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Abstract

Vegetative insecticidal proteins (Vips) are widely used in pest management, but Vip resistance is a 

big threat. DNA methylation plays important roles in regulating the response of biological 

organisms to environmental stress. In this study, DNA methylation map was developed for fall 

armyworm (FAW, Spodoptera frugiperda), and its function in regulating FAW Vip3Aa resistance 

was explored. FAW was screened by Vip3Aa for 10 generations, and bioassays indicated that 

Vip3Aa resistance increased trans-generationally. Based on the comparison of DNA methylation 

maps between Vip3Aa-resistant and -susceptible strains showed that gene body methylation was 

positively correlated with its expression. Moreover, the study demonstrated that a reduction in the 

methylation density within the gene body of a 3'5'-cyclic nucleotide phosphodiesterase gene 

resulted in decreased expression and increased resistance of FAW to Vip3Aa, which was validated 

through RNAi experiments. The mechanism of Vip3Aa resistance will improve the understanding 

of DNA methylation and its function in lepidoptera and provide a new perspective for making 

strategies to pest management.
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Introduction 

The gram-positive bacterium Bacillus thuringiensis (Bt) is one of the most successful biopesticide 

in the last few decades, and transgenic crops that produce Bt toxins (Bt crop) have revolutionized 

pest control (Palma et al., 2014). The economic, environmental, and social benefits from Bt crops 

have deteriorated because of the rapid evolution of resistance (Xiao and Wu, 2019). The molecular 

mechanisms involved need to be determined to monitor, delay, and counter pest resistance. 

Vegetative insecticidal proteins (Vips), which are produced by Bt during its vegetative stages, have 

broad-spectrum activity against lepidopteran insects, and have no binding sites in common with any

known Bt crystalline (Cry) proteins (Chakrabarty et al., 2020; Yang et al., 2021b). Fall armyworm 

(FAW), one of the most serious global invasive pests, has evolved Vip resistance (Bernardi et al., 

2015; F. Yang et al., 2019; Yang et al., 2021a), and its resistance level has been increasing annually 

in the field (Yang et al., 2021a). However, the action of Vips insecticidal and genetic basis of 

resistant mechanism is still largely unknown (Chakrabarty et al., 2020).

DNA modification involves the transfer of a methyl group onto the C5 position of cytosine to form 

5-methylcytosine (Moore et al., 2013). DNA methylation has a wide range of functions in 

regulating biological processes and the development of biological organisms  by maintaining 

chromatin stability (Li et al., 2022), suppressing transposon activity (Jansz, 2019), and regulating 

gene expression mainly by managing transcriptional elements access (Zhang et al., 2018). 

Considering the plasticity and inheritability, DNA methylation is a main concern of adaptive 

mechanisms (Xu et al., 2020; Zhang et al., 2018). The characters of DNA methylation that regulate 

stress resistance are induced rapidly and inheritable (Kou et al., 2011; Verhoeven et al., 2010), but 

in some situations, the induced stress resistance is lost when stress is absent (Wibowo et al., 2016). 

DNA methylation regulates stress resistance in insects (Chen et al., 2020; Huang et al., 2019). 

The potential  for DNA methylation to regulate Bt resistance has received less attention.  In the

present study, the FAW obtained Vip3Aa tolerance generation by generation under Vip3Aa pressure,

and  it  lost  Vip3Aa  tolerance  gradually  generation  by  generation  when  Vip3Aa  pressure  was

released. Moreover, the FAW lab strain expressed DNA methylation diversity between individuals.

Accordingly, a DNA methylation map was generated for the lab FAW strain by combining data

from individuals.  The DNA methylation maps were compared between susceptible  and Vip3Aa
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resistant strains. Our results indicated that DNA methylation play important roles in regulating FAW

Vip3Aa resistance. 

