References
  1. WHO (2023) Chagas disease (American trypanosomiasis)- Global distribution of cases of Chagas disease based on official stimates on 2018. Available at: https://www.who.int/health-topics/chagas-disease#tab=tab_1. Accessed 17 february 2023
  2. Dias E, Laranja FS, Miranda A, et al. Chagas’ disease; a clinical, epidemiologic, and pathologic study. Circulation. 1956;14(6):1035-60. doi:10.1161/01.cir.14.6.1035
  3. Rassi A Jr, Rassi A, Marin-Neto JA. Chagas disease. Lancet 2010;375(9723):1388-402. doi:10.1016/S0140-6736(10)60061-X
  4. Rassi A Jr, Marin-Neto JA, Rassi A. Chronic Chagas cardiomyopathy: a review of the main pathogenic mechanisms and the efficacy of aetiological treatment following the BENznidazole Evaluation for Interrupting Trypanosomiasis (BENEFIT) trial. Mem Inst Oswaldo Cruz. 2017;112, 224-235. doi:10.1590/0074-02760160334
  5. Teixeira MM, Gazzinelli RT, Silva JS. Chemokines, inflammation andTrypanosoma cruzi infection. Trends Parasitol. 2002;18(6):262-5. doi:10.1016/s1471-4922(02)02283-3
  6. Ribeiro AL, Nunes MP, Teixeira MM, et al. Diagnosis and management of Chagas disease and cardiomyopathy. Nat Rev Cardiol. 2012;9(10):576-89. doi:10.1038/nrcardio.2012.109
  7. Viotti R, Vigliano C, Lococo B, et al. Side effects of benznidazole as treatment in chronic Chagas disease: fears and realities. Expert Rev Anti Infect Ther. 2009;(2):157-63. doi:10.1586/14787210.7.2.157
  8. Molina I, Salvador F, Sánchez-Montalvá A, et al. Toxic profile of benznidazole in patients with chronic Chagas disease: risk factors and comparison of the product from two different manufacturers. Antimicrob Agents Chemother. 2015;59(10):6125-31. doi:10.1128/AAC.04660-14
  9. Morillo CA, Marin-Neto JA, Avezum A, et al. Randomized trial of benznidazole for chronic Chagas’ cardiomyopathy. N Engl J Med. 2015;373(14):1295-306. doi:10.1056/NEJMoa1507574
  10. Padilla AM, Bustamante JM, Tarleton RL. CD8+ T cells in Trypanosoma cruzi infection. Curr Opin Immunol. 2009;(4):385-90. doi:10.1016/j.coi.2009.07.006
  11. Parodi C, Padilla AM, Basombrío MA. Protective immunity againstTrypanosoma cruzi . Mem Inst Oswaldo Cruz. 2009;104Suppl1:288-94. doi:10.1590/s0074-02762009000900038
  12. Tarleton RL. CD8+ T cells in Trypanosoma cruzi infection. Semin Immunopathol. 2015;37(3):233-8. doi:10.1007/s00281-015-0481-9
  13. Pipkin ME, Lieberman JL. Delivering the kiss of death: progress on understanding how perforin works. Curr Opin Immunol. 2007;19(3),301–8. doi:10.1016/j.coi.2007.04.011
  14. Chowdhury D, Lieberman JL. Death by a thousand cuts: granzime pathways of programmed cell death. Annu Rev Immunol. 2008;26,389–420. doi:10.1146/annurev.immunol.26.021607.090404
  15. Paiva CN, Castelo-Branco MT, Lannes-Vieira J, et al. Trypanosoma cruzi : protective response of vaccinated mice is mediated by CD8+ cells, prevents signs of polyclonal T lymphocyte activation, and allows restoration of a resting immune state after challenge. Exp Parasitol. 1999;91(1):7-19. doi:10.1006/expr.1999.4356
  16. Martin D and Tarleton R. Generation, specificity, and function of CD8+ T cells in Trypanosoma cruzi infection. Immunol Rev. 2004;201:304-17. doi:10.1111/j.0105-2896.2004.00183.x
  17. Dumonteil E, Bottazzi ME, Zhan B, et al. Accelerating the development of a therapeutic vaccine for human Chagas disease: rationale and prospects. Expert Rev Vaccines. 2012;11(9):1043-55. doi:10.1586/erv.12.85
  18. Sathler-Avelar R, Vitelli-Avelar DM, Teixeira-Carvalho A, et al. Innate immunity and regulatory T-cells in human Chagas disease: what must be understood? Mem Inst Oswaldo Cruz. 2009;104Suppl1:246-51. doi:10.1590/s0074-02762009000900031.
