like putting

things in a box to mail off, and committing is like putting the box in the mail.
Since this will be the first commit, or first version of the code, add

:::
use

:
git add

::
to

:::::
begin

::::::::
tracking the

other two files
:::
and

::::
add

:::::
their

:::::::
changes

:
to the staging area as well. Then create the first commit using the

command git commit.

$ git add clean.py analyze.R

$ git commit -m "Add initial version of thesis code."

[master (root-commit) 660213b] Add initial version of thesis code.

3 files changed, 154 insertions(+)



4

create mode 100644 analyze.R

create mode 100644 clean.py

create mode 100644 process.sh

Notice the flag -m was used to pass a message for the commit. This message describes the changes
that have been made to the code and is required. If you do not pass a message at the command line,
the default text editor for your system will open so you can enter the message. You have just performed
the typical development cycle with Git: make some changes, add updated files to the staging area, and
commit the changes as a snapshot once you are satisfied with them

::::::
(Figure

::
2).

Since Git records all of the commits, you can always look through the complete history of a project.
To view the record of your commits, use the command git log. For each commit, it lists the the unique
identifier for that revision, author, date, and commit message.

$ git log

commit 660213b91af167d992885e45ab19f585f02d4661

Author: First Last <user@domain>

Date: Fri Aug 21 14:52:05 2015 -0500

Add initial version of thesis code.

The commit identifier can be used to compare two different versions of a file, restore a file to a previous
version from a past commit, and even retrieve tracked files if you accidentally delete them.

Now you are free to make changes to the files knowing that you can always revert them to the state
of this commit by referencing its identifier. As an example, edit clean.py

::
so

::::
that

::::
the

::::
fold

::::::
change

::::::
cutoff

::
for

::::::::
filtering

:::::
peaks

::
is
:::::
more

:::::::::
stringent. Here is the current top

::::::
bottom

:
of the file.

$ tail clean.py

# Filter based on fold-change over control sample

fc_cutoff = 10

epithelial = epithelial.filter(filter_fold_change, fc = fc_cutoff).saveas()

proximal_tube = proximal_tube.filter(filter_fold_change, fc = fc_cutoff).saveas()

kidney = kidney.filter(filter_fold_change, fc = fc_cutoff).saveas()

# Identify only those sites that are peaks in all three tissue types

combined = pybedtools.BedTool().multi_intersect(

i = [epithelial.fn, proximal_tube.fn, kidney.fn])

union = combined.filter(lambda x: int(x[3]) == 3).saveas()

union.cut(range(3)).saveas(data + "/sites-union.bed")

Update the description to explicitly define which samples are removed.
:::::
Using

::
a
::::
text

::::::
editor,

::::::::
increase

:::
the

::::
fold

::::::
change

::::::
cutoff

:::::
from

::
10

:::
to

:::
20.

:

$ tail clean.py

# Filter based on fold-change over control sample

fc_cutoff = 20

epithelial = epithelial.filter(filter_fold_change, fc = fc_cutoff).saveas()

proximal_tube = proximal_tube.filter(filter_fold_change, fc = fc_cutoff).saveas()

kidney = kidney.filter(filter_fold_change, fc = fc_cutoff).saveas()

# Identify only those sites that are peaks in all three tissue types

combined = pybedtools.BedTool().multi_intersect(

i = [epithelial.fn, proximal_tube.fn, kidney.fn])

union = combined.filter(lambda x: int(x[3]) == 3).saveas()

union.cut(range(3)).saveas(data + "/sites-union.bed")



5

You can view all the differences between the current version and last committed version of the file
by running

:::::::
Because

::::
Git

::
is

::::::::
tracking clean.py,

::
it
::::::::::
recognizes

::::
that

::::
the

:::
file

:::
has

:::::
been

::::::::
changed

:::::
since

:::
the

::::
last

:::::::
commit.

:

$ git status

# On branch master

# Changes not staged for commit:

# (use "git add <file>..." to update what will be committed)

# (use "git checkout -- <file>..." to discard changes in working directory)

#

# modified: clean.py

#

no changes added to commit (use "git add" and/or "git commit -a")

:::
The

:::::::
report

::::
from

:
git status

::::::::
indicates

::::
that

::::
the

:::::::
changes

:::
to clean.py

:::
are

::::
not

::::::
staged,

::::
i.e.

::::
they

::::
are

::
in

:::
the

:::::::
working

:::::::::
directory

:::::::
(Figure

:::
1).

:::
To

:::::
view

:::
the

:::::::::
unstaged

::::::::
changes,

:::
run

:
the command git diff.

$ git diff

diff --git a/clean.py b/clean.py

index 7b8c058..76d84ce 100644

--- a/clean.py

+++ b/clean.py

@@ -28,7 +28,7 @@ def filter_fold_change(feature, fc = 1):

return False

# Filter based on fold-change over control sample

-fc_cutoff = 10

+fc_cutoff = 20

epithelial = epithelial.filter(filter_fold_change, fc = fc_cutoff).saveas()

proximal_tube = proximal_tube.filter(filter_fold_change, fc = fc_cutoff).saveas()

kidney = kidney.filter(filter_fold_change, fc = fc_cutoff).saveas()

The new line starts with + and the previous line starts with -. You can ignore the first five lines
of output because they are directions for other software programs that can merge changes to files. If
you wanted to save

::::
keep

:
this edit, you could add clean.py to the staging area using git add and then

commit the change using git commit, as you did above. Instead, this time restore the last committed
version of the file

::::
undo

::::
the

::::
edit

:::
by

::::::::
following

::::
the

:::::::::
directions

:::::
from

:::
the

:::::::
output

::
of

:
git status

::
to

::::::::
“discard

:::::::
changes

::
in

::::
the

:::::::
working

::::::::::
directory” using the command git checkout.

$ git checkout -- clean.py

$ git diff

Now git diff returns no output because git checkout reverted
:::::
undid

::::
the

::::::::
unstaged

::::
edit

::::
you

::::
had

:::::
made

::
to

:
clean.pyto the version in the last commit. And this ability to revert to past versions of

::::
undo

::::
past

::::
edits

:::
to a file is not limited to just the last commit

::::::::
unstaged

:::::::
changes

::
in

::::
the

:::::::
working

:::::::::
directory. If you

had committed multiple changes to the file clean.py and then decided you wanted the original version

::::
from

::::
the

::::::
initial

:::::::
commit, you could replace the argument -- with the commit identifier (we only need

to specify the first few characters for it to be unique
:
of

::::
the

::::
first

:::::::
commit

::::
you

::::::
made

:::::
above

::::::
(your

:::::::
commit

::::::::
identifier

::::
will

:::
be

::::::::
different;

::::
use

:
git log

::
to

::::
find

::
it). The -- used above was simply a placeholder for

the first argument because by default git checkout restores the most recent version of the file
::::
from

:::
the

::::::
staging

::::
area

:::
(if

::::
you

:::::::
haven’t

::::::
staged

:::
any

::::::::
changes

::
to

::::
this

:::
file,

:::
as

::
is

:::
the

::::
case

:::::
here,

:::
the

:::::::
version

::
of

:::
the

::::
file

::
in

:::
the



6

::::::
staging

:::::
area

::
is

::::::::
identical

::
to

:::
the

:::::::
version

::
in
::::

the
::::
last

::::::::
commit).