Materials and methods

Insect rearing and resistance selection 

The laboratory strain of S. frugiperda DH19 was obtained from DeHong (YunNan, China) and 

established in January 2019. The strain was reared at 27±2 ℃ with 75%±10% relative humidity and

14:10 hours of light:dark photoperiod. The adults were supplied with 10% sucrose solution (Jin et 

al., 2021). The DH19 strain was initially selected with 10 ppm Vip3Aa for five generations (F5) and

was continuously selected with 20 ppm Vip3Aa for five generations (F10). 

Bioassays 

The  half-inhibition  concentrations  (IC50)  of  Vip3Aa  to  FAW  were  determined  by  performing

bioassays.  The  Vip3Aa  toxins  used  in  this  study  were  obtained  from  the  Institute  of  Plant

Protection, Chinese Academy of Agricultural Sciences. The Vip3Aa surface overlay assays were

performed with neo-hatched larvae in 24-well tissue culture plates with surface area of 2 cm2 for

each well.  The  Vip3Aa series  concentration  solutions  were  prepared  by diluting  Vip3Aa stock

solution into PBS (pH = 7.4). Gelatinous diet was transformed into the plate wells, and each well

was filled with 1 g of diet. After the diet solidified, 50 µL of Vip3Aa solution was added into each

well, and the final series concentrations are listed in Supplementary Table 1. The solutions were

spread evenly and dried in a fume hood. Each well was inoculated with one neonate, and each

concentration included 48 replicates. To avoid decay and Vip3Aa exhausting, the diet was renewed

after 84 h. After incubation for 7 days, each larva was weighted, and the IC50 was computed in

probit analysis. 

Vip3Aa resistance inheritability tests 

After  selection  with  Vip3Aa  for  10  generations,  F10  expressed  significantly  13-fold  Vip3Aa

resistance compared with DH19. The inheritability of the Vip3Aa resistance for F10 was tested by

subjecting F10 to normal diet without Vip3Aa for three generations, and these generations were

subjected to bioassays. 

Vip3Aa treatment and sampling 
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The effects of Vip3Aa treatment on FAW mid-guts transcriptomes and methylomes were 

determined by treating the susceptible and resistant strains with Vip3Aa. For Vip3Aa treatment, the 

neo-hatched larvae were fed by 10, 20, and 20 ppm Vip3Aa diet to fifth-instar, while the control 

was fed with normal diet. The mid-guts of these larvae were dissected and washed with PBS (pH = 

7.0) and flash frozen in liquid nitrogen. The mid-guts from 12 larvae were pooled to form a 

biological replicate. The samples were stored at −80 ℃ before sequencing. 

Processing of Oxford nanopore technique and RNA sequencing data 

Oxford nanopore technique sequencing (ONT-Seq) and RNA sequencing (RNA-Seq) were 

performed in Novogen (Beijing, China). The version 1.0 S. frugiperda reference genome 

(GCF_011064685.1) was used for processing the sequencing data. 

Megalodon (v2.3.3) was employed to process the nanopore raw data to extract methylation info. In

this process, Megalodon using guppy (v4.5.4) was used for base calling. The bed files produced

were used for subsequent analysis. Considering that the gene body mC densities were correlated

between replicates and were comparable between samples, and the mC densities were dependent on

sequencing depth, DESeq2 was employed to compare gene body mC numbers to identify DMGs. In

the  process,  mC  numbers  were  normalized,  thus  eliminating  bias,  which  was  mediated  by

sequencing depth. The RNA-Seq reads were mapped onto the reference genome by using Hisat2.

Then, the reads’ coverage information was obtained and were passed to DESeq2 to identify DEGs. 

