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Abstract16

Dynamical models used in climate prediction often have systematic errors that can17

deteriorate predictions. In this study, we work in a twin experiment framework with18

a reduced-order coupled ocean-atmosphere model and aim to demonstrate the ben-19

efit of machine learning for climate prediction. Machine learning is applied to learn20

the model error and thus build a data-driven model to emulate the dynamical model21

error. Then we build a hybrid model by combining the data-driven and dynamical22

models. The prediction skill of the hybrid model is compared to that of the stan-23

dalone dynamical model. We applied this approach to the ocean-atmosphere coupled24

model. The results show that the hybrid model outperforms the dynamical model25

alone for both atmospheric and oceanic variables. Also, we build two other hybrid26

models only correcting either atmospheric errors or oceanic errors. It was found that27

correcting both atmospheric and oceanic errors leads to the best performance.28

Plain Language Summary29

Dynamical models are essential for predicting the climate and for studying the30

Earth’s system. But they still have some errors that cannot be corrected. Recently,31

a lot of progress has been made in machine learning methods based on the large32

quantities of observations collected. These are data-driven algorithms that learn33

from existing data. We show the possibility that applying machine learning to a sim-34

plified ocean-atmospheric coupled model. After being presented with enough data35

from the climate model, the network can successfully predict the model’s error, thus36

correcting the error of the dynamical model. This finding provides an idea for error37

correction in coupled models and is important for real applications.38

1 Introduction39

Dynamical models, such as ocean-atmosphere coupled general circulation mod-40

els, have been widely used for climate predictions over the past few decades, e.g.,41

seasonal predictions (F. J. Doblas-Reyes et al., 2013) and decadal predictions (Boer42

et al., 2016) (DCPP). Uncertainties in initial conditions fed to dynamical models43

and model errors are two critical sources that limit the prediction skill of dynamical44

models. To reduce the uncertainties of initial conditions (Balmaseda & Anderson,45
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2009; F. Doblas-Reyes et al., 2013), most prediction centers have been evolving46

towards the use of data assimilation (DA) (Carrassi et al., 2018) which combines47

observations with dynamical models to best estimate the state of the climate sys-48

tem (Penny & Hamill, 2017). Meanwhile, although there have been massive ef-49

forts in model development, the model error remains significantly large (Palmer &50

Stevens, 2019; Tian & Dong, 2020). It is because many factors (e.g., unknown physi-51

cal law, unresolved small-scale processes, and numerical integration errors) can cause52

the model error (Hawkins & Sutton, 2009).53

Machine learning (ML) can efficiently extract useful information from data54

(Salcedo-Sanz et al., 2020). It has been used to build a data-driven predictor of the55

model error which is combined with a dynamical model to produce a statistical-56

dynamical hybrid model (Watson, 2019; Farchi et al., 2021; Brajard et al., 2021).57

Watson (2019) worked in a low-order Lorenz model and applied ML to correct the58

error from time step to time step. They found that the approach maintained the59

model stable and improved predictions. Farchi et al. (2021) worked in the two-scale60

Lorenz model and compared the error corrections added as an extra term (i.e., re-61

solvent correction) or directly inside the tendencies of the dynamical model (i.e.,62

tendency correction). They showed that the tendency correction performed better63

but was more technical than the resolvent correction. Brajard et al. (2021) applied64

ML into the two-scale Lorenz model and a low-order coupled ocean-atmosphere65

model called Modular Arbitrary-Order Ocean-Atmosphere Model (MAOOAM)66

(De Cruz et al., 2016) to infer the model error related to unresolved processes from67

the state of the dynamical model. Brajard et al. (2021) mostly focused on presenting68

and validating their methodology and barely presented the prediction improvements69

for atmospheric variables at a one-day lead time and oceanic variables at a two-70

year lead time. However, they did not investigate how the improvement evolves as71

a function of lead time and how long the improvement remains significant. In addi-72

tion, Brajard et al. (2021) used perfect initial conditions in prediction experiments,73