  19. Rodrigues MM, Oliveira AC, Bellio M. The immune response toTrypanosoma cruzi : role of toll-like receptors and perspectives for vaccine development. J Parasitol Res. 2012;2012:507874. doi:10.1155/2012/507874
  20. Arango-Duque G, Descoteaux A. Macrophage cytokines: involvement in immunity and infectious diseases. Front Immunol. 2014;5:491. doi:10.3389/fimmu.2014.00491
  21. Oishi Y, Manabe I. Macrophages in age-related chronic inflammatory diseases. NPJ Aging Mech Dis. 2016;28;2:16018. doi:10.1038/npjamd.2016.18
  22. Kumar S, Tarleton RL. Antigen-specific Th1 but not Th2 cells provide protection from lethal Trypanosoma cruzi infection in mice. J Immunol. 2001;166(7):4596-603. doi:10.4049/jimmunol.166.7.4596
  23. Boscá L, Zeini M, Través PG, et al. Nitric oxide and cell viability in inflammatory cells: a role for NO in macrophage function and fate. Toxicology. 2005;208(2):249-58. doi:10.1016/j.tox.2004.11.035
  24. Cuervo H, Pineda MA, Aoki MP, et al. Inducible nitric oxide synthase and arginase expression in heart tissue during acute Trypanosoma cruzi infection in mice: arginase I is expressed in infiltrating CD68+ macrophages. J Infect Dis. 2008;15;197(12):1772-82. doi:10.1086/529527
  25. Barnard RT. Recombinant vaccines. Expert Rev Vaccines. 2010;9(5):461-3. doi:10.1586/erv.10.48
  26. de la Cruz JJ, Villanueva-Lizama L, Dzul-Huchim V, et al. Production of recombinant TSA-1 and evaluation of its potential for the immuno-therapeutic control of Trypanosoma cruzi infection in mice. Hum Vaccin Immunother. 2019;15(1):210-219. doi:10.1080/21645515.2018.1520581
  27. Martinez-Campos V, Martinez-Vega P, Ramirez-Sierra MJ, et al. Expression, purification, immunogenicity, and protective efficacy of a recombinant Tc24 antigen as a vaccine against Trypanosoma cruziinfection in mice. Vaccine. 2015;33(36):4505-12. doi:10.1016/j.vaccine.2015.07.017
  28. Villanueva-Lizama LE, Cruz-Chan JV, Aguilar-Cetina A, et al.Trypanosoma cruzi vaccine candidate antigens Tc24 and TSA-1 recall memory immune response associated with HLA-A and -B supertypes in chagasic chronic patients from Mexico. PLoS Negl Trop Dis. 2018;12(1):e0006240. doi:10.1271/journal.pntd.0006240
  29. Gunter SM, Jones KM, Seid CA, et al. Mutations to cysteine residues in the Trypanosoma cruzi B-cell superantigen Tc24 diminish susceptibility to IgM-mediated hydrolysis. J Parasitol. 2017;103(5):579-583. doi:10.1645/17-7
  30. Seid CA, Jones KM, Pollet J, et al. Cysteine mutagenesis improves the production without abrogating antigenicity of a recombinant protein vaccine candidate for human chagas disease. Hum Vaccin Immunother. 2017;13(3):621-633. doi:10.1080/21645515.2016.1242540.
  31. Jones K, Versteeg L, Damania A, et al. Vaccine-linked chemotherapy improves benznidazole efficacy for acute Chagas disease. Infect Immun. 2018;86(4):e00876-17. doi:10.1128/IAI.00876-17
  32. Cruz-Chan JV, Villanueva-Lizama LE, Versteeg L, et al. Vaccine-linked chemotherapy induces IL-17 production and reduces cardiac pathology during acute Trypanosoma cruzi infection. Sci Rep. 2021;5;11(1):3222. doi:10.1038/s41598-021-82930-w
  33. Dumonteil E, Escobedo-Ortegon J, Reyes-Rodriguez N, et al. Immunotherapy of Trypanosoma cruzi infection with DNA vaccines in mice. Infect. Immunol. 2004;72(1),46–53. doi:10.1128/iai.72.1.46-53.2004 PMID: 14688079
  34. Ishizaka ST and Hawkins LD. E6020: A synthetic toll-like receptor 4 agonist as a vaccine adjuvant. Expert Rev Vaccines. 2007;6(5),773–84. doi:10.1586/14760584.6.5.773 PMID: 17931157
  35. Villa de la Torre FE, Ralf K, Gabriel B, et al. Anti-inflammatory and immunomodulatory effects of Critonia aromatisans leaves: downregulation of pro-inflammatory cytokines. J Ethnopharmacol. 2016;190:174-82. doi:10.1016/j.jep.2016.06.006