RNA interference experiments 

The primers for SfPDE8A and  eGFP were designed based on the reference sequences,  and T7

promoter was added to the 5’ end of the primers. All primers were synthesized by Sangon Biotech

(Shanghai,  China; Supplementary Table 2).  The total  RNA was isolated from DH19 fifth-instar

larvae  mid-guts  sample  by  using  TRIzol  (Invitrogen,  USA)  according  to  the  manufacturer’s

protocol. Then, the extracted total RNA was reverse-transcribed into cDNA by using HiScript III 1st

Strand cDNA synthesis kit (Vazyme, China, Cat: R312). PCR was then performed with the cDNA

as template and the primers above to produce dsRNA templates. The dsRNA was synthesized with

T7 high-yield RNA transcription kit (Vazyme, China, Cat: TR101). The final dsRNA concentration

was adjusted to 2,500 ng/μL with water, and 100 nL of dsRNA was injected into the abdomen of the

third instar larvae of DH19 by using a glass capillary injection needle. A total of 120 larvae were

injected with dsRNAs targeting SfPDE8A and eGFP. The larvae were kept on normal diet for 24 h,

and then  transferred  onto  20 ppm Vip3Aa diet.  The larvae  weight  was recorded after  72 h  to

estimate the growth inhibition rate. Then, the total RNA was extracted, and cDNA was synthesized
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using HiScript III 1st Strand cDNA synthesis kit (Vazyme, China, Cat: R312) for quantitative real-

time PCR analysis. GAPDH was used as an internal control to normalize the gene expression level.

The primers used for qPCR are listed in supplementary Table 2. 

Computation of normalized CpG contents and functional enrichment analysis 

The normalized CpG contents [observed/expected (o/e)] were computed as FCpG/(FC × FG). The 

distribution profile of gene body CpG contents was predicted using mixtools (Benaglia et al., 2009).

The whole genome peptide sequences were annotated by eggNOG, and candidate gene sets were 

enriched using ClusterProfiler (Yu et al., 2012). 

Results 

Vip3Aa resistance and inheritability during Vip3Aa screening

The bioassay of Vip3Aa on FAW revealed that the IC50 of original generation (F0) was 6.23 ng/cm2.

The IC50 increased significantly to 13.67 ng/cm2 (P < 0.01) and 81.73 ng/cm2 (P < 0.01) after being

continuously screened for five (F5) and ten (F10) generations, respectively. The IC50 value of F10

reached 13 times that of the wild type (Fig 1A). Vip3Aa susceptibility was gradually restored in the

following generations without Vip3Aa screening stress. After cultivation on normal diet for three

generations, the IC50 value recovered to 15.08 ng/cm2 (Fig 1B). 

FAW mid-gut methylation map 

The FAW mid-gut DNA methylation map was generated by ONT-seq on our lab strain. The ONT-

seq reads covered 98.24% of the reference genome. The mean coverage depth was 119 (mean = 

118.43, median = 119; Supplementary Figure 1A). In the detected cytosines, 10.97% were 

methylated. The mean methylation level was 1.19% (mean = 2.54%, median = 1.19%; 

Supplementary Figure 1B). The methylcytosines (mC) were detected in CG, CHG, and CHH 

contexts. In each of these contexts, 13.39, 1.60, and 4.11 million mCs were present (Supplementary 

Figure 2) with proportions of 70.13%, 8.35%, and 21.52%, respectively (Fig 2A). For an overview 

of the whole genomic methylation, the genome was divided into 50 kb end-to-end windows for 

computing mC densities and mean methylation levels. The mC densities ranged from 0 to 0.033%. 
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The median and mean for the density values were 0.16% and 0.17%, respectively (Supplementary 

Figure 1C). The 50 kb mean methylation levels ranged from 0.006% to 100%, and the mean and 

median for the mean level values were 2.538% and 1.191%, respectively (Supplementary Figure 

1D). The methylation status was also compared to correspondence genomic regional sequencing 

coverage depth, normalized CpG contents, gene coding density, and gene expression levels. The 

methylation status was highly correlated with sequencing depth. The mean methylation levels and 

mC densities were negative and positively correlated with sequencing depth, respectively, whereas 

the mean methylation levels were negatively correlated with mC densities. The methylation status 

was not correlated with normalized CpG contents, gene coding densities, and gene expression levels

(Fig 2B, Supplementary Figure 3). S. frugiperda genomic regions expressed bimodal profile, but the

regional CpG contents did not express clear linear relationship with regional mC densities. S. 