:::::::
Instead

:::
of

:::::
using

:::
the

::::::
entire

:::::::
commit

:::::::::
identifier,

:::
use

::::
only

::::
the

::::
first

:::::
seven

::::::::::
characters,

::::::
which

::
is
:::::::
simply

::
a

::::::::::
convention

:::::
since

::::
this

::
is

:::::::
usually

::::
long

:::::::
enough

:::
for

::
it

::
to

:::
be

::::::
unique.

$ git checkout 660213b clean.py

There are also more advanced options for reverting history that we will not cover in this quick
introduction.

At this point, you have learned the commands needed to version your code with Git. Thus you already
have the benefits of being able to make edits to files without copying them first, to create a record of
your changes with accompanying messages, and to revert to previous versions of the files if needed. Now
you will always be able to recreate past results that were generated with previous versions of the code

:::
(see

::::
the

:::::::::
command

:
git tag

:::
for

:
a
::::::::

method
::
to

:::::::::
facilitate

:::::::
finding

:::::::
specific

::::
past

:::::::::
versions) and see the exact

changes you have made over the course of a project.

0.3 Share your code

Once you have your files saved in a Git repository, you can share it with your collaborators and the wider
scientific community by putting your code online

::::::
(Figure

::
3). This also has the added benefit of creating a

backup of your work
:::::
scripts

:
and provides a mechanism for syncing

::::::::::
transferring your files across multiple

computers. Sharing a repository is made easier if you use one of the many online services that host Git
repositories (Table 1), e.g. GitHub. Note, however, that any files that have not been tracked with at least
one commit are not included in the Git repository, even if they are located within the same directory on
your local computer (see Box 3

:
2
:
for advice on the types of files that should not be versioned with Git

:::
and

::::
Box

::
3
:::
for

::::::
advice

:::
on

:::::::::
managing

:::::
large

::::
files).

:::::
Below

:::
we

:::::
focus

:::
on

:::
the

:::::::::
technical

:::::::
aspects

::
of

:::::::
sharing

:::::
your

:::::
code.

::::::::
However,

::::::
there

:::
are

::::
also

:::::
other

::::::
issues

::
to

:::::::
consider

:::::
when

::::::::
deciding

::
if

::::
and

::::
how

::::
you

:::
are

:::::
going

:::
to

:::::
make

::::
your

:::::
code

::::::::
available

::
to

:::::::
others.

::::
For

:::::
quick

::::::
advice

::
on

:::::
these

:::::::::
subjects,

:::
see

::::
Box

::
4
:::
on

::::
how

::
to

:::::::
license

::::
your

::::::
code,

::::
Box

::
5

::
on

:::::::::
concerns

:::::
about

::::::
being

::::::::
scooped,

::::
and

:::
Box

::
6
:::
on

:::
the

:::::::::
increasing

:::::
trend

:::
of

:::::::
journals

:::
to

:::::::
institute

:::::::
sharing

:::::::
policies

:::::
that

::::::
require

:::::::
authors

:::
to

:::::::
deposit

::::
code

::
in

:
a
::::::
public

:::::::
archive

:::::
upon

:::::::::::
publication.

:

To begin using GitHub, you will first need to sign up for an account. For the
::::
code

:
examples in this

tutorial, we will use the fake username ”scientist123”
:::
you

:::
will

:::::
need

::
to

:::::::
replace username

::::
with

:::
the

:::::::::
username

::
of

::::
your

::::::::
account. Next choose the option to ”

:
“Create a new repository”

:
”
:::::::
(Figure

::::
3B). Call it ”thesis”

:::::::
“thesis”

:
because that is the directory name containing the files , but this is not a requirement

::
on

:::::
your

:::::::::
computer,

:::
but

:::::
note

::::
that

::::
you

:::
can

::::
give

::
it
::
a
::::::::
different

:::::
name

:::
on

:::::::
GitHub

::
if

:::
you

:::::
wish. Also, now that the code

will be existing in multiple places, you need to learn some more terminology (Box 1). A local repository
refers to code that is stored on the machine you are using, e.g. your laptop; whereas, a remote repository
refers to the code that is hosted online. Thus, you have just created a remote repository.

Now you need to send the code on your computer to GitHub. The key to this is the URL that GitHub
assigns your newly created remote repository. It will have the form , e. g. https://github.com/username/thesis.git

::::
(this

::::
can

::
be

::::::
found

::
on

:::::
your

:::::::::
repository

:::::
page

:::::
under

:::
the

:::::::
header

::::::::
“HTTPS

:::::
clone

:::::::
URL”).

::::::
Notice

:::::
that

:::
this

:::::
URL

:
is
::::::
using

:::
the

:::::::
HTTPS

:::::::::
protocol,

:::::
which

::
is
::::
the

:::::::
quickest

:::
to

:::::
begin

::::::
using.

::::::::
However

::
it

:::::::
requires

::::
you

:::
to

:::::
enter

::::
your

::::::::
username

::::
and

:::::::::
password

:::::
when

:::::::::::::
communicating

:::::
with

::::::::
GitHub,

::
so

:::::
you’ll

:::::
want

::
to

:::::::::::
considering

::::::::
switching

:::
to

:::
the

::::
SSH

::::::::
protocol

::::
once

::::
you

:::
are

::::::::
regularly

::::::
using

:::
Git

::::
and

:::::::
GitHub

::::
(see

:
help.github.com/articles/generating-ssh-

keys
:::
for

:::::::::
directions). In order to link the local thesis repository on your computer to the remote repository

you just created, in your local repository you need to tell Git the URL of the remote repository using
the command git remote add

::::::
(Figure

::::
3C).

$ git remote add origin https://github.com/username/thesis.git

https://help.github.com/articles/generating-ssh-keys/
https://help.github.com/articles/generating-ssh-keys/


7

The name ”origin”
:::::::
“origin”

:
is a bookmark for the remote repository so that you do not have to

type out the full URL every time you sync
:::::::
transfer

:
your changes (this is the default name for a remote

repository, but you could use another name if you liked
:::
like).

Send your code to GitHub using the command git push (Figure 2
::
3D).

$ git push origin master

You first specify the remote repository, ”origin”
:::::::
“origin”. Second, you tell Git to push to the ”master”

::::::::
“master”

:
copy of the repository - we won’t

:::
will

::::
not

:
go into other options in this tutorial, but Box 2

:
7

discusses them briefly.
Pushing to GitHub also has the added benefit of backing up your code in case anything were to happen

to your computer. Also, it can be used to sync
::::::::
manually

:::::::
transfer

:
your code across multiple machines,

similar to a service like Dropbox, but with the added capabilities
:::
and

::::::
control

:
of Git. For example, what

if you wanted to work on your code on your computer at home? You can download the Git repository
using the command git clone.

$ git clone https://github.com/username/thesis.git

By default, this will download the Git repository into a local directory named ”thesis”
:::::::
“thesis”. Fur-

thermore, the remote ”origin”
:::::::
“origin”

:
will automatically be added so that you can easily push your

changes back to GitHub. You now have copies of your repository on your work computer, your GitHub
account online, and your home computer. You can make changes, commit them on your home computer,
and send those commits to the remote repository with git push, just as you did on your work computer.

