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1 Introduction and Definition

We consider the following Schrödinger-Possion system−∆u+ u+K(x)φ(x)u = a(x) |u|p−2
u+ λ |u|4 u, x ∈ R3,

−∆φ = K(x)u2, x ∈ R3,
(1.1)

where 4 ≤ p < 6, λ > 0 is a positive parameter. K(x), a(x) : R3 → R are positive functions.

we make the following assumption.

(A) lim|x|→∞ a(x) = a∞ > 0, α(x) := a(x)− a∞ ∈ L
6

6−p (R3).

(B) a(x) ≥ a∞ > 0 and α(x) > 0 in a positive measure set.

(C) K(x) ∈ L2(R3), lim|x|→∞K(x) = 0, K(x) ≥ 0 and K(x) 6≡ 0 , x ∈ R3.

Schrödinger-Possion system have a strong physical meaning because they appear in

quantum mechanics models (see [1]). In recent years, many people have studied the following

Schrödinger-Possion system−∆u+ V (x)u+ φ(x)u = f(x, u),

−∆φ = u2, x ∈ R3.

Ambrosetti, Azzollini and Wang obtained the existence of ground states in [2-6]. By using

Lusternik-Schnirelmann category theory, Marco and He [7,8] proved the existence of many
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critical points for the case f(x, u) = f(u) in a bounded domain. Cerami and Vaira [9]

discussed the existence result of solutions for (1.1) in the case λ = 0. For the other subcritical

cases, we refer the reader to [10-12] and the references therein.

However, to the best our knowledge, there is few information on the existence of solution

to the Schrödinger-Poisson system in the critical case. In this paper, we shall prove that the

problem (1.1) has at least one positive solution for the subcritical case λ = 0 and the critical

case λ 6= 0.

Let E = H1(R3) be the usual Sobolev space equipped with the norm

‖u‖ =

(∫
R3

(|∇u|2 + u2)dx

)1/2

.

Let D1,2(R3) be the completion of C∞0 (R3):

D1,2(R3) = {u ∈ L6(R3) : ∇u ∈ L2(R3)}

with respect to the norm

‖u‖D =

(∫
R3

|∇u|2 dx

)1/2

.

The norm of Ls(R3)(2 ≤ s ≤ 6) is denoted by

‖u‖s =

(∫
R3

|u|s dx

)1/s

.

For u 6= 0, suppose that

S = inf

∫
R3 |∇u|2 dx(∫
R3 |u|6 dx

)1/3
,

then

‖u‖66 ≤ ‖u‖
6
S−3. (1.2)

S is achieved by the family of functions

Uε(x) =
(Cε)1/4

(ε+ |x|2)1/2
,

and Uε(x) satisfies the equation:

−∆u = u |u|4 , u ∈ D1,2(R3).

Hence we have

‖Uε‖2 = ‖Uε‖66 = S3/2.



Since that K(x) ∈ L2(R3), then using Hölder inequality and (1.2) we have∫
Ω

K(x)u2ψdx ≤ ‖K(x)‖2
∥∥u2
∥∥

3
‖ψ‖6

≤ S−
1
2 ‖K(x)‖2 ‖u‖

2
6 ‖ψ‖ , ∀ψ ∈ D1,2(R3). (1.3)

By Lax-Milgram theorem there exists a unique solution φu ∈ D1,2(R3) such that∫
Ω

∇φu∇vdx =

∫
Ω

K(x)u2vdx, ∀v ∈ D1,2(R3),

and φu has the following properties

(1) φu : H1(R3)→ D1,2(R3) is continuous and φ maps bounded sets into bounded sets;

(2) If un ⇀ u in H1(R3), then φun
⇀ φu in D1,2(R3);

(3) φu ≥ 0, ‖φu‖ ≤ C ‖u‖2 ,
∫
R3 φuu

2dx ≤ C ‖u‖412/5 ≤ C ‖u‖
4

;

(4) φtu(x) = t2φu for all t ∈ R.

