References
- WHO (2023) Chagas disease (American trypanosomiasis)- Global
distribution of cases of Chagas disease based on official stimates on
2018. Available at:
https://www.who.int/health-topics/chagas-disease#tab=tab_1.
Accessed 17 february 2023
- Dias E, Laranja FS, Miranda A, et al. Chagas’ disease; a clinical,
epidemiologic, and pathologic study. Circulation. 1956;14(6):1035-60.
doi:10.1161/01.cir.14.6.1035
- Rassi A Jr, Rassi A, Marin-Neto JA. Chagas disease. Lancet
2010;375(9723):1388-402. doi:10.1016/S0140-6736(10)60061-X
- Rassi A Jr, Marin-Neto JA, Rassi A. Chronic Chagas cardiomyopathy: a
review of the main pathogenic mechanisms and the efficacy of
aetiological treatment following the BENznidazole Evaluation for
Interrupting Trypanosomiasis (BENEFIT) trial. Mem Inst Oswaldo Cruz.
2017;112, 224-235. doi:10.1590/0074-02760160334
- Teixeira MM, Gazzinelli RT, Silva JS. Chemokines, inflammation andTrypanosoma cruzi infection. Trends Parasitol.
2002;18(6):262-5. doi:10.1016/s1471-4922(02)02283-3
- Ribeiro AL, Nunes MP, Teixeira MM, et al. Diagnosis and management of
Chagas disease and cardiomyopathy. Nat Rev Cardiol. 2012;9(10):576-89.
doi:10.1038/nrcardio.2012.109
- Viotti R, Vigliano C, Lococo B, et al. Side effects of benznidazole as
treatment in chronic Chagas disease: fears and realities. Expert Rev
Anti Infect Ther. 2009;(2):157-63. doi:10.1586/14787210.7.2.157
- Molina I, Salvador F, Sánchez-Montalvá A, et al. Toxic profile of
benznidazole in patients with chronic Chagas disease: risk factors and
comparison of the product from two different manufacturers. Antimicrob
Agents Chemother. 2015;59(10):6125-31. doi:10.1128/AAC.04660-14
- Morillo CA, Marin-Neto JA, Avezum A, et al. Randomized trial of
benznidazole for chronic Chagas’ cardiomyopathy. N Engl J Med.
2015;373(14):1295-306. doi:10.1056/NEJMoa1507574
- Padilla AM, Bustamante JM, Tarleton RL. CD8+ T cells
in Trypanosoma cruzi infection. Curr Opin Immunol.
2009;(4):385-90. doi:10.1016/j.coi.2009.07.006
- Parodi C, Padilla AM, Basombrío MA. Protective immunity againstTrypanosoma cruzi . Mem Inst Oswaldo Cruz.
2009;104Suppl1:288-94. doi:10.1590/s0074-02762009000900038
- Tarleton RL. CD8+ T cells in Trypanosoma
cruzi infection. Semin Immunopathol. 2015;37(3):233-8.
doi:10.1007/s00281-015-0481-9
- Pipkin ME, Lieberman JL. Delivering the kiss of death: progress on
understanding how perforin works. Curr Opin Immunol.
2007;19(3),301–8. doi:10.1016/j.coi.2007.04.011
- Chowdhury D, Lieberman JL. Death by a thousand cuts: granzime pathways
of programmed cell death. Annu Rev Immunol. 2008;26,389–420.
doi:10.1146/annurev.immunol.26.021607.090404
- Paiva CN, Castelo-Branco MT, Lannes-Vieira J, et al. Trypanosoma
cruzi : protective response of vaccinated mice is mediated by
CD8+ cells, prevents signs of polyclonal T
lymphocyte activation, and allows restoration of a resting immune
state after challenge. Exp Parasitol. 1999;91(1):7-19.
doi:10.1006/expr.1999.4356
- Martin D and Tarleton R. Generation, specificity, and function of
CD8+ T cells in Trypanosoma cruzi infection.
Immunol Rev. 2004;201:304-17. doi:10.1111/j.0105-2896.2004.00183.x
- Dumonteil E, Bottazzi ME, Zhan B, et al. Accelerating the development
of a therapeutic vaccine for human Chagas disease: rationale and
prospects. Expert Rev Vaccines. 2012;11(9):1043-55.
doi:10.1586/erv.12.85
- Sathler-Avelar R, Vitelli-Avelar DM, Teixeira-Carvalho A, et al.
Innate immunity and regulatory T-cells in human Chagas disease: what
must be understood? Mem Inst Oswaldo Cruz. 2009;104Suppl1:246-51.
doi:10.1590/s0074-02762009000900031.