Then the next day back at your work computer, you could update the code with the changes you
made the previous evening using the command git pull.

$ git pull origin master

This pulls in all the commits that you had previously pushed to the GitHub remote repository from
your home computer. In this workflow, you are essentially collaborating with yourself as you work from
multiple computers. If you are working on a project with just one or two other collaborators, you could
extend this workflow so that they could edit the code in the same way. You can do this by adding them as
Collaborators on your repository (Settings ->Collaborators ->Add collaborator). However, with projects
with lots of contributors, GitHub provides a workflow for finer-grained control of the code development.

With the addition of a GitHub account and a few commands for sending and receiving code, you can
now share your code with others, sync

:::::::
transfer

:
your code across multiple machines, and setup simple

collaborative workflows.

0.4 Contribute to other projects

Lots of scientific software is hosted online in Git repositories. Now that you know the basics of Git, you
can directly contribute to developing the scientific software you use for your research

::::::
(Figure

::
4). From a

small contribution like fixing a typo in the documentation to a larger change such as fixing a bug, it is
empowering to be able to improve the software used by you and many other scientists.

When contributing to a larger project with many contributors, you will not be able to push your
changes with git push directly to the project’s remote repository. Instead you will first need to create
your own remote copy of the repository,

:::::
which

:::
on

:::::::
GitHub

::
is
:
called a fork

::::
(Box

:::
1). You can fork any

repository on GitHub by clicking the button ”Fork”
::::::
“Fork”

:
on the top right of the page.

Once you have a fork of a project’s repository, you can clone it to your computer and make changes
just like a repository you created yourself. Let’s say you created a fork of the hypothetical repository ,
”coolSUBSCRIPTNBproject”, so that you could fix a typo you found in the directions in the README



8

file
::
As

:::
an

::::::::
exercise,

::::
you

::::
will

::::
add

::
a

:::
file

:::
to

:::
the

::::::::::
repository

::::
that

:::
we

:::::
used

:::
to

:::::
write

::::
this

::::::
paper.

:::::::
First,

::
go

:::
to

github.com/jdblischak/git-for-science
:::
and

:::::::
choose

:::
the

:::::::
“Fork”

::::::
option

::
to

::::::
create

::
a
:::::::::::::
git-for-science

:::::::::
repository

:::::
under

:::::
your

:::::::
GitHub

:::::::
account

:::::::
(Figure

::::
4B). In order to make changes, you first download it with

::::::::
download

:
it
:::

to
:::::
your

:::::::::
computer

::::
with

::::
the

:::::::::
command

:
git clone

::::
from

::::
the

::::::::
directory

::::
you

:::::
wish

::::
the

::::
repo

:::
to

:::::::
appear

::
in

::::::
(Figure

::::
4C).

$ git clone https://github.com/username/git-for-science.git

After making the edits you want, you can add, commit, and
::::
Now

:::::
that

::::
you

:::::
have

:
a
:::::

local
::::::::

version,

:::::::
navigate

:::
to

::::
the

:::::::::::
subdirectory

:
readers

::::
and

::::::
create

::
a

::::
text

:::
file

:::::::
named

::
as

:::::
your

::::::::
GitHub

:::::::::
username

:::::::
(Figure

::::
4D).

:

$ cd git-for-science/readers

$ touch username.txt

::::
Add

::::
and

:::::::
commit

:::
this

::::
new

::::
file

:::::::
(Figure

::::
4D),

::::
and

::::
then

:
push the changes back to your remote repository

on GitHub (Figure 3
:::
4E).

$ git add username.txt

$ git commit -m "Add username to directory of readers."

$ git push origin master

Currentlythe typo is fixed
:
,
:::
the

::::
new

:::
file

::::
you

:::::::
created,

:
readers/username.txt

:
,
::::
only

:::::
exists

:
in your fork

of coolSUBSCRIPTNBproject
::::::::::::
git-for-science. To merge this change

:::
file

:
into the main repositorythat is

owned by the creator of the software, send a pull request using the GitHub interface (Pull request ->New
pull request ->Create pull request;

::::::
Figure

:::
4F). After the pull request is created, the owner of the original

repository
:::
we can review your change . If she approves of the change, she can

:::
and

:::::
then merge it into the

main repository. Although this process of forking a project’s repository and issuing a pull request seems
like a lot of work to contribute changes, this workflow gives the owner of the

:
a
:
project control over what

changes get incorporated into the code. You can have others contribute to your projects using the same
workflow(Figure ??).

The ability to use Git to contribute changes is very powerful because it allows you to improve the
software that is used by many other scientists and also potentially shape the future direction of its
development.

0.5 Conclusion

Git, albeit complicated at first, is a powerful tool that can improve code development and documentation.
Ultimately the complexity of a VCS not only gives users a well-documented ”undo”

::::::
“undo”

:
button for

their analyses, but it also allows for collaboration and sharing of code on a massive scale. Furthermore,
it does not need to be learned in its entirety to be useful. Instead, you can derive tangible benefits from
adopting version control in stages. With a few commands (git init, git add, git commit), you can
start tracking your code development and avoid a filesystem full of copied files

:::::::
(Figure

::
2). Adding a few

additional commands (git push, git clone, git pull) and a GitHub account, you can share your code
online, sync

:::::::
transfer your changes across machines, and collaborate in small groups

:::::::
(Figure

::
3). Lastly, by

forking public repositories and sending pull requests, you can directly improve scientific software
::::::
(Figure

::
4).

https://github.com/jdblischak/git-for-science


9

0.6 Methods

We collaboratively wrote the article in LaTeX (latex-project.org) using the online authoring platform
Authorea (authorea.com). Furthermore, we tracked the development of the document using Git and
GitHub. The Git repo is available at github.com/jdblischak/git-for-science, and the rendered LaTeX
article is available at authorea.com/users/5990/articles/17489.

0.7
:::::::
Table

:::
1:

:::::::::::::
Resources

:::::::::
Resource

::::::::
Options

::::::::::
Distibuted

::::
VCS

: :::
Git

:
(git-scm.com

:
)

:::::::::
Mercurial

:
(mercurial.selenic.com)

:

::::::
Bazaar

::
(bazaar.canonical.com

:
)
:

::::::
Online

:::::::
hosting

:::
site

: ::::::
GitHub

::
(github.com

:
)
:

::::::::
Bitbucket

::
(bitbucket.org

:
)
:

::::::
GitLab

::
(gitlab.com

:
)

:::::
Source

::::::
Forge

:
(sourceforge.net

:
)
:

::
Git

:::::::::::
installation

:
git-scm.com/downloads

::
Git

:::::::::
Tutorials

: ::::::::
Software

::::::::::
Carpentry(swcarpentry.github.io/git-novice

:
)
:

::::
Pro

:::
Git

::
(git-scm.com/book

:
)
:

::
A

::::::
Visual

:::
Git

::::::::::
Reference

:
(marklodato.github.io/visual-git-guide)

:

:::::
tryGit

::
(try.github.io

:
)
:

:::::::::
Graphical

::::
User

:::::::::
Interface

:::
for

:::
Git

:
git-scm.com/downloads/guis

0.8 Box 1: Definitions

� Version Control System (VCS): (noun) a program that tracks changes to specified files over
time and maintains a library of all past versions of those files