See [9] for the details.

We now introduce the main results in this paper.

Theorem 1.2 Assume that (A)(B)(C) with 4 ≤ p < 6, λ = 0, then the problem (1.1)

has at least one positive solution.

Theorem 1.3 Assume that (A)(B)(C) with 4 < p < 6, λ 6= 0, then the problem (1.1)

has at least one positive solution for any λ > 0.

2 The proof of Theorem 1.2

For λ = 0, we define the energy functional associated with (1.1)

J(u) =
1

2

∫
R3

(|∇u|2 + u2)dx+
1

4

∫
R3

K(x)φuu
2dx− 1

p

∫
R3

a(x) |u|p dx

=
1

2
‖u‖2 +

1

4
P (u)− 1

p
A(u),

where

P (u) =

∫
R3

K(x)φuu
2dx, A(u) =

∫
R3

a(x) |u|p dx.

Suppose that S0 is the Sobolev constant for the embedding of E = H1(R3) in Lp(R3)(2 <

p < 6), then Hölder inequality and the condition (A)(B) imply that

A(u) =

∫
R3

a(x) |u|p dx =

∫
R3

(α(x) + a∞) |u|p dx

≤ ‖α(x) + a∞‖ 6
6−p
‖u‖p ≤ C0S

p
0 ‖u‖

p
, (2.1)

where

C0 = ‖α(x) + a∞‖ 6
6−p

.



By (1.3) and (2.1), we get J ∈ C1(E,R).

Consider the Nehari manifold

N = {u ∈ E\{0} |〈J ′(u), u〉 = 0} .

It is easy to see that u ∈ N if and only if

〈J ′(u), u〉 = ‖u‖2 + P (u)−A(u) = 0.

Define

M(u) = 〈J ′(u), u〉 .

It is clear that M(u) is of C1 class. For u ∈ N , we have

〈M ′(u), u〉 = 2 ‖u‖2 + 4P (u)− pA(u)

= (4− p)A(u)− 2 ‖u‖2 < 0. (2.2)

which implies that N is a C1 manifold.

Lemma 2.1 Assume that u0 is a local minimizer for J on N and 〈M ′(u), u〉 6= 0, then

J ′(u0) = 0.

proof Our proof is almost the same as that in Brown and Zhang (see [13]), we omit

it.

Let u ∈ N , we have for 4 ≤ p < 6

J(u) =
1

2
‖u‖2 +

1

4
P (u)− 1

p
A(u)

=
1

4
‖u‖2 + (

1

4
− 1

p
)A(u) > 0.

Then J(u) is bounded below on N . Since that J(u) is bounded below on N . we may define

ξ− = inf
u∈N

J(u).

Lemma 2.2 There exists C1 = C1(C0, p, S0) > 0 such that ξ− > C1.

Proof Let u ∈ N , then

A(u) = ‖u‖2 + P (u) ≥ ‖u‖2 . (2.3)

From (2.1)(2.3) we get

1 ≤ C0S
p
0 ‖u‖

p−2
, (2.4)

by (2.4) we deduce that there exists C1 = C1(C0, p, S0) > 0 such that ξ− > C1.

Lemma 2.3 For each u ∈ E, u 6= 0, then there exists a unique t0 such that t0u ∈ N
and

J(t0u) = sup
t≥0

J(tu).



Proof Suppose that u ∈ E, u 6= 0. Set

h(t) = J(tu) =
t2

2
‖u‖2 +

t4

4
P (u)− tp

p
A(u),

then

h′(t) = t(‖u‖2 + t2P (u)− tp−2A(u).

From h′(t) = 0 we have t = t0 > 0. Moreover, we have h(0) = 0 and h(t)→ −∞ as t→ +∞.