frugiperda genes also expressed a bimodal profile for their normalized CpG dinucleotide content 

(Supplementary Figure 4A). Gene body mC densities were not correlated with their normalized 

CpG contents (Supplementary Figure 4B). The methylated genes expressed similar mC density 

patterns in the upstream, gene body, and downstream. While the majority of the methylated genes 

exhibit a relatively low mC densities in their upstream regions, gene bodies, or downstream regions,

a subset of genes demonstrate an exceptionally high mC densities in one or more of these regions 

(Fig 2C). The top 5% methylated genes for each stream had a small overlap (Supplementary Figure 

5). GO enrichment analysis revealed that the top methylated genes were involved in house-keeping 

processes, such as RNA processing, translation, and respiration (Supplementary Figure 6). 

DNA methylation conservation and variation during Vip3Aa screening 

Approximately 0.8–2 million mCs were detected in each sample. The mC numbers varied across 

samples (Fig. 3A, Supplementary Figure 7A). The methylation levels expressed similar 

distributions for each sample. The methylation levels clearly expressed two-peak patterns, a low 

methylation level peak, and a high methylation level peak. The low-methylation-level (less than 
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30%) peak comprised the largest proportion of mC and the high-methylation-level (higher than 

95%) peak comprised a small proportion of mC (Supplementary Figure 7B). The mC expressed 

similar context proportions for each sample. The proportions of mC in CG, CHG, and CHH were 

79.96%, 5.66%, and 14.39, respectively (Supplementary Figure 8). 

Although Vip3Aa screening and treatment did not change the methylation level distributions, in F0 

and F5, Vip3Aa treatment significantly decreased the number of mC (P < 0.05). In F10, where a 

relatively high Vip3Aa resistance was observed, Vip3Aa treatment did not reduce the number of 

mCs (Fig 3A). The mC levels and sites were less correlated between any of the two samples 

(Supplementary Figure 9). In many studies, differentially methylated regions (DMR) were 

identified in the range of 100–500 bp (Herb et al., 2012; Rajkumar et al., 2020). To evaluate the 

conservation of methylation in 500 bp region between samples, the mC density and mean 

methylation levels in 500 bp window slipping by 100 bp steps on the genome were computed and 

their pairwise correlation were detected. The results indicated that 500 bp window methyl cytosine 

densities and mean methylation levels were also less correlated for any two samples 

(Supplementary Figure 10). Since gene expression could be regulated by gene region mC s. 

Upstream, gene body, and downstream mC densities and mean methylation levels were computed. 

The pairwise correlation analysis of the gene region mC densities and mean methylation levels 

revealed that the mC densities were highly correlated in the upstream, gene body, and downstream, 

whereas the mean methylation levels were not (Supplementary Figure 11). The methylated genes 

expressed similar mC density patterns in the upstream, gene body, and downstream (Supplementary

Figure 12). 

Principle components analysis (PCA) on each gene stream mC density of each samples revealed 

that the F10 samples were clearly isolated from other samples. The F10 control group and Vip3Aa 

treatment group could not be distinguished. In F0 and F5, the samples could neither be demarcated 

by generations nor treatment (Figs 3B, C, D). Considering that the F10 samples were demarcated by
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PCA, differentially methylated genes (DMG) were identified by comparing F10 to F5 and F10 to F0

on each gene stream mC densities. Approximately 135, 370, and 116 DMGs were identified in the 

upstream, gene body, and downstream regions, respectively (Supplementary Figures 13A, B, C). 

The DMG for each stream had a small overlap (Supplementary Figure 13D). The DMG clearly 

expressed two-cluster mC density patterns (Fig 4). The first cluster DMG expressed high mC 

density in the F0 and F5 samples, while the second cluster DMG expressed high mC density in the 

F10 samples. The SD values of DMGs was also computed from the three replicates. The genes that 

express high mC densities in F10 also expressed high SD values and vice versa. 