which is not a realistic setting because initial conditions are never perfectly known in74

reality.75

In this study, we set up a more realistic framework than Brajard et al. (2021)76

and aim to explore the potential of ML-based model error correction for climate pre-77

diction at different lead times, which is valuable for climate prediction communities.78
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We also aim to identify whether errors in the atmosphere or the ocean play a key79

role in degrading prediction skills.80

The article is organized as follows. Section 2 introduces the main methodolog-81

ical aspects of the study. Section 3 shows the prediction skill of the hybrid model82

compared with the dynamical model and discusses factors affecting the prediction83

skill of the hybrid model. Finally, a brief concluding summary is presented in section84

4.85

2 Methodology86

In this study, we make use of MAOOAM (De Cruz et al., 2016) which is able87

to mimic climate variability and is numerically cheap to perform a large number88

of experiments. We employed the same configurations of the model (section 2.1),89

DA (section 2.2) and Artificial Neural Network (ANN, section 2.3) as Brajard et90

al. (2021). However, our experiments are more realistic and different from that of91

Brajard et al. (2021). Please refer to section 2.4 for details.92

2.1 Modular Arbitrary-Order Ocean-Atmosphere Model93

MAOOAM consists of a two-layer quasi-geostrophic (QG) atmospheric compo-94

nent coupled both thermally and mechanically to a QG shallow-water oceanic com-95

ponent. The coupling between the two components includes wind forcings, radiative96

and heat exchanges. The model variables are described in the spectral modes. Sup-97

posing the model state is composed of na modes of the atmospheric stream function98

ψa and temperature anomaly θa and no modes of the oceanic stream function ψo99

and temperature anomaly θo, respectively, the model state is given as100

x = (φa,1, φa,2, ..., φa,na
, θa,1, θa,2, ..., θa,na

, φo,1, φo,2, ..., φo,no
, θo,1, θo,2, ..., θo,no

) (1)

The total number of variables is 2 × na + 2 × no. The key feature of MAOOAM is101

that we can change the resolution of the model by simply modifying the number of102

atmospheric and oceanic model variables.103

In this study, we make use of two configurations of MAOOAM the same as104

Brajard et al. (2021): one with 56 variables (na = 20, no = 8, hereafter referred to105
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as M56) and the other one with 36 variables (na = 10, no = 8, hereafter referred106

to as M36). Note that the configuration M36 has the same resolution in the ocean107

component as the configuration M56, but 10 modes less in the atmosphere. These108

missing modes represent the high-order atmospheric modes and lead to the fact that109

M36 does not resolve variability on small scales. Therefore, the model error in this110

study primarily comes from unresolved small-scale processes.111

2.2 Ensemble Kalman Filter112

The EnKF is a flow-dependent and multivariate DA method and has been im-113

plemented for climate prediction (Karspeck et al., 2013; Wang et al., 2019; Zhang et114

al., 2007). In the EnKF, the covariance is constructed from the dynamical ensemble115

and is more reliable than a static covariance (Sakov & Sandery, 2015). In addition,116

the ensemble-based covariance makes the updates satisfy the model dynamics and117

limits the assimilation shocks (Evensen, 2003).118

In this study, we employ the DAPPER package (Raanes, 2018) to carry out the119

assimilation experiment. The DAPPER package is a toolbox for evaluating the per-120

formance of DA methods. The package provides experimental support and guidance121

for new developments in DA. We use the finite-size ensemble Kalman filter (EnKF-122

N) (Bocquet et al., 2015), which is the same method used by Brajard et al. (2021).123

One reason for choosing the EnKF-N algorithm is its numerical efficiency. This124

method can also automatically estimate the inflation factor, which can facilitate the125

assimilation experiment since it is a critical parameter to tune in ensemble data as-126

similation systems. We do not expect that using the traditional EnKF changes any127

of the conclusions of this paper. Therefore, in the following, we do not distinguish128

the EnKF-N from the traditional EnKF (hereafter the EnKF).129

2.3 Artificial Neural Network Architecture130

We suppose the dynamical model prediction is expressed as follows:131

xk+1 = M(xk), (2)

where xk+1 represents the full model state at tk+1, xk represents the full model132

state at tk and M represents the dynamical model integration from tk to tk+1. The133
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model error at tk+1 is defined as follows:134