  36. Arana-Argáez V, Alonso-Castro AJ, Yáñez-Barrientos E, et al. In vitro and in vivo anti-inflammatory effects of an ethanol extract from the aerial parts of Eryngium carlinae F. Delaroche (Apiaceae). J Ethnopharmacol. 2021;10;266:113406. doi:10.1016/j.jep.2020.113406
  37. Zamani-Taghizadeh RS, Mahmoudi M, Ahmadsimab H, et al. Investigation of the biological activity of methanol extract from Eremostachys labiosa Bunge. Food Agricult Immunol. 2014;25:4,578-585. doi:10.1080/09540105.2013.858311
  38. Arana-Argáez VE, Ceballos-Góngora E, Alvarez-Sánchez ME, et al. In vitro activation of macrophages by an MHC class II-restrictedTrichomonas vaginalis TvZIP8-derived synthetic peptide. Immunol Invest. 2020;24:1-15. doi:10.1080/08820139.2020.1810703
  39. Pick E, Mizel D. Rapid microassays for the measurement of superoxide and hydrogen peroxide production by macrophages in culture using an automatic enzyme immunoassay reader. J Immunol Methods. 1981;46(2):211-26. doi:10.1016/0022-1759(81)90138-1
  40. Sanchez Alberti A, Bivona AE, Cerny N, et al. Engineered trivalent immunogen adjuvanted with a STING agonist confers protection againstTrypanosoma cruzi infection. NPJ Vaccines. 2017;10;2:9. doi: 10.1038/s41541-017-0010-z
  41. Pereira IR, Vilar-Pereira G, Marques V, et al. A human type 5 adenovirus-based Trypanosoma cruzi therapeutic vaccine re-programs immune response and reverses chronic cardiomyopathy. PLoS Pathog. 2015;11(1):e1004594. doi:10.1371/journal.ppat.1004594
  42. Teh-Poot C, Tzec-Arjona E, Martínez-Vega P, et al. From genome screening to creation of vaccine against Trypanosoma cruzi by use of immunoinformatics. J Infect Dis. 2015;211(2):258-66. doi:10.1093/infdis/jiu418
  43. Barry MA, Wang Q, Jones KM, et al. A therapeutic nanoparticle vaccine against Trypanosoma cruzi in a BALB/c mouse model of Chagas disease. Hum Vaccin Immunother. 2016;12(4):976-87. doi:10.1080/21645515.2015.1119346
  44. González-López C, Chen W, Alfaro-Chacón A, et al. A novel multi-epitope recombinant protein elicits an antigen-specific CD8+ T cells response in Trypanosoma cruzi -infected mice. Vaccine. 2022;40,6445-6449. doi: 10.1016/j.vaccine.2022.09.068
  45. Prochetto E, Bontempi I, Rodeles L, et al. Assessment of a combined treatment with a therapeutic vaccine and benznidazole for theTrypanosoma cruzi chronic infection. Acta Trop. 2022;229,106334. doi: 10.1016/j.actatropica.2022.106334
  46. Barry MA, Versteeg L, Wang Q, et al. A therapeutic vaccine prototype induces protective immunity and reduces cardiac fibrosis in a mouse model of chronic Trypanosoma cruzi infection. PLoS Negl Trop Dis. 2019;13(5):e0007413. doi:10.1371/journal.pntd.0007413
  47. Biter AB, Weltje S, Hudspeth EM, et al. Characterization and stability of Trypanosoma cruzi 24-C4 (Tc24-C4), a candidate antigen for a therapeutic vaccine against Chagas Disease. J Pharm Sci. 2018;107(5):1468-1473. doi:10.1016/j.xphs.2017.12.014
  48. Dumonteil E, Herrera C, Tu W, et al. Safety and immunogenicity of a recombinant vaccine against Trypanosoma cruzi in Rhesus macaques . Vaccine. 2020;38(29):4584-4591. doi:10.1016/j.vaccine.2020.05.010
  49. Dzul-Huchim V.M, Ramirez-Sierra M.J, Martinez-Vega P.P, et al. Vaccine-linked chemotherapy with a low dose of benznidazole plus a bivalent recombinant protein vaccine prevents the development of cardiac fibrosis caused by Trypanosoma cruzi in chronically-infected BALB/c mice. PLoS Negl Trop Dis. 2022;16,e0010258. doi:10.1371/journal.pntd.0010258
  50. Tarique AA, Logan J, Thomas E, et al. Phenotypic, functional, and plasticity features of classical and alternatively activated human macrophages. Am J Respir Cell Mol Biol. 2015;53(5):676-88. doi:10.1165/rcmb.2015-0012OC
  51. Koo SJ, Garg NJ. Metabolic programming of macrophage functions and pathogens control. Redox Biol. 2019;24:101198. doi:10.1016/j.redox.2019.101198