Observe that h′(t) > 0 for t ∈ [0, t0) and h′(t) < 0 for t ∈ [t0,∞), it follows that h(t) achieves

its maximum at t = t0. By computation we have

〈J ′(t0u), t0u〉 = t20 ‖u‖
2

+ t40P (u)− tp0A(u) = 0,

〈M ′(t0u), t0u〉 = (4− p)tp0A(u)− 2t20 ‖u‖
2
< 0.

Then t0u ∈ N and J(t0u) = sup
t≥0

J(tu).

Lemma 2.4 Assume that (A)(B)(C) with 4 ≤ p < 6, then J(u) has a minimizer

u0 ∈ N, and it satisfies

(1) J(u0) = ξ−,

(2) u0 is a nontrivial negative solution to (1.1).

Proof Let un ∈ N be a minimizing sequence for J(u), that is

lim
n→∞

J(un) = inf
u∈N

J(u).

Then we get

J(un) =
1

4
‖un‖2 + (

1

4
− 1

p
)A(un) > 0.

Which implies that {un} is bounded in E. We can extract a subsequence(still denoted {un})
and u0 ∈ E such that

un ⇀ u0 in E,

un ⇀ u0 in Li(R3)(2 ≤ i < 2∗),

un → u0 a.e. in R3.

Define the operator T : L6/p(R3)→ R by

〈T, w〉 =

∫
RN

a(x)wdx.

From (2.1) we get that T is linear and continuous, then

A(un) =

∫
R3

a(x) |un|p dx→
∫
R3

a(x) |u0|p dx = A(u0), (2.5)



With the same arguments as [9] we can show that∫
R3

K(x)φuu
2
ndx→

∫
R3

K(x)φuu
2
0dx. (2.6)

Therefore

0 < C0 < ξ− ≤ J(un)

= (
1

2
− 1

p
)A(un)− 1

4
P (un)

→ (
1

2
− 1

p
)A(u0)− 1

4
P (u0).

then u0 6= 0. Now we prove that: un → u0 in E. Supposing the contrary, by Fatou Lemma,

‖u0‖ < lim
n→∞

inf ‖un‖ , (2.7)

By Lemma 2.3, there exists a unique t−0 such that t−0 u0 ∈ N. Note that un ∈ N, J(tun)

achieves its maximum at t = 1. Hence we have J(tun) ≤ J(un) for t ≥ 0. From (2.7) we get

that

J(t−0 u0) =
(t−0 )2

4
‖u0‖2 + (

1

4
− 1

p
)(t−0 )2A(u0)

< lim
n→∞

inf J(t−0 un) ≤ lim
n→∞

J(un) = ξ−,

which is a contradiction. Hence un → u0 in E. If n → ∞, J(un) → J(u0) = ξ−. Since

u0 6= 0. then Lemma 2.1 implies that u0 is a nontrivial negative solution to (1.1).

let u+
0 = max{u0, 0}. Replacing u0 in J(u) by u+

0 , we get one nontrivial negative solution

to (1.1). From the Harnack inequality [14] we deduce that u0 is a positive solution to (1.1).

Then we complete the proof of Theorem 1.1.

3 Proof of Theorem 1.2

Now we turn to the case λ > 0.

Definition the energy functional

J(u) =
1

2

∫
R3

(|∇u|2 + u2)dx+
1

4

∫
R3

K(x)φuu
2dx− 1

p

∫
R3

a(x) |u|p dx

−λ
6

∫
R3

|u|6 dx =
1

2
‖u‖2 +

1

4
P (u)− 1

p
A(u)− 1

6
B(u),

where

B(u) = λ

∫
R3

|u|6 dx.

Definition 3.1 We say that a sequence {un} ⊂ E is a (PS)c sequence, if there exists

c ∈ R such that

I(un)→ c, I ′(un)→ 0, n→∞.



Lemma 3.2 Assume {un} ⊂ E is a (PS)c sequence for J , then there exists a subse-

quence(still denoted {un}) and u ∈ E such that un ⇀ u ∈ E and u is a solution to (1.1).

