REFERENCES
[1] Ghosh B, Ray RR. Induction and carbon catabolite repression of isoamylase production in Rhizopus oryzae PR7. Microbiol (Russian Fed 2014;83:135–9. https://doi.org/10.1134/S0026261714020088.
[2] Liang S, McDonald AG. Anaerobic digestion of pre-fermented potato peel wastes for methane production. Waste Manag 2015;46:197–200. https://doi.org/10.1016/j.wasman.2015.09.029.
[3] Arapoglou D, Varzakas T, Vlyssides A, Israilides C. Ethanol production from potato peel waste (PPW). Waste Manag 2010;30:1898–902. https://doi.org/10.1016/j.wasman.2010.04.017.
[4] Camire ME, Violette D, Dougherty MP, McLaughlin MA. Potato Peel Dietary Fiber Composition: Effects of Peeling and Extrusion Cooking Processes. J Agric Food Chem 1997;45:1404–8. https://doi.org/10.1021/jf9604293.
[5] Sepelev I, Galoburda R. Industrial potato peel waste application in food production: A Review. Res Rural Dev 2015;1:130–6.
[6] Meenakshi A, Kumaresan R. Ethanol production from corn, potato peel waste and its process development. Int J ChemTech Res 2014;6:2843–53.
[7] Liang S, McDonald AG, Coats ER. Lactic acid production from potato peel waste by anaerobic sequencing batch fermentation using undefined mixed culture. Waste Manag 2014;45:51–6. https://doi.org/10.1016/j.wasman.2015.02.004.
[8] Alsuhaim H, Vojisavljevic V, Pirogova E. Effects of Non-thermal Microwave Exposures on the Proliferation Rate of Saccharomyces Cerevisiae Yeast. IFMBE Proceedings, World Congr. Med. Phys. Biomed. Eng 2012, 39; 48–51. https://doi.org/10.1007/978-3-642-29305-4.
[9] Sahu S, Kundu M, Behari Sukla L. Bio-beneficiation of iron ore using heterotrophic microorganisms. J Microbiol Biotechnol Res 2015;5:54–60.
[10] Meletiadis J, Meis JFGM, Mouton JW, Verweij PE. Analysis of growth characteristics of filamentous fungi in different nutrient media. J Clin Microbiol 2001;39:478–84. https://doi.org/10.1128/JCM.39.2.478-484.2001.
[11] Kosegarten CE, Ramírez-Corona N, Mani-López E, Palou E, López-Malo A. Description of Aspergillus flavus growth under the influence of different factors (water activity, incubation temperature, protein and fat concentration, pH, and cinnamon essential oil concentration) by kinetic, probability of growth, and time-to-detection. Int J Food Microbiol 2017;240:115–23. https://doi.org/10.1016/j.ijfoodmicro.2016.04.024.
[12] Özer GE. Effect of different stress conditions on trehalose accumulation and degredation in Rhizopus oryzae . Middle East Technical University, MSc Thesis, 2002.
[13] Ozer Uyar E, Yücel M, Hamamci H. Cloning and expression of trehalose-6-phosphate synthase 1 from Rhizopus oryzae . J Basic Microbiol 2016;56:459–68. https://doi.org/10.1002/jobm.201500425.
[14] Bai DM, Jia MZ, Zhao XM, Ban R, Shen F, Li XG, et al. L(+)-lactic acid production by pellet-form Rhizopus oryzae R1021 in a stirred tank fermentor. Chem Eng Sci 2003;58:785–91. https://doi.org/10.1016/S0009-2509(02)00608-5.
[15] Fan W, Li B, Du N, Hui T, Cao Y, Li X, et al. Energy metabolism as the target of 3-phenyllactic acid against Rhizopus oryzae. Int J Food Microbiol 2022;369:109606. https://doi.org/10.1016/j.ijfoodmicro.2022.109606.
[16] Yu MC, Wang RC, Wang CY, Duan KJ, Sheu DC. Enhanced production of L(+)-lactic acid by floc-form culture of Rhizopus oryzae . J Chinese Inst Chem Eng 2007;38:223–8. https://doi.org/10.1016/j.jcice.2007.02.005.
[17] Kumar R, Shivakumar S. Production of L-Lactic acid from starch and food waste by amylolytic Rhizopus oryzae MTCC 8784. Int J ChemTech Res 2014;6:527–37.
[18] Ranjit C, Srividya S. Lactic acid production from free and Polyurethane immobilized cells of Rhizopus oryzae MTCC 8784 by direct hydrolysis of starch and agro-industrial waste. Int Food Res J 2016;23:2646–52.
[19] Mudaliyar P, Kulkarni C. Screening of novel substrates for lactic acid production by Rhizopus oryzae . Int J Life Sci Pharma Res 2012;2:122–7.
[20] Park EY, Anh PN, Okuda N. Bioconversion of waste office paper to L(+)-lactic acid by the filamentous fungus Rhizopus oryzae . Bioresour Technol 2004;93:77–83. https://doi.org/10.1016/j.biortech.2003.08.017.
[21] Chen X, Wang X, Xue Y, Zhang TA, Li Y, Hu J, et al. Influence of rice straw-derived dissolved organic matter on lactic acid fermentation by Rhizopus oryzae. J Biosci Bioeng 2018;125:703–9. https://doi.org/10.1016/j.jbiosc.2018.01.004.
[22] Zain NAM, Aziman SN, Suhaimi MS, Idris A. Optimization of L(+) Lactic Acid Production from Solid Pineapple Waste (SPW) byRhizopus oryzae NRRL 395. J Polym Environ 2021;29:230–49. https://doi.org/10.1007/s10924-020-01862-0.
[23] Büyükkileci AO. Investigation of sugar metabolism inRhizopus oryzae . Middle East Technical University, PhD Thesis, 2007.
[24] Büyükkileci AO, Hamamci H, Yucel M. Lactate and ethanol productions by Rhizopus oryzae ATCC 9363 and activities of related pyruvate branch point enzymes. J Biosci Bioeng 2006;102:464–6. https://doi.org/10.1263/jbb.102.464.
[25] Breton Toral A, Trejo Estrada SR, McDonald AG. Lactic Acid Production from Potato Peel Waste, Spent Coffee Grounds and Almond Shells with Undefined Mixed Cultures Isolated from Coffee Mucilage from Coatepec Mexico. Ferment Technol 2016;06:1–6. https://doi.org/10.4172/2167-7972.1000139.
Table 1. Effect of the PPW particle size on the performance of the fermentations.