  52. Goes GR, Rocha PS, Diniz AR, et al. Trypanosoma cruzi needs a signal provided by reactive oxygen species to infect macrophages. PLoS Negl Trop Dis. 2016;10(4):e0004555. doi:10.1371/journal.pntd.0004555
  53. Paiva CN, Medei E, Bozza MT. ROS and Trypanosoma cruzi : Fuel to infection, poison to the heart. PLoS Pathog. 2018;14(4):e1006928. doi:10.1371/journal.ppat.1006928
  54. Alonso-Castro AJ, Arana-Argáez VE, Deveze-Alvarez MA, et al. Anti-inflammatory and diuretic effects of the diterpene ent-dihydrotucumanoic acid. Drug Dev Res. 2019;80(6):800-806. doi:10.1002/ddr.21561
  55. Alonso-Castro AJ, Arana-Argáez V, Yáñez-Barrientos E, et al. Antinociceptive and anti-inflammatory effects of Cuphea aequipetala Cav (Lythraceae). Inflammopharmacology. 2021;29(1):295-306. doi:10.1007/s10787-020-00709-3
  56. Barton GM. A calculated response: control of inflammation by the innate immune system. J Clin Invest. 2008;8(2):413-20. doi:10.1172/JCI34431
  57. Laucella SA, Postan M, Martin D, et al. Frequency of interferon-gamma-producing T cells specific for Trypanosoma cruzi inversely correlates with disease severity in chronic human Chagas disease. J Infect Dis. 2004;189(5):909-18. doi:10.1086/381682
  58. Guedes PM, Veloso VM, Afonso LC, et al. Development of chronic cardiomyopathy in canine Chagas disease correlates with high IFN-gamma, TNF-alpha, and low IL-10 production during the acute infection phase. Vet Immunol Immunopathol. 2009;130(1-2):43-52. doi:10.1016/j.vetimm.2009.01.004
  59. Han YL, Li YL, Jia LX, et al. Reciprocal interaction between macrophages and T cells stimulates IFN-γ and MCP-1 production in Ang II-induced cardiac inflammation and fibrosis. PLoS One. 2012;7(5):e35506. doi:10.1371/journal.pone.0035506
  60. Nevers T, Salvador AM, Velazquez F, et al. Th1 effector T cells selectively orchestrate cardiac fibrosis in nonischemic heart failure. J Exp Med. 2017;214(11):3311-3329. doi:10.1084/jem.20161791
  61. Couper KN, Blount DG, Riley EM. IL-10: the master regulator of immunity to infection. J Immunol. 2008;180(9):5771-7. doi:10.4049/jimmunol.180.9.5771
  62. Alba-Soto CD, Solana ME, Poncini CV, et al. Dendritic cells devoid of IL-10 induce protective immunity against the protozoan parasiteTrypanosoma cruzi . Vaccine. 2010;28(46):7407-13. doi:10.1016/j.vaccine.2010.08.105
  63. Kumar S, Tarleton RL. The relative contribution of antibody production and CD8+ T cell function to immune control ofTrypanosoma cruzi . Parasite Immunol. 1998;20(5):207-16. doi:10.1046/j.1365-3024.1998.00154.x
  64. de Alencar BC, Persechini PM, Haolla FA, et al. Perforin and gamma interferon expression are required for CD4+ and CD8+ T-cell-dependent protective immunity against a human parasite, Trypanosoma cruzi , elicited by heterologous plasmid DNA prime-recombinant adenovirus 5 boost vaccination. Infect Immun. 2009;77(10):4383-95. doi:10.1128/IAI.01459-08
  65. Nickell SP, Sharma D. Trypanosoma cruzi : roles for perforin-dependent and perforin-independent immune mechanisms in acute resistance. Exp Parasitol. 2000;94(4):207-16. doi:10.1006/expr.2000.4498
  66. Silverio JC, Pereira IR, Cipitelli Mda C, et al. CD8+ T-cells expressing interferon gamma or perforin play antagonistic roles in heart injury in experimentalTrypanosoma cruzi -elicited cardiomyopathy. PLoS Pathog. 2012;8(4):e1002645. doi:10.1371/journal.ppat.1002645
  67. Tosello Boari J, Amezcua-Vesely MC, Bermejo DA, et al. IL-17RA signaling reduces inflammation and mortality during Trypanosoma cruzi infection by recruiting suppressive IL-10-producing neutrophils. PLoS Pathog. 2012;8(4):e1002658. doi:10.1371/journal.ppat.1002658
  68. Tosello Boari J, Araujo Furlan CL, Fiocca Vernengo F, et al. IL-17RA-signaling modulates CD8+ T cell survival and exhaustion during Trypanosoma cruzi infection. Front Immunol. 2018;11;9:2347. doi:10.3389/fimmu.2018.02347