Differentially expressed genes based on Vip3Aa screening 

PCA on gene tags per kilobase per million mapped reads (TPM) values for each sample revealed 

that F10- and Vip3Aa-treated F10 samples were distinguished from the other samples. However, 

F10- and Vip3Aa-treated samples cannot be distinguished. Vip3Aa-treated F0 and F5 samples were 

clearly demarcated from the other samples on the second and first PC level, respectively. F0 and F5 

control samples could not be distinguished from their treatment samples (Supplementary Figure 

14A). Based on the mC PCA, the tenth-generation samples were distinguished from the other 

samples. Comparison was carried out between the tenth- and fifth-generation and between the tenth-

generation and wild-type samples to identify differentially expressed genes (DEGs). Finally, 2,850 

DEGs were identified (Supplementary Figure 14B). The DEGs clearly expressed two-cluster 

expression patterns. The first cluster of genes expressed high expression levels in the tenth 

generation. The second cluster of genes expressed low expression levels in the tenth generation 

compared with F0 and F5 (Supplementary Figure 15). Two and four KEGG pathways were 

significantly enriched (Pfdr < 0.05) in the first and second cluster, respectively. P450 was 

significantly enriched and had the highest enrichment ratio in the second cluster (Figure 5A). A total

of 12 P450 genes were differentially expressed, in which nine genes were methylated in the 

upstream or gene body. However, only one of these nine P450 genes were differentially methylated 
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in its gene body (Figure 5B). These P450 genes expressed higher expression levels in the F10- and 

Vip3Aa-treated F10. Their expression levels were not correlated with their methylation densities, 

except for the differentially methylated one (XM_035588305.1, Figure 5C, Supplementary Figure 

16). 

Relationship between DMGs and DEGs

A total of 199 DEGs were differentially methylated in their upstream or downstream. The largest 

proportion (72.4%) of these genes were differentially methylated at their gene body. A total of 54 

DEGs were differentially methylated at their upstream. However, 26 of these genes were 

differentially methylated at their gene body or downstream. More than half of the downstream 

differentially methylated DEGs were also differentially methylated at their gene body 

(Supplementary Figure 17). The effects of DNA methylation on gene expression were determined 

by performing linear relationship analysis of the fold change of expression level and mC densities 

for each stream between F10 and F0 and between F10 and F5. The gene body and downstream 

differentially methylated genes expressed clear linear relationship between the fold change of 

expression level and mC density. However, the fold change of expression level and upstream mC 

density had a low linear relationship (Figure 6, Supplementary Figure 18, Supplementary Figure 

19). 

SfPDE8A gene contribute to Vip3Aa resistance

The gene LOC118265840 expressed extremely high methylation density in the F10- and Vip3Aa-

treated F10. The gene was differentially expressed and methylated (Figure 6). Based on functional 

annotation, the gene was identified as the SfPDE8A gene, which belongs to PDE8 subfamily. Two 

SfPDE8 genes were identified in the FAW genome, and both genes were located on the seventh 

chromosome (NC_049717.1). These genes were nominated as SfPDE8A (LOC118265840) and 

SfPDE8B (LOC118265759) according to their location. In F0, Vip3Aa treatment significantly 

increased SfPDE8A expression level and methylation density (P < 0.05). In F5, Vip3Aa 
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significantly reduced SfPDE8A expression level and methylation density (P < 0.05). However, in 

F10, the expression level of SfPDE8A and methylation density were not altered by Vip3Aa 

treatment (Figure 7A, B, C). qPCR result indicated that the SfPDE8A expression level was 

significantly reduced to a half by RNAi (P < 0.05, Figure 8A). The RNAi of this gene significantly 

increased the FAW growth rate when fed with Vip3Aa diet (P < 0.05; Figure 8B). 