� Git: (noun) a version control system

� repository (repo): (noun) folder containing all tracked files as well as the version control history

� commit: (noun) a snapshot of changes made to the staged file(s); (verb) to save a snapshot of
changes made to the staged file(s)

�
:::::
stage

:
:
:::::::
(noun)

:::
the

:::::::
staging

::::
area

:::::
holds

::::
the

::::
files

::
to

:::
be

::::::::
included

::
in

::::
the

::::
next

::::::::
commit;

::::::
(verb)

::
to

:::::
mark

::
a

:::
file

::
to

:::
be

::::::::
included

::
in

::::
the

::::
next

:::::::
commit

:

�
:::::
track

:
:
:::::::
(noun)

:
a
:::::::
tracked

::::
file

::
is

:::
one

:::::
that

::
is

:::::::::
recognized

:::
by

::::
the

:::
Git

::::::::::
repository

� branch: (noun) a parallel version of the files in a repository (Box 2
:
7)

� local: (noun) the version of your repository that is stored on your personal computer

� remote: (noun) the version of your repository that is stored on the internet
:
a

::::::
remote

::::::
server, for

instance on GitHub

� clone: (verb) to create a local copy of a remote repository on your personal computer

� fork: (noun) a copy of a repository
::::::
another

::::::
user’s

:::::::::
repository

:::
on

:::::::
GitHub; (verb) to copy a repository,

for instance from one user’s Github
::::::
GitHub

:
account to your own

� merge: (verb) to update files by incorporating the changes introduced in new commits

http://www.latex-project.org/
https://www.authorea.com
https://github.com/jdblischak/git-for-science
https://www.authorea.com/users/5990/articles/17489
https://git-scm.com
https://mercurial.selenic.com
http://bazaar.canonical.com
https://github.com
https://bitbucket.org
https://about.gitlab.com
http://sourceforge.net
https://git-scm.com/downloads
https://swcarpentry.github.io/git-novice
https://git-scm.com/book
https://marklodato.github.io/visual-git-guide
https://try.github.io
https://git-scm.com/downloads/guis


10

� pull: (verb) to retrieve commits from a remote repository and merge them into a local repository

� push: (verb) to send commits from a local repository to a remote repository

� pull request: (noun) a message sent by one
:::::::
GitHub user to merge the commits in their remote

repository into another user’s remote repository

0.9 Table 1
::::
Box

:::
2: Resources

:::::::
What

:::::
not

::
to

:::::::::
version

::::::::::
control

Resource Options Distibuted VCS Git () Mercurial ()Bazaar ()Online hosting site GitHub
:::
You

::::
can

::::::
version

:::::::
control

::::
any

:::
file

::::
that

::::
you

:::
put

:::
in

:
a
::::
Git

:::::::::
repository,

::::::::
whether

::
it

::
is

::::::::::
text-based,

:::
an

::::::
image,

:::
or

:::::
giant

::::
data

::::
files.

:::::::::
However,

::::
just

:::::::
because

:::
you

::::
can

::::::
version

::::::
control

::::::::::
something,

:::::
does

:::
not

:::::
mean

::::
you

::::::
should

:
.
:::
Git

::::::
works

::::
best

::
for

:::::
plain

::::
text

::::::
based

::::::::::
documents

::::
such

::
as

:::::
your

::::::
scripts

::
or

:::::
your

::::::::::
manuscript

::
if

:::::::
written

::
in

::::::
LaTeX

:::
or

::::::::::
Markdown.

::::
This

::
is

:::::::
because

:::
for

::::
text

:::::
files,

:::
Git

:::::
saves

:::
the

::::::
entire

:::
file

::::
only

::::
the

::::
first

::::
time

::::
you

:::::::
commit

::
it

::::
and

::::
then

:::::
saves

::::
just

::::
your

:::::::
changes

:::::
with

:::::
each

:::::::
commit.

:::::
This

::::::
takes

:::
up

::::
very

:::::
little

:::::
space

::::
and

::::
Git

::::
has

:::
the

:::::::::
capability

:::
to

::::::::
compare

:::::::
between

::::::::
versions

::::::
(using

:
git diff

:
).
:::::

You
::::
can

:::::::
commit

::
a
::::::::
non-text

::::
file,

::::
but

::
a

:::
full

:::::
copy

::
of
::::

the
:::
file

::::
will

:::
be

:::::
saved

::
in

:::::
each

:::::::
commit

::::
that

::::::::
modifies

::
it.

::::::
Over

:::::
time,

:::
you

:::::
may

::::
find

:::
the

::::
size

::
of

:::::
your

:::::::::
repository

::::::::
growing

::::
very

:::::::
quickly.

::
A

:::::
good

::::
rule

:::
of

::::::
thumb

::
is

:::
to

::::::
version

:::::::
control

:::::::::
anything

::::
text

::::::
based:

:::::
your

::::::
scripts

:::
or

:::::::::::
manuscripts

::
if

::::
they

:::
are

:::::::
written

::
in

:::::
plain

:::::
text.

:::::::
Things

:::
not

:
to

:::::::
version

:::::::
control

:::
are

:::::
large

::::
data

::::
files

::::
that

::::::
never

:::::::
change,

::::::
binary

:::
files

::::::::::
(including

:::::
Word

::::
and

::::::
Excel

:::::::::::
documents),

::::
and

:::
the

:::::::
output

::
of

:::::
your

:::::
code.

:

::
In

::::::::
addition

::
to

::::
the

:::::
type

::
of

::::
file,

::::
you

:::::
need

::
to

::::::::
consider

::::
the

:::::::
content

::
of
::::

the
::::
file.

:::
If

:::
you

:::::
plan

:::
on

:::::::
sharing

::::
your

::::::::
commits

::::::::
publicly

::::::
using

::::::::
GitHub,

::::::
ensure

::::
you

::::
are

::::
not

:::::::::::
committing

::::
any

::::
files

::::
that

::::::::
contain

::::::::
sensitive

:::::::::::
information,

::::
such

:::
as

::::::
human

:::::::
subject

:::::
data

::
or

::::::::::
passwords.

:

::
To

::::::::
prevent

:::::::::::
accidentally

:::::::::::
committing

::::
files

::::
you

:::
do

::::
not

:::::
wish

::
to

::::::
track,

::::
and

:::
to

:::::::
remove

:::::
them

:::::
from

::::
the

::::::
output

::
of

:
git status,

::::
you

::::
can

::::::
create

:
a
::::

file
:::::
called

:
.gitignore.

:::
In

::::
this

::::
file,

::::
you

::::
can

:::
list

:::::::::::::
subdirectories

::::::
and/or

:::
file

::::::::
patterns

:::::
that

::::
Git

::::::
should

:::::::
ignore.

::::
For

:::::::::
example,

::
if

::::
your

:::::
code

:::::::::
produced

:::
log

::::
files

:::::
with

::::
the

:::
file

::::::::
extension

:
.log

:
,
:::
you

::::::
could

:::::::
instruct

::::
Git

::
to

::::::
ignore

:::::
these

::::
files

:::
by

::::::
adding

:
*.log

:
to

:
.gitignore.

:::
In

:::::
order

:::
for

::::
these

::::::::
settings

::
to

:::
be

:::::::
applied

::
to

:::
all

:::::::::
instances

::
of

:::
the

::::::::::
repository,

::::
e.g.

