REFERENCES
[1] Ghosh B, Ray RR. Induction and carbon catabolite repression of
isoamylase production in Rhizopus oryzae PR7. Microbiol (Russian
Fed 2014;83:135–9. https://doi.org/10.1134/S0026261714020088.
[2] Liang S, McDonald AG. Anaerobic digestion of pre-fermented
potato peel wastes for methane production. Waste Manag 2015;46:197–200.
https://doi.org/10.1016/j.wasman.2015.09.029.
[3] Arapoglou D, Varzakas T, Vlyssides A, Israilides C. Ethanol
production from potato peel waste (PPW). Waste Manag 2010;30:1898–902.
https://doi.org/10.1016/j.wasman.2010.04.017.
[4] Camire ME, Violette D, Dougherty MP, McLaughlin MA. Potato Peel
Dietary Fiber Composition: Effects of Peeling and Extrusion Cooking
Processes. J Agric Food Chem 1997;45:1404–8.
https://doi.org/10.1021/jf9604293.
[5] Sepelev I, Galoburda R. Industrial potato peel waste application
in food production: A Review. Res Rural Dev 2015;1:130–6.
[6] Meenakshi A, Kumaresan R. Ethanol production from corn, potato
peel waste and its process development. Int J ChemTech Res
2014;6:2843–53.
[7] Liang S, McDonald AG, Coats ER. Lactic acid production from
potato peel waste by anaerobic sequencing batch fermentation using
undefined mixed culture. Waste Manag 2014;45:51–6.
https://doi.org/10.1016/j.wasman.2015.02.004.
[8] Alsuhaim H, Vojisavljevic V, Pirogova E. Effects of Non-thermal
Microwave Exposures on the Proliferation Rate of Saccharomyces
Cerevisiae Yeast. IFMBE Proceedings, World Congr. Med. Phys. Biomed. Eng
2012, 39; 48–51. https://doi.org/10.1007/978-3-642-29305-4.
[9] Sahu S, Kundu M, Behari Sukla L. Bio-beneficiation of iron ore
using heterotrophic microorganisms. J Microbiol Biotechnol Res
2015;5:54–60.
[10] Meletiadis J, Meis JFGM, Mouton JW, Verweij PE. Analysis of
growth characteristics of filamentous fungi in different nutrient media.
J Clin Microbiol 2001;39:478–84.
https://doi.org/10.1128/JCM.39.2.478-484.2001.
[11] Kosegarten CE, Ramírez-Corona N, Mani-López E, Palou E,
López-Malo A. Description of Aspergillus flavus growth under the
influence of different factors (water activity, incubation temperature,
protein and fat concentration, pH, and cinnamon essential oil
concentration) by kinetic, probability of growth, and time-to-detection.
Int J Food Microbiol 2017;240:115–23.
https://doi.org/10.1016/j.ijfoodmicro.2016.04.024.
[12] Özer GE. Effect of different stress conditions on trehalose
accumulation and degredation in Rhizopus oryzae . Middle East
Technical University, MSc Thesis, 2002.
[13] Ozer Uyar E, Yücel M, Hamamci H. Cloning and expression of
trehalose-6-phosphate synthase 1 from Rhizopus oryzae . J Basic
Microbiol 2016;56:459–68. https://doi.org/10.1002/jobm.201500425.
[14] Bai DM, Jia MZ, Zhao XM, Ban R, Shen F, Li XG, et al.
L(+)-lactic acid production by pellet-form Rhizopus oryzae R1021
in a stirred tank fermentor. Chem Eng Sci 2003;58:785–91.
https://doi.org/10.1016/S0009-2509(02)00608-5.
[15] Fan W, Li B, Du N, Hui T, Cao Y, Li X, et al. Energy metabolism
as the target of 3-phenyllactic acid against Rhizopus oryzae. Int
J Food Microbiol 2022;369:109606.
https://doi.org/10.1016/j.ijfoodmicro.2022.109606.
[16] Yu MC, Wang RC, Wang CY, Duan KJ, Sheu DC. Enhanced production
of L(+)-lactic acid by floc-form culture of Rhizopus oryzae . J
Chinese Inst Chem Eng 2007;38:223–8.
https://doi.org/10.1016/j.jcice.2007.02.005.
[17] Kumar R, Shivakumar S. Production of L-Lactic acid from starch
and food waste by amylolytic Rhizopus oryzae MTCC 8784. Int J
ChemTech Res 2014;6:527–37.
[18] Ranjit C, Srividya S. Lactic acid production from free and
Polyurethane immobilized cells of Rhizopus oryzae MTCC 8784 by
direct hydrolysis of starch and agro-industrial waste. Int Food Res J
2016;23:2646–52.
[19] Mudaliyar P, Kulkarni C. Screening of novel substrates for
lactic acid production by Rhizopus oryzae . Int J Life Sci Pharma
Res 2012;2:122–7.
[20] Park EY, Anh PN, Okuda N. Bioconversion of waste office paper
to L(+)-lactic acid by the filamentous fungus Rhizopus oryzae .
Bioresour Technol 2004;93:77–83.
https://doi.org/10.1016/j.biortech.2003.08.017.
[21] Chen X, Wang X, Xue Y, Zhang TA, Li Y, Hu J, et al. Influence
of rice straw-derived dissolved organic matter on lactic acid
fermentation by Rhizopus oryzae. J Biosci Bioeng 2018;125:703–9.
https://doi.org/10.1016/j.jbiosc.2018.01.004.
[22] Zain NAM, Aziman SN, Suhaimi MS, Idris A. Optimization of L(+)
Lactic Acid Production from Solid Pineapple Waste (SPW) byRhizopus oryzae NRRL 395. J Polym Environ 2021;29:230–49.
https://doi.org/10.1007/s10924-020-01862-0.
[23] Büyükkileci AO. Investigation of sugar metabolism inRhizopus oryzae . Middle East Technical University, PhD Thesis,
2007.
[24] Büyükkileci AO, Hamamci H, Yucel M. Lactate and ethanol
productions by Rhizopus oryzae ATCC 9363 and activities of
related pyruvate branch point enzymes. J Biosci Bioeng 2006;102:464–6.
https://doi.org/10.1263/jbb.102.464.
[25] Breton Toral A, Trejo Estrada SR, McDonald AG. Lactic Acid
Production from Potato Peel Waste, Spent Coffee Grounds and Almond
Shells with Undefined Mixed Cultures Isolated from Coffee Mucilage from
Coatepec Mexico. Ferment Technol 2016;06:1–6.
https://doi.org/10.4172/2167-7972.1000139.
Table 1. Effect of the PPW particle size on the performance of the
fermentations.