That is, 〈J ′(u), u〉 = 0.

Proof From the definition of (PS)c sequence, there exists a sequence {un} in E such

that for some c ∈ R we have

J(un)→ c, J ′(un)→ 0, n→∞.

J(un) =
1

2
‖un‖2 +

1

4
P (un)− 1

p
A(un)− 1

6
B(un) = c+ on(1),

〈J ′(un), un〉 = ‖un‖2 + P (un)−A(un)−B(un) = on(1),

hence

c+ on(1) = J(un)− 1

p
〈J ′(un), un〉

=(
1

2
− 1

p
) ‖un‖2 + (

1

4
− 1

p
)P (un) + (

1

p
− 1

6
)B(un) ≥ (

1

2
− 1

p
) ‖un‖2 .

Hence {un} is bounded.

Since {un} is bounded, we can extract a subsequence in E(still denoted {un})and u ∈ E
such that

un ⇀ u0 in E,

un ⇀ u0 in Li(R3)(2 ≤ i < 2∗),

un → u0 a.e. in R3.

By using (2.5)(2.6) we have P (un)→ P (u), A(un)→ A(u). Therefore u is a solution to (1.1)

and J ′(u) = 0.

Lemma 3.3 Let c ∈ R, if {un} ⊂ E is a (PS)c sequence for J and un ⇀ u with

c <
1

3
λ−

1
2S

3
2

then un → u.

Proof From the definition of (PS)c sequence we have

J(un)→ c, J ′(un)→ 0

as n→∞. From Lemma 3.2, there exists a subsequence(still denoted {un}) and u ∈ E such

that un ⇀ u ∈ E and u is a solution to (1.1). Set vn = un− u, then we deduce that vn ⇀ 0.

Brezis-lemma Lemma [15] implies that

‖un‖2 = ‖vn‖2 + ‖u‖2 + on(1),



B(un) = B(vn) +B(u) + on(1).

Since P (un)→ P (u), A(un)→ A(u), then we get

P (un) = P (u) + on(1),

A(un) = A(u) + on(1).

Therefore

〈J ′(un), un〉 = ‖vn‖2 −B(vn) + on(1).

We may therefore assume that

lim
n→∞

‖vn‖2 = lim
n→∞

B(vn) = l,

By the definition of S we have

‖vn‖2 ≥ ‖∇vn‖22 ≥ S ‖vn‖
2
6 .

Then λ
1
3 l ≥ Sl 13 , it follows that either l = 0 or l ≥ λ− 1

2S
3
2 , If l ≥ λ− 1

2S
3
2 ,

J(un)− 1

2
〈J ′(un), un〉 = J(u) +

1

3
B(vn) + on(1).

Let n→∞,

J(u) = c− 1

3
l ≤ c− 1

3
λ−

1
2S

3
2 < 0,

we deduce that J(u) < 0.

On the other hand, since u is a solution to (1.1) then J ′(u) = 0.

J(u) = J(u)− 1

4
〈J ′(u), u〉

=
1

4
‖u‖2 + (

1

4
− 1

p
)A(u) +

1

12
B(u) ≥ 0,

which is a contradiction. Hence l = 0, un → u.

Lemma 3.4 The following results hold

(1) There exist δ, ρ > 0 such that J(u) ≥ δ > 0 for any u ∈ E with ‖u‖ = ρ;

(2) There exists φ ∈ E such that lim
t→∞

J(tφ) = −∞;

proof (1)From (2.1)(1.2) we have

J(u) =
1

2
‖u‖2 +

1

4
P (u)− 1

p
A(u)− 1

6
B(u)

≥1

2
‖u‖2 − 1

p
A(u)− 1

6
B(u) ≥ 1

2
‖u‖2 − 1

6
C0S

p
0 ‖u‖

p − S−3 ‖u‖6

We may choose ‖u‖ = ρ small enough such that δ > 0, J(u) ≥ δ > 0, then the first conclusion

of Lemma 3.4 holds true.