::
if

::::
you

:::::
clone

::
it

::::
onto

::::::::
another

:::::::::
computer,

:::
you

:::::
need

::
to

::::
add

::::
and

:::::::
commit

::::
this

::::
file.

:

0.10
::::
Box

:::
3:

:::::::::::::
Managing

:::::::
large

:::::
files

:::::
Many

:::::::::
biological

:::::::::::
applications

::::::
require

:::::::::
handling

::::
large

:::::
data

::::
files.

::::::
While

::::
Git

::
is

::::::::::
best-suited

:::
for

:::::::::::::
collaboratively

::::::
writing

:::::
small

::::
text

:::::
files,

::::::::::
nonetheless

:::::::::::::
collaboratively

:::::::
working

:::
on

:::::::
projects

:::
in

:::
the

::::::::
biological

::::::::
sciences

::::::::::
necesitates

::::::::
managing

::::
this

:::::
data.

:

:::
The

::::::::
example

::::::::
analysis

:::::::
pipeline

:::
in

::::
this

:::::::
tutorial

::::::
starts

:::
by

:::::::::::
downloading

:::::
data

::::
files

::
in

:::::
bam

::::::
format

::::::
which

::::::
contain

::::
the

::::::::::
alignments

:::
of

:::::
short

:::::
reads

:::::
from

::
a
:::::::::
ChIP-seq

::::::::::
experiment

:::
to

:::
the

:::::::
human

::::::::
genome.

::::::
Since

:::::
these

:::::
large,

::::::
binary

::::
files

:::
are

:::
not

::::::
going

::
to

:::::::
change,

:::::
there

::
is

:::
no

::::::
reason

::
to

:::::::
version

:::::
them

::::
with

::::
Git.

:::::
Thus

:::::::
hosting

:::::
them

::
on

::
a

::::::
remote

:::::
http

:::
(as

:::::::::
ENCODE

::::
has

:::::
done

::
in

::::
this

:::::
case)

::
or

:::
ftp

::::
site

::::::
allows

:::::
each

:::::::::::
collaborator

::
to

:::::::::
download

::
it

::
to

:::
her

::::::::
machine

:::
as

:::::::
needed,

:::
e.g.

::::::
using

:
wget,

:
curl

:
,
::
or

:
rsync

:
.
::
If

:::
the

:::::
data

::::
files

:::
for

::::
your

:::::::
project

::::
are

:::::::
smaller,

:::
you

:::::
could

::::
also

::::::
share

:::::
them

:::
via

:::::::
services

::::
like

::::::::
Dropbox

:::
or

::::::
Google

::::::
Drive.

:

::::::::
However,

:::::
some

::::::::::::
intermediate

:::::
data

::::
files

::::
may

:::::::
change

::::
over

::::::
time,

::::
and

:::
the

:::::::::
practical

::::::::
necessity

:::
to

::::::
ensure

::
all

::::::::::::
collaborators

::::
are

:::::
using

::::
the

:::::
same

:::::
data

::::
set

::::
may

::::::::
override

::::
the

::::::
advice

:::
to

::::
not

:::
put

:::::
code

:::::::
output

::::::
under

::::::
version

::::::::
control,

::
as

:::::::::
described

::
in

:::::
Box

::
2.

::::::
Again

:::::::::
returning

:::
to

:::
the

:::::::::
ChIP-seq

:::::::::
example,

:::
the

::::
first

:::::
step

::::::
calling

:::
the

:::::
peaks

::
is
::::
the

:::::
most

:::::::
difficult

:::::::::::::::
computationally

:::::::
because

::
it

:::::::
requires

::::::
access

:::
to

:
a
:::::::::
Unix-like

:::::::::::
environment

::::
and

::::::::
sufficient

:::::::::::::
computational

:::::::::
resources.

::::::
Thus

:::
for

::::::::::::
collaborators

::::
that

:::::
want

:::
to

::::::::::
experiment

:::::
with

:
clean.py

:::
and

analyze.R
:::::::
without

::::::
having

:::
to

:::
run

:
process.sh,

::::
you

:::::
could

:::::::
version

::::
the

::::
data

::::
files

::::::::::
containing

:::
the

:::::::::
ChIP-seq

:::::
peaks

::::::
(which

:::
are

:::
in

:::
bed

::::::::
format).

::::
But

:::::
since

:::::
these

::::
files

:::
are

:::::
larger

:::::
than

::::
that

::::::::
typically

:::::
used

::::
with

::::
Git,

::::
you

:::
can

::::::
instead

::::
use

:::
one

:::
of

:::
the

::::::::
solutions

::::
for

:::::::::
versioning

:::::
large

::::
files

::::::
within

::
a
:::
Git

::::::::::
repository

:::::::
without

::::::::
actually

::::::
saving

:::
the

:::
file

:::::
with

::::
Git,

::::
e.g.

::::::::::
git-annex

::
(git-annex.branchable.com

:
)
:::
or

::::::
git-fat

::
(github.com/jedbrown/git-fat

:
).

::::::::
Recently

:::::::
GitHub

::::
has

:::::::
created

:::::
their

::::
own

::::::::
solution

:::
for

:::::::::
managing

:::::
large

::::
files

::::::
called

::::
Git

::::::
Large

::::
File

:::::::
Storage

https://git-annex.branchable.com/
https://github.com/jedbrown/git-fat/


11

:::::
(LFS)

:
() Bitbucket ()GitLab () Source Forge ()Git installation Git Tutorials Software Carpentry() Pro

Git ()A Visual GitReference () tryGit () Graphical User Interface for Git git-lfs.github.com
:
).
::::::::

Instead
::
of

::::::::::
committing

:::
the

::::::
entire

:::::
large

:::
file

:::
to

::::
Git,

:::::
which

:::::::
quickly

::::::::
becomes

::::::::::::::
unmanageable,

::
it

::::::::
commits

:
a
:::::

text
:::::::
pointer.

::::
This

::::
text

:::::::
pointer

::::::
refers

:::
to

::
a

:::::::
specific

:::
file

::::::
saved

:::
on

::
a
:::::::
remote

::::::::
GitHub

::::::
server.

::::::
Thus

::::::
when

::::
you

:::::
clone

::
a

:::::::::
repository,

::
it
:::::
only

:::::::::
downloads

::::
the

:::::
latest

:::::::
version

::
of

::::
the

:::::
large

::::
file.

::::
And

::
if
::::
you

::::::::
checkout

:::
an

:::::
older

:::::::
version

::
of

:::
the

::::::::::
repository,

::
it

::::::::::::
automatically

::::::::::
downloads

:::
the

::::
old

:::::::
version

::
of

:::
the

:::::
large

:::
file

:::::
from

::::
the

::::::
remote

:::::::
server.

:::::
After

::::::::
installing

:::
Git

:::::
LFS,

::::
you

::::
can

:::::::
manage

:::
all

:::
the

::::
bed

::::
files

::::
with

::::
one

:::::::::
command:

:
git lfs track "*.bed"

:
.
:::::
Then

:::
you

::::
can

:::::::
commit

:::
the

::::
bed

::::
files

::::
just

:::
like

:::::
your

:::::::
scripts,

::::
and

::::
they

::::
will

::::::::::::
automatically

:::
be

:::::::
handled

:::::
with

:::
Git

:::::
LFS.

