References
[1] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovoltaics. 21 (2013) 827–837.
[2]
[3] P. Zhao, H. Yang, J. Li, H. Jin, W. Wei, L. Yu, B. Huang, Y. Dai, ‘’ Design of new photovoltaic systems based on two-dimensional group-IV monochalcogenides for high performance solar cells” J. Mater. Chem. A, 5 (46) (2017), pp. 24145-24152.
[4] H.J. Jia, S.Y. Cheng, S.K. Wu, Y.L. Yang, Nat. Sci. 2 (2010) 197–200.
[5] K.S. Cole, R.H. Cole, J. Chem. Phys. 9 (1941) 341
[6] K.S. Cole, R.H. Cole, J. Chem. Phys. 10 (1942) 98.
[7] M. Itagaki, Y. Nakano, I. Shitanda, K. Watanabe, Electrochimica Acta 56 (2011)7975.
[8] M. Lal, P.K. Batham, N. Goyal, Sol. Energy Matter. Sol. Cells 36 (1995) 111
[9] J.H. Scofield, Sol. Energy Matter. Sol. Cells 37 (1995) 217.
[10] H. Bayhan, A.S. Kavaso˘glu, Turk J Phys 27 (2003) 529.
[11] R. Loef, J. Schoonman, A. Goossens, J. Appl. Phys. 102 (2007) 024512.
[12] K. Laes, S. Bereznev, R. Land, A. Tverjanovich, O. Volobujev, R. Traksma, T. Raadik,A. Opik, Energy Procedia 2 (2010) 119.
[13] G. Friesena, M.E. OÈ zsarc, E.D., Dunlopa, Thin Solid Films 361 (2000) 303.
[14] B.H. Hamadani, J. Roller, P. Kounavis, N.B. Zhitenev, D.J. Gundlach, Sol. EnergyMatter. Sol. Cells 116 (2013) 126.
[15]
[16]
[17] C. H. Huang and W. J. Chuang, “Dependence of performance parameters of CdTe solar cells on semiconductor properties studied by using SCAPS-1D,” Vacuum, vol. 118, pp. 32–37, 2015.
[18] L. I. Nykyruy, R. S. Yavorskyi, Z. R. Zapukhlyak, G. Wisz, and P. Potera, “Evaluation of CdS/CdTe thin film solar cells: SCAPS thickness simulation and analysis of optical properties,” Opt. Mater. (Amst)., vol. 92, no. April, pp. 319–329, 2019.
[19] E. H. Ihalane, L. Atourki, H. Kirou, A. Ihlal, and K. Bouabid, “Numerical study of thin films CIGS bilayer solar cells using SCAPS,” Mater. Today Proc., vol. 3, no. 7, pp. 2570–2577, 2016.
[20] H. Heriche, Z. Rouabah, and N. Bouarissa, “New ultra thin CIGS structure solar cells using SCAPS simulation program,” Int. J. Hydrogen Energy, vol. 42, no. 15, pp. 9524–9532, 2017.
[21] S. R. Meher, L. Balakrishnan, and Z. C. Alex, “Analysis of Cu2ZnSnS4/CdS based photovoltaic cell: A numerical simulation approach,” Super lattices Microstruct., vol. 100, pp. 703–722, 2016.
[22] A. E. H. Benzetta, M. Abderrezek, and M. E. Djeghlal, “Contribution to improve the performances of Cu2ZnSnS4 thin-film solar cell via a back surface field layer,” Optik (Stuttg)., vol. 181, pp. 220–230, 2019.
[23] A. S. Mathur, S. Dubey, Nidhi, and B. P. Singh, “Study of role of different defects on the performance of CZTSe solar cells using SCAPS,” Optik (Stuttg)., p. 163245, 2019.
[24] Y. H. Khattak, F. Baig, S. Ullah, B. Marí, S. Beg, and H. Ullah, “Numerical modeling baseline for high efficiency (Cu2FeSnS4) CFTS based thin film kesterite solar cell,” Optik (Stuttg)., vol. 164, pp. 547–555, 2018.