Discussion

FAW rapidly obtained Vip3Aa resistance 

Organisms acquire long-term and short-term resistance to biotic and abiotic stresses through 

different mechanisms. Genetic variations contribute to long-term evolved stress resistance 

(Prodhomme et al., 2020), while epigenetic modifications contribute to short-term obtained stress 

resistance (Dowen et al., 2012; Stassen et al., 2018). Epigenetic modification determined stress 

resistances that are inheritable in few generations, which are lost in the long run (Boyko et al., 

2010). Long time Bt stress lead to mutations on Bt toxin resistance correlated genes, which lead to 

permanent Bt resistance resistance in Lepidoptera insects (X. Yang et al., 2019). In the present 

study, FAW obtained inheritable Vip3Aa resistance in several generations under Vip3Aa pressure. 

The Vip3Aa resistance increased with the Vip3Aa screened generation numbers. Its Vip3Aa 

resistance gradually decreased after Vip3Aa stress was eliminated. Therefore, Vip3Aa resistance 

can be regulated by epigenetic modification. DNA methylation modification is an epigenetic change

that contributes to stress resistance (Ding et al., 2022; Sun et al., 2021). Accordingly, the effects of 

DNA methylation variation on Vip3Aa resistance was studied in FAW. 

Characteristics of FAW DNA methylation map 

The DNA methylation map varies across tissues in a specific biological organism (Marshall et al., 

2019; Rajkumar et al., 2020; Zhang et al., 2013). DNA methylation maps are highly conserved in a 

specific tissue between individuals within a species (Uli et al., 2018; Wang et al., 2021). However, 

in the present study, the FAW mid-gut methylation status was less conserved in our laboratory strain
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individuals at the single nucleotide level compared with that in previous studies. All the sequencing 

results were combined to generate a methylation map for the laboratory FAW strain DH-19. 

In our FAW DNA methylation map, the mCs were detected in CG, CHG, and CHH (H represents A,

T, or G) contexts. The DNA methyltransferases 3 (DNMT3) catalyzes non-CG context methylation, 

but DNMT3 is lost in Lepidoptera, and CHH context methylation is not observed in Lepidoptera 

(Glastad et al., 2011; Omar et al., 2020). 

However, CHH methylation was identified in Bombyx mori (Lepidoptera:Bombycidae), albeit in an 

extremely small proportion (Li et al., 2020), and in the absence of DNMT3 (Gao et al., 2020). The 

whole FAW reference genome was scanned, but no DNMT3 was identified and more than 20% mC 

was in CHH context. Therefore, a novel and distinct pathway can be determined for non-CG 

methylation in FAW. 

Considering that the methylation status is less conserved between individuals, the methylation 

levels are negatively correlated with sequencing depth, and the mC densities are positively 

correlated with the sequencing depth. The less conservation also resulted in low methylation levels. 

In this strain methylation map, the proportion of mC in CG was smaller than that in separated 

samples, while the proportions of mC in CHG and CHH were larger than those in separated 

samples. Therefore, the methylation status is more highly conserved in CG context than in CHG 

and CHH contexts in FAW. 

Gene body CpG dinucleotide contents are considered to be a proxy for DNA methylation, which is 

negatively correlated with normalized CpG contents in Apis mellifera (Glastad et al., 2011). The 

normalized CpG contents of S. frugiperda gene body expressed a bimodal profile that is similar to 

that in Bombyx mori. However, gene body mC densities were not correlated with normalized CpG 

contents. Gene bodies are preferentially methylated in insects (Wang et al., 2013; Xu et al., 2021; 

Zemach et al., 2010). However, in the present study, FAW DNA methylation was evenly distributed 
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alongside the genome. The DNA methylation features might contribute to FAW-specific migration 

and invasive characteristics. In the present study, although the genes expressed similar mC densities

in their either streams, extremely high-density methylated genes were still observed. GO enrichment

indicated that these genes were enriched in house-keeping pathways (Supplementary Figure 6). 

These results are consistent with the findings in arthropods (Lewis et al., 2020). 

FAW methylation variation resulted by Vip3Aa screening 

DNA methylation is maintained with high fidelity under stress (Sun et al., 2021; Wang et al., 2015). 