- Rodrigues MM, Oliveira AC, Bellio M. The immune response toTrypanosoma cruzi : role of toll-like receptors and perspectives
for vaccine development. J Parasitol Res. 2012;2012:507874.
doi:10.1155/2012/507874
- Arango-Duque G, Descoteaux A. Macrophage cytokines: involvement in
immunity and infectious diseases. Front Immunol. 2014;5:491.
doi:10.3389/fimmu.2014.00491
- Oishi Y, Manabe I. Macrophages in age-related chronic inflammatory
diseases. NPJ Aging Mech Dis. 2016;28;2:16018.
doi:10.1038/npjamd.2016.18
- Kumar S, Tarleton RL. Antigen-specific Th1 but not Th2 cells provide
protection from lethal Trypanosoma cruzi infection in mice. J
Immunol. 2001;166(7):4596-603. doi:10.4049/jimmunol.166.7.4596
- Boscá L, Zeini M, Través PG, et al. Nitric oxide and cell viability in
inflammatory cells: a role for NO in macrophage function and fate.
Toxicology. 2005;208(2):249-58. doi:10.1016/j.tox.2004.11.035
- Cuervo H, Pineda MA, Aoki MP, et al. Inducible nitric oxide synthase
and arginase expression in heart tissue during acute Trypanosoma
cruzi infection in mice: arginase I is expressed in infiltrating
CD68+ macrophages. J Infect Dis.
2008;15;197(12):1772-82. doi:10.1086/529527
- Barnard RT. Recombinant vaccines. Expert Rev Vaccines.
2010;9(5):461-3. doi:10.1586/erv.10.48
- de la Cruz JJ, Villanueva-Lizama L, Dzul-Huchim V, et al. Production
of recombinant TSA-1 and evaluation of its potential for the
immuno-therapeutic control of Trypanosoma cruzi infection in
mice. Hum Vaccin Immunother. 2019;15(1):210-219.
doi:10.1080/21645515.2018.1520581
- Martinez-Campos V, Martinez-Vega P, Ramirez-Sierra MJ, et al.
Expression, purification, immunogenicity, and protective efficacy of a
recombinant Tc24 antigen as a vaccine against Trypanosoma cruziinfection in mice. Vaccine. 2015;33(36):4505-12.
doi:10.1016/j.vaccine.2015.07.017
- Villanueva-Lizama LE, Cruz-Chan JV, Aguilar-Cetina A, et al.Trypanosoma cruzi vaccine candidate antigens Tc24 and TSA-1
recall memory immune response associated with HLA-A and -B supertypes
in chagasic chronic patients from Mexico. PLoS Negl Trop Dis.
2018;12(1):e0006240. doi:10.1271/journal.pntd.0006240
- Gunter SM, Jones KM, Seid CA, et al. Mutations to cysteine residues in
the Trypanosoma cruzi B-cell superantigen Tc24 diminish
susceptibility to IgM-mediated hydrolysis. J Parasitol.
2017;103(5):579-583. doi:10.1645/17-7
- Seid CA, Jones KM, Pollet J, et al. Cysteine mutagenesis improves the
production without abrogating antigenicity of a recombinant protein
vaccine candidate for human chagas disease. Hum Vaccin Immunother.
2017;13(3):621-633. doi:10.1080/21645515.2016.1242540.
- Jones K, Versteeg L, Damania A, et al. Vaccine-linked chemotherapy
improves benznidazole efficacy for acute Chagas disease. Infect Immun.
2018;86(4):e00876-17. doi:10.1128/IAI.00876-17
- Cruz-Chan JV, Villanueva-Lizama LE, Versteeg L, et al. Vaccine-linked
chemotherapy induces IL-17 production and reduces cardiac pathology
during acute Trypanosoma cruzi infection. Sci Rep.
2021;5;11(1):3222. doi:10.1038/s41598-021-82930-w
- Dumonteil E, Escobedo-Ortegon J, Reyes-Rodriguez N, et al.
Immunotherapy of Trypanosoma cruzi infection with DNA vaccines
in mice. Infect. Immunol. 2004;72(1),46–53.
doi:10.1128/iai.72.1.46-53.2004 PMID: 14688079
- Ishizaka ST and Hawkins LD. E6020: A synthetic toll-like receptor 4
agonist as a vaccine adjuvant. Expert Rev Vaccines. 2007;6(5),773–84.
doi:10.1586/14760584.6.5.773 PMID: 17931157
- Villa de la Torre FE, Ralf K, Gabriel B, et al. Anti-inflammatory and
immunomodulatory effects of Critonia aromatisans leaves:
downregulation of pro-inflammatory cytokines. J Ethnopharmacol.