[24] Y. H. Khattak, F. Baig, B. M. Soucase, S. Beg, S. R. Gillani, and S. Ahmed, “Efficiency enhancement of novel CNTS/ZnS/Zn (O, S) thin film solar cell,” Optik (Stuttg)., vol. 171, pp. 453–462, 2018.
[26] F. Baig, Y. H. Khattak, B. Marí, S. Beg, S. R. Gillani, and A. Ahmed, “Mitigation of interface recombination by careful selection of ETL for efficiency enhancement of MASnI3 solar cell,” Optik (Stuttg)., vol. 170, pp. 463–474, 2018.
[27]H. Ullah and B. Marí, “Numerical analysis of SnS based polycrystalline solar cells,” Super lattices Microstruct., vol. 72, pp. 148–155, 2014.
[28] M. Minbashi, A. Ghobadi, M. H. Ehsani, H. Rezagholi pour Dizaji, and N. Memarian, “Simulation of high efficiency SnS-based solar cells with SCAPS,” Sol. Energy, vol. 176, no. October, pp. 520–525, 2018.
[29] H. Movla, Optimization of the CIGS based thin film solar cells: Numerical simulation
and analysis. Optik-International Journal for Light and Electron Optics, 125(2014) 67-70.
[30] M. Mostefaoui, H. Mazari, S. Khelifi, A. Bouraiou, R. Dabou, Simulation of High Efficiency CIGS solar cells with SCAPS-1D software. Energy Procedia, 74 (2015) 736-744.
[13] K.S. Cole, R.H. Cole, J. Chem. Phys. 9 (1941) 341.
[14] K.S. Cole, R.H. Cole, J. Chem. Phys. 10 (1942) 98.
[15] M. Itagaki, Y. Nakano, I. Shitanda, K. Watanabe, Electrochimica Acta 56 (2011)7975. [16] M. Lal, P.K. Batham, N. Goyal, Sol. Energy Matter. Sol. Cells 36 (1995) 111. [17] J.H. Scofield, Sol. Energy Matter. Sol. Cells 37 (1995) 217. [18] H. Bayhan, A.S. Kavasoglu,˘ Turk J Phys 27 (2003) 529.
[19] R. Loef, J. Schoonman, A. Goossens, J. Appl. Phys. 102 (2007) 024512.
[20] K. Laes, S. Bereznev, R. Land, A. Tverjanovich, O. Volobujev, R. Traksma, T. Raadik, A. Opik, Energy Procedia 2 (2010) 119.
[21] G. Friesena, M.E. OÈ zsarc, E.D., Dunlopa, Thin Solid Films 361 (2000) 303.
[22] B.H. Hamadani, J. Roller, P. Kounavis, N.B. Zhitenev, D.J. Gundlach, Sol. Energy Matter. Sol. Cells 116 (2013) 126.
[23] P.A. Fernandes, P.M.P. Salomé, A.F. Sartori, J. Malaquias, A.F. Cunha, B.A. Schubert, J.C. González, G.M. Ribeiro, Sol. Energy Matter. Sol. Cells 115 (2013) 157.
[24] M. Sugiyama, M., Hayashi, C. Yamazaki, N. B. Hamidon, Y. Hirose, M., Itagaki, Thin Solid Films 535 (2013) 287.
[22] S. Aydoğan, Ü. İncekara, A. Türüt, Determination of contact parameters of Au Carmine/n-Si Schottky device, Thin Solid Films 518 (2010) 7156. [23] M.M. El-Nahass, K.F. Abd-El-Rahman, A.A.A. Darwish, Fabrication and electrical characterization of p-NiPc/n-Si heterojunction, Microelectron. J. 38 (2007) 91. [24] E.H. Rhoderick, R.H. Williams, Metal-Semiconductor Contacts, 2nd, Claredon, Oxford, 1988.