The results of the present study indicate that methylation level distributions and methylated context 

proportions remained unchanged transgenerationally under Vip3Aa screening in FAW. In potato 

beetle (Leptinotarsa decemlineata), mC counts decreased because of pesticide treatment (Brevik et 

al., 2021). In the present study, in F0, Vip3Aa treatment significantly reduced the mC counts. 

However, in F5 and F10, where significant Vip3Aa resistance was expressed, Vip3Aa treatment did 

not reduce the mC counts. 

Genomic methylation variations have been observed transgenerationally under stress (Stassen et al.,

2018). In the present study, genomic DNA methylation variation was observed between Vip3Aa 

screened generation and original generation. In many studies, DMRs are identified up to 500 bp 

regions on the genome (Herb et al., 2012; Rajkumar et al., 2020). However, in the present study, 

DNA methylation was not conserved at the single-nucleotide level between samples. The 

methylation status was not conserved at the 500-bp level. Hence, the methylation was not 

comparable between the sample at single nucleotide level nor at the 500-bp level. The results 

indicate that the gene region mC densities were highly conserved between samples, and mC 

densities were positively correlated with sequencing depth, which varied across replicates. The mC 

densities of each gene region were normalized and compared to identify DMGs. 
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Some of the DMG expressed positive correlation between mC density and SD values. Considering 

that the mC density of these genes were correlated with Vip3Aa resistance, the mC densities were 

under selection during Vip3Aa screening. 

Gene body DNA methylation was positively correlated with gene expression 

Genic regions are preferentially methylated in insects (Glastad et al., 2011). The DNA methylation 

map of FAW established in the present study is not consistent with this conclusion. The current 

results indicate that mC is distributed evenly on the genome. DNA methylation regulates gene 

expression mainly by regulating transcription element access. Upstream DNA methylation always 

represses gene expression by directly inhibiting the binding of transcriptional factors (Zhang et al., 

2018). The relationship between gene body DNA methylation and gene expression is unclear from 

the studies in vertebrates and plants. Gene body methylation promotes gene expression (Yang et al., 

2014), whereas some studies have obtained opposite findings (Jjingo et al., 2012; Zou et al., 2020). 

Gene body methylation is positively correlated with gene expression in insects (Li et al., 2020; Xu 

et al., 2021). In the present study, gene body and downstream mC density variation expressed 

clearly linear relationships with gene expression level variation. The upstream mC density variation 

was also positively correlated with the gene expression level variation, but the correlation was not 

significantly correlated (P < 0.05). This finding was obtained possibly because more than half of the

genes had differentially methylated upstream accompanied with different methylation in their gene 

bodies. The expression levels of these genes were simultaneously affected by their upstream and 

gene body methylation, thus causing these results. More than half of the genes had differentially 

methylated downstream accompanied with different methylation in their gene bodies. These results 

indicate that gene body mC density variation is positively correlated with the gene expression level. 

However, the effect of downstream DNA methylation on gene expression has not been determined. 

cAMP pathway was involved in FAW Vip3Aa resistance 
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Cyclic adenosine monophosphate (cAMP) is a secondary messenger that is involved in the 

regulation many metabolic pathways and biological processes (Shaw et al., 2022). In insects, it 

regulates the expression of P450 genes (Li and Liu, 2017; Watanabe et al., 2017), which contribute 

to numerous xenobiotics resistance (Lu et al., 2021). The upregulation of P450 genes might increase

FAW Bt resistance (Boaventura et al., 2021). cAMP-phosphodiesterase (PDE) catalyzes cAMP 

hydrolysis and inhibits cAMP signal transduction pathway (Bender and Beavo, 2006; Houslay, 

2010). In the present study, the SfPDE8A gene expressed gene body demethylation in Vip3Aa 

screened FAW, which expressed significant Vip3Aa resistance. Some P450 genes were upregulated 

in the Vip3Aa screened FAW. The knockdown of SfPDE8A significantly increased FAW Vip3Aa 

resistance. Therefore, FAW increased its Vip3Aa resistance via the cAMP pathway. 