εk+1 = xt
k+1 − xk+1, (3)

where xt
k+1 is the truth state at time tk+1.135

We aim to use ANN to emulate the model error εk+1. Our ANN configuration136

is the same as in Brajard et al. (2021). The ANN architecture is composed of dense137

layers and the activation function is a linear rectification function (denoted ”reLU”).138

Some additional parameters have been added, mainly to regularize the training: a139

batch norm layer at the input layer, which normalizes the training batch, and an140

L2-regularisation term on the parameters of the last layer. The parameters of ANN141

are optimized using the ”RMSprop” optimizer over 300 epochs. For details, please142

refer to Brajard et al. (2021).143

The error surrogate model can be expressed as follows:144

ε′k+1 = MANN(xk), (4)

where MANN represents the data-driven model built by ANN and ε′k+1 represent145

the model error estimated by ANN. The full state xh
k+1 at time tk+1 of the hybrid146

model can be expressed as follows:147

xh
k+1 = M(xk) +MANN(xk) (5)

2.4 Experimental settings148

We present our experiments in Figure 1. The experiments are based on the two149

configurations of MAOOAM described in section 2.1. We define the model configu-150

ration with 56 variables (i.e., M56, section 2.1) as the true climate system and the151

model configuration with 36 variables (i.e., M36) as a dynamical prediction system.152

We carry out experiments (Figure 1) as follows:153

• we integrate M56 with a time step of approximately 1.6 minutes over 30726.5154

years which is considered to as the spin-up period (De Cruz et al., 2016). We155

continue the simulation over 219 years which is defined as the “truth”. We156
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generate observations every 27 hours (i.e., every 10 time steps) by perturbing157

the “truth” using a Gaussian random noise with a standard deviation equal to158

10% of the temporal standard deviation of the true state after subtracting the159

one-month running average (σhf).160

• we perform a simulation with 50 ensemble members. Initial conditions of the161

ensemble are randomly sampled from a long free-run simulation of M36 af-162

ter the spin-up period. We assimilate synthetic observations and produce an163

analysis dataset with an ensemble size of 50.164

• We produce two sets of ensemble predictions with 50 members: one with the165

dynamical model (i.e., M36) and the other with the hybrid model. The pre-166

dictions start each second year from the year 125 to the year 185, last for 30167

years, and have 50 ensemble members. Their initial conditions are taken from168

the analysis in the validation period (see Figure 1).169

We split the analysis into two parts:170

• Training part: The former 124.6 years of the dataset is used to train the pa-171

rameters of the ANN, and apply the parameters to build the hybrid model.172

• Validation part: The latter 94.6 years of the dataset is used to validate the173

ANN training and initialize prediction experiments (Figure 1).174

Note that we utilize the same configurations of the model, DA, and ANN175

as Brajard et al. (2021). However, our experiments are different from that in176

Brajard et al. (2021) as follows:177

• Brajard et al. (2021) performed an analysis experiment about 62 years. They178

used these data for both ANN training and validation. Here, we extended the179

simulation time to 219.2 years. And we divided the data into two separate180

parts: training and validation.181

• Brajard et al. (2021) used the truth to initialize predictions. In our experi-182

ments, we use the analysis as initial conditions, which is more realistic because183

initial conditions are never perfectly known in reality.184

• Brajard et al. (2021) performed predictions with one member by assessing one185

lead time only. We use the ensemble prediction with 50 members at several186

lead times.187

–7–



manuscript submitted to Geophysical Research Letters

2.5 Validation metrics188

To test the prediction skill of the hybrid model, we adopt a metric com-189

monly used in weather and ocean forecasting and climate prediction: the skill score190