::::
Now

::
if

::::
you

:::::
were

::
to

:::::::
change

::::
the

::::::::::
parameters

:::
of

:::
the

:::::
peak

:::::::
calling

:::::::::
algorithm

::::
and

::::::
re-run

:
process.sh,

::::
you

:::::
could

:::::::
commit

:::
the

::::::::
updated

::::
bed

:::
files

::::
and

:::::
your

::::::::::::
collaborators

:::::
could

::::
pull

:::
the

::::
new

:::::::
versions

:::
of

:::
the

::::
files

:::::::
directly

::
to

:::::
their

::::
local

::::
Git

:::::::::::
repositories.

:

0.11
::::
Box

:::
4:

::::::::::::
Choosing

::
a
:::::::::
license

:::::::
Putting

::::::::
software

::::
and

:::::
other

::::::::
material

::
in

::
a
::::::
public

:::::
place

:::
is

:::
not

::::
the

:::::
same

::
as

:::::::
making

:::
it

:::::::
publicly

:::::::
usable.

:::
In

:::::
order

::
to

:::
do

:::::
that,

:::
the

::::::::
authors

:::::
must

::::
also

::::
add

:
a
:::::::
license,

:::::
since

:::::::::
copyright

::::
laws

:::
in

:::::
some

:::::::::::
jurisdictions

:::::::
require

::::::
people

::
to

:::::
treat

::::::::
anything

:::::
that

::::
isn’t

:::::::::
explicitly

:::::
open

::
as

:::::
being

:::::::::::
proprietary.

:

:::::
While

:::::::
dozens

::
of

:::::
open

::::::::
licenses

:::::
have

:::::
been

::::::::
created,

:::
the

::::
two

:::::
most

:::::::
widely

:::::
used

:::
are

::::
the

::::::
GNU

::::::
Public

::::::
License

:::::::
(GPL)

::::
and

::::
the

::::::::::
MIT/BSD

::::::
family

:::
of

::::::::
licenses.

::::
Of

::::::
these,

:::
the

:::::::::::::::
MIT/BSD-style

:::::::
licenses

::::
put

::::
the

:::::
fewest

::::::::::::
requirements

:::
on

::::::
re-use,

::::
and

:::::::
thereby

:::::
make

::
it
::::::
easier

:::
for

::::::
people

:::
to

::::::::
integrate

:::::
your

:::::::
software

::::
into

:::::
their

:::::::
project.

:

:::
For

:::
an

::::::::
excellent

:::::
short

:::::::::
discussion

::
of

:::::
these

:::::::
issues,

:::
and

:::::
links

::
to

:::::
more

::::::::::::
information,

:::
see

::::
Jake

::::::::::::
Vanderplas’s

::::
blog

::::
post

::::
from

::::::
March

:::::
2014

::
at astrobetter.com/blog/2014/03/10/the-whys-and-hows-of-licensing-scientific-

code
:
.
:::
For

::
a
:::::
more

::::::::
in-depth

:::::::::
discussion

:::
of

:::
the

:::::
legal

:::::::::::
implications

::
of

::::::::
different

::::::::
licenses,

:::
see

::::::
Morin

::
et

:::
al.,

:::::
2012

::::
[6] .

:

0.12
::::
Box

:::
5:

::::::::
Being

:::::::::::
Scooped

::::
One

:::::::
concern

::::::::
scientists

::::::::::
frequently

::::
have

::::::
about

:::::::
putting

::::
work

:::
in

:::::::
progress

::::::
online

::
is

::::
that

:::::
they

:::
will

:::
be

::::::::
scooped,

::::
e.g.,

::::
that

::::::::
someone

::::
will

::::::::
analyze

:::::
their

::::
data

::::
and

::::::::
publish

::
a

:::::
result

:::::
that

:::::
they

::::::::::
themselves

::::::
would

:::::
have,

::::
but

::::::
hadn’t

:::
yet.

:::
In

::::::::
practice,

:::::::
though,

::::
this

::::::::
happens

::::::
rarely

:
if
:::
at

:::
all:

:::
in

::::
fact,

:::
the

:::::::
authors

::::
are

:::
not

::::::
aware

::
of

::
a

:::::
single

::::
case

::
in

::::::
which

::::
this

:::
has

::::::::
actually

:::::::::
happened,

::::
and

::::::
would

::::::::
welcome

::::::::
pointers

::
to

:::::::
specific

:::::::::
instances.

:::
In

::::::::
practice,

:
it
::::::
seems

:::::
more

:::::
likely

:::::
that

:::::::
making

:::::
work

::::::
public

:::::
early

::
in

::::::::::
something

:::
like

::
a
:::::::
version

::::::
control

::::::::::
repository,

::::::
which

::::::::::::
automatically

:::::
adds

::::::::::
timestamps

:::
to

:::::::
content,

::::
will

:::::
help

::::::::::
researchers

::::::::
establish

:::::
their

:::::::
priority.

:

0.13
::::
Box

:::
6:

::::::::::
Journal

::::::::::
Policies

:::::::
Sharing

:::::
data,

:::::
code,

::::
and

::::::
other

::::::::
materials

::
is
:::::::

quickly
::::::::

moving
::::
from

:::::::::
“desired”

:::
to

::::::::::
“required”.

:::::
For

::::::::
example,

:::::::
PLOS’s

:::::::
sharing

::::::
policy

::
(journals.plos.org/plosone/s/materials-and-software-sharing

:
)
:::::::
already

:::::
says,

:::::
“We

::::::
expect

::::
that

:::
all

::::::::::
researchers

::::::::::
submitting

:::
to

::::::
PLOS

:::
will

::::::
make

::
all

::::::::
relevant

:::::::::
materials

::::
that

::::
may

:::
be

::::::::::
reasonably

::::::::
requested

:::
by

::::::
others

::::::::
available

::::::::
without

::::::::::
restrictions

:::::
upon

:::::::::::
publication

::
of

::::
the

::::::
work.”

:::
Its

::::::
policy

:::
on

::::::::
software

:
is
:::::
more

::::::::
specific:

:

:::
We

::::::
expect

:::::
that

:::
all

:::::::::::
researchers

::::::::::
submitting

:::
to

::::::
PLOS

:::::::::::
submissions

:::
in

::::::
which

::::::::
software

::
is
::::

the

::::::
central

::::
part

:::
of

:::
the

:::::::::::
manuscript

::::
will

:::::
make

:::
all

::::::::
relevant

::::::::
software

::::::::
available

::::::::
without

::::::::::
restrictions

::::
upon

:::::::::::
publication

::
of

::::
the

:::::
work.

:::::::::
Authors

:::::
must

::::::
ensure

::::
that

::::::::
software

::::::::
remains

::::::
usable

::::
over

:::::
time

:::::::::
regardless

::
of

:::::::
versions

:::
or

:::::::::::
upgrades. . .

::
It

::::
then

::::
goes

:::
on

::
to

:::::::
specify

::::
that

::::::::
software

:::::
must

:::
be

:::::
based

:::
on

:::::
open

::::::
source

:::::::::
standards,

::::
and

:::::
that

:
it
:::::
must

:::
be

:::
put

::
in

:::
an

:::::::
archive

::::::
which

::
is

:::::
large

:::
or

:::::::::
long-lived.