Conclusions 

Under  Vip3Aa  pressure,  FAW  acquired  Vip3Aa  resistance,  which  was  regulated  by  DNA

methylation  variation.  At  the  single  nucleotide  level,  our  laboratory  strain  expressed  DNA

methylation  diversity  in  their  mid-gut.  The  FAW DNA methylation  status  was  under  selection

during Vip3Aa screening. In FAW, gene body mC densities were positively correlated with gene

expression levels.  Demethylation in  the gene  body of  SfPDE8A  gene decreased  its  expression,

which might  increase P450 gene expression via  the cAMP signal  pathway and increased FAW

Vip3Aa resistance. 
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Figures 

Fig. 1. Inhibition curves of Vip3Aa on Vip3Aa screened fall armyworm (FAW). (A) Inhibition

curves of original generation (F0) and the generations screened by Vip3Aa for five (F5) and ten

(F10) generations.  (B) Inhibition curves of F0, Vip3Aa screened tenth generation (F10+) and its

next three progenies that were cultivated without Vip3Aa (F11-, F12-, and F13-). 
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Fig. 2. Integration of genome, methylome, and transcriptome. (A) Methylated context 

proportions. (B) Circos plot that shows the (b) normalized CpG content, (c) gene coding density, (d)

mean sequencing depth, (e) methylcytosine (mC) density, (f) mean methylation level, and (g) 

normalized tags per kilobase per million mapped reads value in the 50 kb level. (C) Distribution of 

mC densities of upstream, gene body, and downstream. 
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Fig.  3. Methylated  context  counts  and  principal  components  analysis  of  gene  region

methylcytosine densities. (A) Methylated context counts in F0, F5, and F10 controls and their

Vip3Aa treatments. PCA of (B) upstream, (C) genebody, and (D) downstream mC densities for each

sample. 
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Fig. 4. Mean and standard error patterns of methylcytosine (mC) densities for differentially

methylated genes. Patterns of mean and standard errors (n = 3) of the (A) upstream, (B) genebody,

and (C) downstream mC densities for differentially methylated genes. F0, F5, and F10 represent the

original, fifth, and tenth generation, respectively. CK and TR represent the control and Vip3Aa-

treated groups. 
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Fig. 5. KEGG enrichment of Vip3Aa resistance positively correlated differentially expressed

gene  cluster.  (A) Significantly  enriched  KEGG  pathways  in  resistance  positively  correlated

differentially expressed gene cluster (Pfdr < 0.05).  (B) Relationship between significantly enriched

P450 genes and differentially methylated genes. (C) Expression levels and gene body methylation

density patterns of significantly enriched P450 genes. 
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Fig. 6. Point plot of the differentially expressed and methylated genes in the gene body based

on the comparison log2 fold change between F10 and F0 control groups. The line was produced

by loess analysis, and the dark grey area represents 95% confidence interval. The size and color of

each point represent the maximum values for the log2 transformation of mythylcytosine densities

and TPM in F10 or F0 control groups for each gene, receptively. 
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Fig 7  Expression levels and methylation status of fall armyworm mid-gut  SfPDE8A  gene under

normal diet (CK) and Vip3Aa diet (TR). (A) Mean TPM. (B) Boxplot of normalized methylcytosine

numbers. (C) Methylation status of SfPDE8A gene region. F0, F5, and F10 represent the original,

the fifth, and the tenth generation, respectively.
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Fig 8 SfPDE8A gene knock-down significantly increased fall armyworm (FAW) Vip3Aa resistance.

(A) Growth rate of FAW third-instar larvae injected with GFP and SfPDE8A dsRNAs after 72 h. (B)

Relative expression levels of SfPDE8A in the third-instar FAW larval mid-gut 72 h after GFP and

SfPDE8A dsRNA injection. 
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Include:

Fig. S1 to S19. 

Table S1 and S2. 
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