2016;190:174-82. doi:10.1016/j.jep.2016.06.006
- Arana-Argáez V, Alonso-Castro AJ, Yáñez-Barrientos E, et al. In
vitro and in vivo anti-inflammatory effects of an ethanol
extract from the aerial parts of Eryngium carlinae F. Delaroche
(Apiaceae). J Ethnopharmacol. 2021;10;266:113406.
doi:10.1016/j.jep.2020.113406
- Zamani-Taghizadeh RS, Mahmoudi M, Ahmadsimab H, et al. Investigation
of the biological activity of methanol extract from Eremostachys
labiosa Bunge. Food Agricult Immunol. 2014;25:4,578-585.
doi:10.1080/09540105.2013.858311
- Arana-Argáez VE, Ceballos-Góngora E, Alvarez-Sánchez ME, et al. In
vitro activation of macrophages by an MHC class II-restrictedTrichomonas vaginalis TvZIP8-derived synthetic peptide. Immunol
Invest. 2020;24:1-15. doi:10.1080/08820139.2020.1810703
- Pick E, Mizel D. Rapid microassays for the measurement of superoxide
and hydrogen peroxide production by macrophages in culture using an
automatic enzyme immunoassay reader. J Immunol Methods.
1981;46(2):211-26. doi:10.1016/0022-1759(81)90138-1
- Sanchez Alberti A, Bivona AE, Cerny N, et al. Engineered trivalent
immunogen adjuvanted with a STING agonist confers protection againstTrypanosoma cruzi infection. NPJ Vaccines. 2017;10;2:9. doi:
10.1038/s41541-017-0010-z
- Pereira IR, Vilar-Pereira G, Marques V, et al. A human type 5
adenovirus-based Trypanosoma cruzi therapeutic vaccine
re-programs immune response and reverses chronic cardiomyopathy. PLoS
Pathog. 2015;11(1):e1004594. doi:10.1371/journal.ppat.1004594
- Teh-Poot C, Tzec-Arjona E, Martínez-Vega P, et al. From genome
screening to creation of vaccine against Trypanosoma cruzi by
use of immunoinformatics. J Infect Dis. 2015;211(2):258-66.
doi:10.1093/infdis/jiu418
- Barry MA, Wang Q, Jones KM, et al. A therapeutic nanoparticle vaccine
against Trypanosoma cruzi in a BALB/c mouse model of Chagas
disease. Hum Vaccin Immunother. 2016;12(4):976-87.
doi:10.1080/21645515.2015.1119346
- González-López C, Chen W, Alfaro-Chacón A, et al. A novel
multi-epitope recombinant protein elicits an antigen-specific CD8+ T
cells response in Trypanosoma cruzi -infected mice. Vaccine.
2022;40,6445-6449. doi: 10.1016/j.vaccine.2022.09.068
- Prochetto E, Bontempi I, Rodeles L, et al. Assessment of a combined
treatment with a therapeutic vaccine and benznidazole for theTrypanosoma cruzi chronic infection. Acta Trop.
2022;229,106334. doi: 10.1016/j.actatropica.2022.106334
- Barry MA, Versteeg L, Wang Q, et al. A therapeutic vaccine prototype
induces protective immunity and reduces cardiac fibrosis in a mouse
model of chronic Trypanosoma cruzi infection. PLoS Negl Trop
Dis. 2019;13(5):e0007413. doi:10.1371/journal.pntd.0007413
- Biter AB, Weltje S, Hudspeth EM, et al. Characterization and stability
of Trypanosoma cruzi 24-C4 (Tc24-C4), a candidate antigen for a
therapeutic vaccine against Chagas Disease. J Pharm Sci.
2018;107(5):1468-1473. doi:10.1016/j.xphs.2017.12.014
- Dumonteil E, Herrera C, Tu W, et al. Safety and immunogenicity of a
recombinant vaccine against Trypanosoma cruzi in Rhesus
macaques . Vaccine. 2020;38(29):4584-4591.
doi:10.1016/j.vaccine.2020.05.010
- Dzul-Huchim V.M, Ramirez-Sierra M.J, Martinez-Vega P.P, et al.
Vaccine-linked chemotherapy with a low dose of benznidazole plus a
bivalent recombinant protein vaccine prevents the development of
cardiac fibrosis caused by Trypanosoma cruzi in
chronically-infected BALB/c mice. PLoS Negl Trop Dis.
2022;16,e0010258. doi:10.1371/journal.pntd.0010258
- Tarique AA, Logan J, Thomas E, et al. Phenotypic, functional, and
plasticity features of classical and alternatively activated human
macrophages. Am J Respir Cell Mol Biol. 2015;53(5):676-88.
doi:10.1165/rcmb.2015-0012OC
- Koo SJ, Garg NJ. Metabolic programming of macrophage functions and
pathogens control. Redox Biol. 2019;24:101198.
doi:10.1016/j.redox.2019.101198
- Goes GR, Rocha PS, Diniz AR, et al. Trypanosoma cruzi needs a
signal provided by reactive oxygen species to infect macrophages. PLoS
Negl Trop Dis. 2016;10(4):e0004555. doi:10.1371/journal.pntd.0004555
- Paiva CN, Medei E, Bozza MT. ROS and Trypanosoma cruzi : Fuel to
infection, poison to the heart. PLoS Pathog. 2018;14(4):e1006928.
doi:10.1371/journal.ppat.1006928
- Alonso-Castro AJ, Arana-Argáez VE, Deveze-Alvarez MA, et al.