:::::::::
Granting

:::::::::
agencies,

::::::::::::
philanthropic

::::::::::::
foundations,

::::
and

:::::
other

https://git-lfs.github.com/
http://www.astrobetter.com/blog/2014/03/10/the-whys-and-hows-of-licensing-scientific-code/
http://www.astrobetter.com/blog/2014/03/10/the-whys-and-hows-of-licensing-scientific-code/
http://journals.plos.org/plosone/s/materials-and-software-sharing


12

:::::
major

::::::::
sponsors

:::
of

::::::::
scientific

::::::::
research

:::
are

:::
all

:::::::
moving

:::
in

:::
the

::::::
same

:::::::::
direction,

::::
and

::
to

::::
our

::::::::::
knowledge,

:::::
none

:::
has

:::::::
relaxed

::
or

::::::::
reduced

:::::::
sharing

::::::::::::
requirements

::
in

:::
the

::::
last

:::::::
decade.

:

0.14 Box 2
::
7: Branching

Do you ever make changes to your code, but are not sure you will want to keep those changes for your
final analysis?

::
Or

:::
do

::::
you

::::
need

::
to

::::::::::
implement

::::
new

::::::::
features

:::::
while

:::
still

:::::::::
providing

::
a

:::::
stable

:::::::
version

::
of

::::
the

::::
code

::
for

::::::
others

:::
to

::::
use?

:
Using Git, you can maintain parallel versions of your code that you can easily bounce

between while you are working on your changes. You can think of it like making a copy of the folder you
keep your scripts in, so that you have your original scripts intact but also have the new folder where you
make changes. Using Git, this is called branching and it is better than separate folders because 1) it uses
a fraction of the space on your computer, 2) keeps a record of when you made the parallel copy (branch)
and what you have done on the branch, and 3) there is a way to incorporate those changes back into
your main code if you decide to keep your changes (and a way to deal with conflicts). By default, your
repository will start with one branch, usually called ”master”

::::::::
“master”. To create a new branch in your

repository, type git branch new_branch_name. You can see what branches a current repository has by
typing git branch, with the branch you are currently in being marked by a star. To move between
branches, type git checkout branch_to_move_to. You can edit files and commit them on each branch
separately. If you want combine the changes in your new branch with the master branch, you can merge
the branches by typing git merge new_branch_name while in the master branch.

0.15 Box 3: What not to version control

You can version control any file that you put in a Git repository, whether it is text-based, an image, or
giant data files. However, just because you can version control something, does not mean you should. Git
works best for plain text based documents such as your scripts or your manuscript if written in LaTeX
or Markdown. This is because for text files, Git saves the entire file only the first time you commit it and
then saves just your changes with each commit. This takes up very little space and Git has the capability
to compare between versions (using ). You can commit a non-text file, but a full copy of the file will
be saved with each commit. Over time, you may find the size of your repository growing very quickly.
A good rule of thumb is to version control anything text based: your scripts or manuscripts if they are
written in plain text. Things not to version control are large data files that never change, binary files
(including Word and Excel documents), and the output of your code.

0.15 Figure Legends

Figure 1. The git add/commit process. To store a snapshot of changes in your repository, first
git add any files to the staging area you wish to commit (for example, you’ve updated the process.sh

file). Second, type git commit with a message. Only files added to the staging area will be committed.
All past commits are located in the hidden .git directory in your repository.

Figure 2. Working with both a local and remote repositoryas a single user.
:::
A)

::
To

:::::::::
designate

:
a
::::::::
directory

:::
on

:::::
your

:::::::::
computer

::
as

::
a

:::
Git

:::::
repo,

:::::
type

:::
the

:::::::::
command

:
git init

:
.
::::
This

:::::::::
initializes

::::
the

:::::::::
repository

:::
and

::::
will

:::::
allow

::::
you

::
to

::::::
track

:::
the

::::
files

:::::::
located

::::::
within

::::
that

:::::::::
directory.

:::
B)

::::::
Once

:::
you

:::::
have

::::::
added

:
a
::::

file,
::::::
follow

:::
the

:::
git

:::::::::::
add/commit

:::::
cycle

::
to

::::::
place

:::
the

::::
new

:::
file

::::
first

::::
into

::::
the

:::::::
staging

::::
area

:::
by

::::::
typing

:
git add

:
to

:::::::::
designate

:
it
:::

to
:::
be

::::::::::
committed,

::::
and

:::::
then

:
git commit

::
to

::::
take

::::
the

::::::::
shapshot

:::
of

::::
that

::::
file.

:::::
The

:::::::
commit

::
is
::::::::
assigned

::
a

:::::::
commit

::::::::
identifier

:::::::
(d75es)

:::::
that

:::
can

:::
be

:::::
used

::
in

::::
the

::::::
future

::
to

::::
pull

:::
up

::::
this

:::::::
version

::
or

:::
to

::::::::
compare

::::::::
different

:::::::::
committed

::::::::
versions

::
of
::::

this
::::

file.
::::

C)
:::
As

::::
you

::::::::
continue

:::
to

::::
add

::::
and

::::::
change

:::::
files,

::::
you

::::::
should

:::::::::
regularly

::::
add

:::
and

::::::::
commit

:::::
those

::::::::
changes.

::::::
Here,

:::
an

:::::::::
additional

::::::::
commit

::::
was

:::::
done

::::
and

:::
the

::::::::
commit

:::
log

::::
now

::::::
shows

::::
two

:::::::
commit

:::::::::
identifiers:

::::::
d75es

:::::
(from

::::
step

:::
B)

::::
and

:::::
f658t

::::
(the

::::
new

::::::::
commit).

:::::
Each

::::::::
commit

:::
will

::::::::
generate

::
a

::::::
unique

::::::::
identifier,

::::::
which

::::
can

::
be

:::::::::
examined

:::
in

::::::
reverse

::::::::::::
chronological

::::::
order

:::::
using

:
git log.

:



13

:::::::
Figure

::
3.

::::::::::
Working

:::::
with

:::::
both

::
a
::::::
local

::::
and

::::::::
remote

:::::::::::
repository

:::
as

::
a

::::::
single

::::::
user. A) On your

computer you commit to a Git repository (commit d75es). B) On GitHub, you create a new repository
called thesis. This repository is currently empty and not linked to the repo on your local machine. C)
The command git remote add connects your local repository to your remote repository. The remote
repository is still empty, however, because you have not pushed any content to it. D) You send all
the local commits to the remote repository using the command git push. Only files that have been
committed will appear in the remote repository. E) You repeat several more rounds of updating scripts
and committing on your local computer (commit f658t and then commit xv871). You have not yet
pushed these commits to the remote repository, so only the previously pushed commit is in the remote
repo (commit d75es). F) To sync the local and remote repositories

::::
bring

:::
the

:::::::
remote

:::::::::
repository

::::::::::
up-to-date

::::
with

::::
your

:::::
local

::::::::::
repository, you git push the two new commits to the remote repository. The local and

remote repositories now contain the same files and commit histories.
Figure 3

:
4. Contributing to Open Source Projects. You found an error in the README

for a cool project hosted on GitHub and you would like to fix it. A) The coolSUBSCRIPTNBproject
repository exists on GitHub (along with the commit history of the project) , but you would like to
edit the README on your computer

:::
We

::::::
would

::::
like

::::
you

::
to

::::
add

:::
an

::::::
empty

:::
file

:::::
that

::
is

:::::::
named

::::
after

:::::
your

:::::::
GitHub

::::
user

:::::
name

:::
to

:::
the

:::::
repo

::::
used

:::
to

:::::
write

::::
this

:::::::::::
manuscript.