(SS) (Murphy, 1988). The metric SS is based on the ensemble mean of the predic-191

tion and is defined as:192

SS = 1− RMSEprediction

RMSEpersistence
(6)

Here, RMSEprediction represents the Root Mean Square Error (RMSE) of the pre-193

diction (ensemble mean) against the truth, where the prediction is the result of the194

dynamical model or hybrid model. RMSEpersistence represents the RMSE of the per-195

sistence prediction (in which the state at any lead time is the same as the initial196

conditions) against the truth. A positive SS indicates the prediction is better than197

the persistence and is skillful. A negative SS indicates the prediction is worse than198

the persistence and is not skillful. One advantage of the SS is that it is unitless.199

Thus, the SS is suitable for validation across different variables in the same panel200

(e.g., Figure 2).201

For the significance test of the SS, we use a two-tailed Student’s t-test to test202

the difference between the mean squared errors of the prediction and persistence.203

We use the bootstrap method to estimate the uncertainties of the SS. Since the SS is204

based on 30 prediction experiments, we randomly select (with replacement) 30 data205

from the 30 prediction experiments. Then we calculate the SS with these 30 sampled206

data. After repeating this procedure 10,000 times, we obtain a sample of 10,000 SS207

values and make use of their standard deviation as the uncertainties of SS.208

3 Result209

3.1 Prediction skill210

Figure 2a shows the prediction skills of the dynamical model for both at-211

mospheric temperature θa and stream function φa. We find that the variables in212

low-order atmospheric modes such as φa,2, φa,3, θa,2 and θa,3 have significant predic-213

tion skills until 14 days. While the temperature in high-order modes has significant214

skills within 8 days, the stream function in high-order modes has no prediction skill215

at all times. Figure 2b shows the prediction skills of the hybrid model for atmo-216
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spheric variables. For temperature, the hybrid model is skillful for up to 18 days for217

all modes. For stream function, the hybrid model is skillful in predicting low-order218

atmospheric modes for up to 20 days and high-order modes for up to 14 days (excep-219

tionally, φa,9 up to 20 days). Overall, the hybrid model is significantly more skillful220

than the dynamical model for atmospheric variables.221

In the coupled model, the purpose of introducing ML to correct model errors222

is not only to improve the short-term atmospheric prediction skills (less than 14223

days) of the model but also to improve the long-term oceanic prediction skills (over224

5 years) of the model.225

Figure 2c shows the prediction skills of the dynamical model for oceanic tem-226

perature and stream function. Since the ocean has lower variability than the atmo-227

sphere, the dynamical model has significant prediction skills for up to 30 years in228

oceanic temperature in most modes and oceanic stream function in some modes. In229

addition, the temperature is more predictable than the stream function. Figure 2d230

presents the prediction skills of the hybrid model. The hybrid model has significant231

prediction skills in both oceanic temperature and stream function in all modes for232

up to 30 years. It is worth noting that the hybrid model has higher SS than the dy-233

namical model, in particular, for ocean temperature in the first and last modes and234

some oceanic stream functions in which the dynamical model has no prediction skill235

at all (e.g., φo,2 and φo,6).236

Supporting information S1-S4 are examples of restoring variables in the physi-237

cal space. The results also show that compared to the dynamical model, the hybrid238

model is closer to the truth in terms of spatial distribution and evolution. For long-239

term climate prediction, there are additional requirements for the hybrid model:240

the model must be able to can run for a long time and not diverge (Brenowitz et241

al., 2020; Rasp, 2020). In our case, there is no significant physical instability in the242

hybrid model during the predictions of 30 years. Overall, the hybrid model outper-243

forms the dynamical model, which demonstrates the benefit of the data-driven error244

correction model built by the ANN.245
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3.2 Sensitive experiments246

In the previous section, ANN is trained with the inputs from atmospheric and247

oceanic variables to correct both atmospheric and oceanic errors. In this section, we248

build two other hybrid models in which ANN is trained with the same input as the249

previous section but to correct either only atmospheric errors or only oceanic errors.250