Anti-inflammatory and diuretic effects of the diterpene
ent-dihydrotucumanoic acid. Drug Dev Res. 2019;80(6):800-806.
doi:10.1002/ddr.21561
- Alonso-Castro AJ, Arana-Argáez V, Yáñez-Barrientos E, et al.
Antinociceptive and anti-inflammatory effects of Cuphea
aequipetala Cav (Lythraceae). Inflammopharmacology.
2021;29(1):295-306. doi:10.1007/s10787-020-00709-3
- Barton GM. A calculated response: control of inflammation by the
innate immune system. J Clin Invest. 2008;8(2):413-20.
doi:10.1172/JCI34431
- Laucella SA, Postan M, Martin D, et al. Frequency of
interferon-gamma-producing T cells specific for Trypanosoma
cruzi inversely correlates with disease severity in chronic human
Chagas disease. J Infect Dis. 2004;189(5):909-18. doi:10.1086/381682
- Guedes PM, Veloso VM, Afonso LC, et al. Development of chronic
cardiomyopathy in canine Chagas disease correlates with high
IFN-gamma, TNF-alpha, and low IL-10 production during the acute
infection phase. Vet Immunol Immunopathol. 2009;130(1-2):43-52.
doi:10.1016/j.vetimm.2009.01.004
- Han YL, Li YL, Jia LX, et al. Reciprocal interaction between
macrophages and T cells stimulates IFN-γ and MCP-1 production in Ang
II-induced cardiac inflammation and fibrosis. PLoS One.
2012;7(5):e35506. doi:10.1371/journal.pone.0035506
- Nevers T, Salvador AM, Velazquez F, et al. Th1 effector T cells
selectively orchestrate cardiac fibrosis in nonischemic heart failure.
J Exp Med. 2017;214(11):3311-3329. doi:10.1084/jem.20161791
- Couper KN, Blount DG, Riley EM. IL-10: the master regulator of
immunity to infection. J Immunol. 2008;180(9):5771-7.
doi:10.4049/jimmunol.180.9.5771
- Alba-Soto CD, Solana ME, Poncini CV, et al. Dendritic cells devoid of
IL-10 induce protective immunity against the protozoan parasiteTrypanosoma cruzi . Vaccine. 2010;28(46):7407-13.
doi:10.1016/j.vaccine.2010.08.105
- Kumar S, Tarleton RL. The relative contribution of antibody production
and CD8+ T cell function to immune control ofTrypanosoma cruzi . Parasite Immunol. 1998;20(5):207-16.
doi:10.1046/j.1365-3024.1998.00154.x
- de Alencar BC, Persechini PM, Haolla FA, et al. Perforin and gamma
interferon expression are required for CD4+ and
CD8+ T-cell-dependent protective immunity against a
human parasite, Trypanosoma cruzi , elicited by heterologous
plasmid DNA prime-recombinant adenovirus 5 boost vaccination. Infect
Immun. 2009;77(10):4383-95. doi:10.1128/IAI.01459-08
- Nickell SP, Sharma D. Trypanosoma cruzi : roles for
perforin-dependent and perforin-independent immune mechanisms in acute
resistance. Exp Parasitol. 2000;94(4):207-16.
doi:10.1006/expr.2000.4498
- Silverio JC, Pereira IR, Cipitelli Mda C, et al.
CD8+ T-cells expressing interferon gamma or perforin
play antagonistic roles in heart injury in experimentalTrypanosoma cruzi -elicited cardiomyopathy. PLoS Pathog.
2012;8(4):e1002645. doi:10.1371/journal.ppat.1002645
- Tosello Boari J, Amezcua-Vesely MC, Bermejo DA, et al. IL-17RA
signaling reduces inflammation and mortality during Trypanosoma
cruzi infection by recruiting suppressive IL-10-producing
neutrophils. PLoS Pathog. 2012;8(4):e1002658.
doi:10.1371/journal.ppat.1002658
- Tosello Boari J, Araujo Furlan CL, Fiocca Vernengo F, et al.
IL-17RA-signaling modulates CD8+ T cell survival and
exhaustion during Trypanosoma cruzi infection. Front Immunol.
2018;11;9:2347. doi:10.3389/fimmu.2018.02347