:::
A)

::::::
Using

::::
your

::::::::
internet

::::::::
browser,

::::::::
navigate

::
to

:
github.com/jdblischak/git-for-science. B) First, you fork the coolSUBSCRIPTNBproject repository

into your account on GitHub, bringing the entire commit history of the project along with the code
::::
Click

::
on

::::
the

:::::::
“Fork”

::::::
button

:::
to

::::::
create

::
a

:::::
copy

::
of

::::
this

:::::
repo

:::
on

:::::::
GitHub

::::::
under

:::::
your

:::::::::
username. C) To

::
On

:::::
your

:::::::::
computer,

::::
type

:
git clone https://github.com/username/git-for-science.git,

::::::
which

::::
will create a

copy of the repository on your computer, you the repository from your GitHub account
::::::::::::
git-for-science

::
on

:::::
your

:::::
local

::::::::
machine. D) You make a change to the README, save the file , add the file

::::::::
Navigate

::
to

:::
the

:
readers

::::::::
directory

:::
by

::::::
typing

:
cd git-for-science/readers/.

:::::::
Create

:::
an

::::::
empty

:::
file

:::::
that

::
is

:::::
titled

::::
with

:::::
your

:::::::
GitHub

:::::::::
username

:::
by

:::::::
typing

:
touch username.txt.

:::::::::
Commit

:::::
that

:::::
new

:::
file

:::
by

:::::::
adding

::
it
:

to
the staging area , and commit (creating commit 09pr4). This commit is only on your local computer.
Your remote coolSUBSCRIPTNBproject repository and the original remote coolSUBSCRIPTNBproject
repository do not have this commit. E) You sync your local and remote repositories using . The original
coolSUBSCRIPTNBproject still does not have your update to the README file. F) To suggest the
change in the README to the original coolSUBSCRIPTNBproject team, submit a pull request via
GitHub. If the owner(s)of the coolSUBSCRIPTNBproject repository like your change, they will accept
the pull request and your changes will be incorporated into the project.

Figure ??. Collaboration using GitHub. A
:
(git add username.txt

:
)
::::
and

:::::::::::
committing

:::::
with

:
a
::::::::
message

::
(git commit -m "Add username to directory of readers."

::
).

::::::
Note

:::::
that

::::
your

::::::::
commit

::::::::
identifier

::::
will

:::
be

::::::::
different

::::
than

::::::
what

::
is

::::::
shown

:::::
here.

:::
E) You have a repository on your computer and

on GitHub that you have already connected using , but you have not pushed any content to the remote
repo yet. B) You push your local commits to your remote repository using (both your local and your
remote have commit d75es). C) Your collaborator would like to help you analyze your data. They make
a copy of your remote repository into their GitHub account using the ”fork” option in GitHub. All
three repositories have the same version history (commit d75es). D) Your collaborator wants a copy of
the repository on their local computer so they can make edits. They the repository from their remote
GitHubaccount. E) Your collaborator edits a file and commits a change to their local repository (commit
t957s). Changes are not automatically shared across all repositories, therefore your local, your remote,
and your collaborator’s remote only have commit d75es

:::::::::
committed

:::::
your

::::
new

:::
file

::::::
locally

::::
and

:::
the

:::::
next

::::
step

:
is
:::

to
:::::
push

::::
that

::::
new

::::::::
commit

:::
up

::
to

::::
the

:::::::::::::
git-for-science

::::
repo

::::::
under

:::::
your

:::::::::
username

:::
on

::::::::
GitHub.

:::
To

:::
do

:::
so,

::::
type

:
git push origin master. F) Your collaborator syncs their local repo with their remote repo by

pushing. Now both your collaborator’s local and remote repositories have two commits (commit d75es
and commit t957s), while your local and remote only have one (commit d75es). G) Unaware of what your
collaborator is doing, you continue to work on your code and you make a new commit locally (commit

https://github.com/jdblischak/git-for-science


14

f658t). H) Your collaborator wants you to incorporate their changes into your code, so from GitHub
they issue a Pull Request. The changes are acceptable, so you confirm the Pull Request and merge the
changes into your remote repository. Your remote repository is ahead of your local repository by one
commit: the commit your collaborator made (commit t957s) In addition your local repository is ahead
of your remote repository by one commit that was made before the Pull Request was issued by your
collaborator (commit f658t). I) To incorporate the new commit from your collaborator into your local
repository, you commits from your remote to your local repository. Your local now has the commit from
your collaborator incorporated, but is still ahead of your remote by one commit. You could your changes
to sync your remote and local repositories

::
To

:::::::
request

:::
to

::::
add

::::
your

::::::::
commits

:::
to

:::
the

:::::::
original

:::::::::::::
git-for-science

::::
repo,

:::::
issue

::
a
::::
pull

:::::::
request

:::::
from

:::
the

:::::::::::::
git-for-science

::::
repo

::::::
under

::::
your

:::::::::
username

:::
on

::::::::
GitHub.

:::::
Once

:::::
your

::::
Pull

:::::::
Request

::
is

::::::::
reviewed

::::
and

:::::::::
accepted,

::::
you

::::
will

::
be

::::
able

:::
to

:::
see

::::
the

:::
file

::::
you

::::::::::
committed

::::
with

:::::
your

:::::::::
username

::
in

:::
the

:::::::
original

:::::::::::::
git-for-science

:::::::::
repository.

Figure 1.

References

[1] Ram K. Git can facilitate greater reproducibility and increased transparency in science. Source Code
Biol Med. 2013 Feb;8:7.

[2] Wilson G, Aruliah D, Brown C, Chue HN, Davis M, Guy R, et al. Best practices for scientific
computing. PLoS Biol. 2014 Jan;12:e1001745.

[3] ENCODE Project Consortium, Bernstein B, Birney E, Dunham I, Green E, Gunter C, et al. An
integrated encyclopedia of DNA elements in the human genome. Nature. 2012 Sep;489:57–74.

[4] Bailey T, Krajewski P, Ladunga I, Lefebvre C, Li Q, Liu T, et al. Practical guidelines for the
comprehensive analysis of ChIP-seq data. PLoS Comput Biol. 2013 null;9:e1003326.

[5] Noble W. A quick guide to organizing computational biology projects. PLoS Comput Biol. 2009
Jul;5:e1000424.



15

Figure 2.

[6] Morin A, Urban J, Sliz P. A quick guide to software licensing for the scientist-programmer. PLoS
Comput Biol. 2012 null;8:e1002598.



16

Figure 3.



17

Figure 4.


	Introduction to version control
	Version your code
	Share your code
	Contribute to other projects
	Conclusion
	Methods
	Table 1: Resources
	Box 1: Definitions
	Box 2: What not to version control
	Box 3: Managing large files
	Box 4: Choosing a license
	Box 5: Being Scooped
	Box 6: Journal Policies
	Box 7: Branching
	 
	Figure Legends