The idea is to identify the error of which component is most important for predic-251

tions. We explore the prediction skills of three key variables of MAOOAM (De Cruz252

et al., 2016): φa,1, φo,2 and θo,2.253

Figure 3a shows the prediction skill of different hybrid models for the key at-254

mospheric variable φa,1. Correcting both atmospheric and oceanic errors (the cyan255

line in Figure 3a) and correcting only atmospheric (the purple line in Figure 3a)256

have almost no significant difference. However, compared with the dynamical model257

result (the black dashed line in Figure 3a), correcting only the oceanic errors (the258

blue line in Figure 3a) does not improve the atmospheric prediction within 20 days.259

Figure 3b and 3c show the prediction skill of different hybrid models for the260

two key oceanic variables φo,2 and θo,2. Correcting both atmospheric and oceanic261

errors (cyan line) has the best prediction skill. Correcting only oceanic errors (blue262

line) can improve the prediction skill, but significantly less efficient than correcting263

both atmospheric and oceanic errors. For φo,2, when correcting only the errors in264

the ocean, there is a slight improvement in the first five lead years. But correcting265

atmospheric errors does not improve prediction skills in the first five years. It is266

mostly because of the physical unbalance between the atmosphere and the ocean267

and the fact that the ocean needs some time to synchronize with the error-corrected268

atmosphere. For θo,2, correcting only oceanic errors (the blue line) and only atmo-269

sphere errors (the red line) show high SS in the first 15 years.270

4 Conclusions and Discussions271

In this study, we applied a method to online correct the model error of a sim-272

plified ocean-atmosphere coupled model (MAOOAM). The ML is introduced to learn273

the model error between the analysis performed by DA and the hindcast simula-274

tion thus building a statistical-dynamical hybrid model. The hybrid model is able275

to make reasonable prediction skills using both the atmospheric and oceanic model276
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states as input. Besides, we find if we only focus on improving short-term predic-277

tion skills of atmospheric variables, only correcting the atmospheric error can obtain278

a similar prediction skill by correcting both atmospheric and oceanic errors. But279

good prediction skills for ocean variables require correction for both atmospheric and280

oceanic model errors.281

This study is to be seen as a proof of concept, in which we have shown that282

in principle it is possible to let ANN learn the model error and thus improve the283

prediction skills of the coupled model. Ideally, one would apply the ML corrections284

to the same model that is used to generate the analysis. This also effectively solves285

the problem of how to correct the model error when the observation is insufficient286

and cannot be directly used for ML training. In an operational weather forecast-287

ing context, it would be possible to adapt this method to learn model errors from a288

fully-fledged DA system which would ensure consistency between the models.289

Besides, a realistic model is more complex than MAOOAM and the correct-290

ing frequency in a realistic model is lower. The next natural step for future studies291

would apply this method to the realistic model and explore the prediction skills.292
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(b) Hybrid model
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(a) Dynamical model
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(c) Dynamical model
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(d) Hybrid model
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Figure 2. SS as a function of the prediction lead time for variables in the hybrid model or

the dynamical model. (a) The SS of the dynamical model for atmospheric variables, (b) the SS

of the hybrid model for atmospheric variables, (c) The SS of the dynamical model for oceanic

variables, and (d) the SS of the hybrid model for oceanic variables. The black dot indicates the

SS not exceeds the 95 significance test.
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Figure 3. SS for three key variables (a) ψa,1, (b) ψo,2 and (c) θo,2 as a function of lead time

(20 days for the atmospheric variable and 30 years for the ocean variables). Shading shows one

standard deviation calculated by the bootstrap method described in section 2.5. The cyan line is

the SS of the hybrid model built by correcting both atmospheric and oceanic model errors, the

purple line is the SS of the hybrid model built by only correcting atmospheric model errors, the

blue line is the SS of the hybrid model built by only correcting oceanic model errors and the dash

black line is the SS of the dynamical model.
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