(2) Let φ ∈ E, φ ≥ 0, φ 6= 0, by the properties of φu and the condition (B)(C), we have

for t→∞,

J(tφ) =
t2

2
‖φ‖2 +

t4

4
P (φ)− tp

p
A(φ)− t6

6
B(φ)→ −∞.

We now complete the proof of Theorem 1.2.

The proof of Theorem 1.2 By using (1) (2) of Lemma 3.4 and Mountain Pass

Theorem, there exists a (PS)c sequence {un} in E such that

J(un)→ c0, J
′(un)→ 0, n→∞,

where

c0 = inf maxJ(γ(t)
γ∈Γ,t∈[0,1]

),

Γ = {γ ∈ C([0, 1], E), γ(0) = 0, γ(1) = (tφ)}.

From Lemma 3.2 we obtain un ⇀ u and J ′(u) = 0.

Let ξ(x) ∈ C∞(R3) is a cut-off function such that ξ(x) = 1 for |x| ≤ R and ξ(x) = 0

for |x| ≥ 2R, where |∇ξ(x)| ≤ C,B2R(0) ⊂ R3. We define the function uε(x) as follows

uε(x) = φUε ‖φUε‖−1
6 ,

then we have the properties of the function uε:∫
Ω

|∇uε|2dx = S +O(ε1/2), (3.1)

and ∫
Ω

|uε|qdx =


O(εt/4), q ∈ [2, 3),

O(ε3/4 |ln ε|), q = 3,

O(ε(6−t)/4), q ∈ (3, 6).

(3.2)

see [16-18] for the details.

Consider the functions

g(t) =
1

2
t2 ‖uε‖2 +

t4

4
P (uε)−

tp

p
a∞

∫
Ω

|uε|pdx− λ
t6

6
,

Note that lim
t→+∞

g(t) = −∞ and lim
t→0+

g(t) > 0, then sup g(t) is attained for some tε > 0. By

computation we get

0 = g′(tε) = tε(‖uε‖2 + t2εP (uε)− tp−2
ε a∞

∫
Ω

|uε|pdx− λt4ε),

‖uε‖2 + t2εP (uε) = tp−2
ε a∞

∫
Ω

|uε|pdx+ λt4ε ≥ λt4ε. (3.3)



Then there exists t1 > 0 such that tε ≤ t1. On the other hand from (3.3) we deduce that

‖∇uε‖22 ≤ ‖uε‖
2 ≤ tp−2

ε a∞

∫
Ω

|uε|pdx+ λt4ε.

Using(3.1)(3.2) we deduce that there exists M > 0 such that

tε ≥M.

Set

h(t) =
1

2
t2 ‖∇uε‖22 − λ

t6

6
,

then sup h(t) is attained for some t2 = λ
−1
4 ‖∇uε‖1/22 . If 4 < p < 6, we have

6− p
4

<
1

2
< 1,

then (3.1)(3.2) and the properties of φu imply that

g(t) ≤ h(t2) +
1

2
t2ε ‖uε‖

2
2 +

t4ε
4
C ‖uε‖412/5 −

tpε
p
a∞ ‖uε‖pp

≤1

3
λ−

1
2S

3
2 + C1ε

1
2 + C2ε− C3ε

6−p
4 <

1

3
λ−

1
2S

3
2 ,

where Ci(i = 2, 3, 4) are constants independent of ε. Thus we get that

sup J(tuε) ≤ g(t) <
1

3
λ−

1
2S

3
2

c0 = inf maxJ(γ(t)
γ∈Γ,t∈[0,1]

) <
1

3
λ−

1
2S

3
2 ,

By Lemma 3.3 we have that un → u, J(u) = c0 > 0. From the above steps, we obtain that

the problem (1.1) has one nontrivial solution. Using the same argument as that in the proof

of theorem 1.1, we deduce that the solution is positive. This completes the proof of Theorem

1.2.
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