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COVID-19, caused by the novel coronavirus (SARS-CoV-2),
is an emerging infectious disease (EID) with a relatively high
infectivity and mortality rate. During the state of emergency
announced by the Japanese government in the spring of 2020,
citizenswere requested to stay home, the number of infected
peoplewas drastically reducedwithout a legally-binding lock-
down. It is well-acknowledged that there is a trade-off be-
tweenmaintaining economic activity and preventing the spread
of infectious diseases. We aimed to reduce the total loss
caused by the epidemic of an EID likeCOVID-19 in the present
study. We focused on early and late stages of the epidemic
and proposed a framework to reduce the total loss resulted
from the damage by infection and the cost for the counter-
measure. Mathematical epidemic models were used to es-
timate the effect of interventions on the number of deaths
by infection. The total loss was converted into the monetary
base and different policieswere compared. In the early stage,
we calculated the damage by infection when behavioral re-
strictions were implemented. The favorable intensity of the
intervention depended on the basic reproduction number,
infection fatality rate, and the economic impact. In the late
stage, we calculated indicators and showed it depended on
the ratio of the cost to maintain the hospitalization system
to the monetary loss per deaths by infection which strate-
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gies should be adopted.
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1 | INTRODUCTION1

We’re facing the risk of emerging infectious diseases (EIDs) due to the increase on the movement between different2

regions. The COVID-19, caused by the novel coronavirus (SARS-CoV-2), is an infectious disease with a relatively high3

infectivity and mortality rate. The number of persons around the world infected with the COVID-19 had grown at an4

alarming rate since the beginning of 2020. The world health organization (WHO) first declared COVID-19 a public5

health emergency of international concern (PHEIC) on January 30, 2020 (WHO, 2020) . Although the virus was not6

eliminated and had been changing, theWHOannounced an end to PHEIC of COVID-19 onMay 5, 2023 (WHO, 2023).7

Since even asymptomatically infected person can be infectious, it is difficult to take measures against the spread of8

the COVID-19 infection. Some argued that it is difficult to eliminate the SARS-CoV-2 due to its property (Thompson9

et al., 2020; Furuse and Oshitani, 2020). The elimination, as an ideal ending, is achieved when the transboundary10

cooperation is established and the vaccine is fairly distributed (Fontanet et al., 2021; Metcalf et al., 2021). However,11

if not so, we should choose the cohabitation option with the virus (Kofman et al., 2021).12

From lessons of the previous pandemic, we should pay attention to EIDs in the future as well as the new variant13

of the SARS-CoV-2. The important index to consider preventing the spread of the virus is the effective reproduction14

number, which is defined as the average number of people infected by an infectious person by the time for his or15

her recovery or death. Reducing this number is essential to contain the epidemic (Ferguson et al., 2005). One of16

challenges for policy making against the outbreak of an EID is preparedness to enable prompt and effective actions17

to control outbreaks (Hadley et al., 2021; Petersen et al., 2020). In addition, it is well-acknowledged that there is18

a trade-off between maintaining economic activity and the prevention of an outbreak of disease. Dangerfield et al.19

(2022) discussed the key challenges when merging of epidemiology and economics, such as evaluating the trade-off20

between saving lives and economic costs. Kretzschmar et al. (2022) emphasized the interdisciplinary collaboration21

of different fields including mathematics, biology, and medical economics for EIDs in the future. Their review also22

argued that it is necessary to find models reflecting the realistic system.23

In the present study, we took an EID like COVID-19 for example and examined three types of interventions:24

behavioral restrictions, tests for detecting exposed people, and the hospitalization of infected people. For example,25

lockdowns are considered behavioral restrictions: the short-term effect of suppression measures tends to involve26

urban lockdowns and the huge economic impact of such lockdowns. We explored the trade-off between the damage27

by infection and the cost of countermeasures, and demonstrated a framework of investigating the total damage of the28

EID. We investigated the negative impact on the economy and the reduction of deaths as a result of executing such29

interventions in the early stage and the late stage of an epidemic. Mathematical epidemic models are important tools30

in an epidemic since they are reference tools for policymakers in deciding which policy should be adopted. Calculation31

was done to determine the mortality rate from infection cases and the socio-economic cost.32

When an EID breaks out, like in the early stage of the COVID-19 (Anderson et al., 2020), little information is avail-33

able. The behavioral restriction is then one of realistic options in the absence of the mass testing and pharmaceutical34

interventions. A mathematical epidemic model known as the Susceptible-Infected-Recovered (SIR) has been used to35

estimate the effect of interventions on the number of deaths by infection. During the state of emergency announced36
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by the Japanese government in the spring of 2020, citizens were requested to stay home, which resulted in a drastic37

reduction in the number of infected people without a legally-binding lockdown. However, some research implied that38

people cannot follow this restriction for a long time and may change their behaviors (Nakanishi et al., 2021; Pan et39

al., 2020).40

In the late stage, when themass testing and pharmaceutical interventions are available, the detection and isolation41

of infected persons become a continuous policy. Infected persons are detected by conducting tests based on the42

reverse transcriptase polymerase chain reaction (RT-PCR) and the antibody test. The Susceptible-Infected-Recovered43

(SIR) model does not consider the isolation of confirmed infections in health care facilities, even though this measure44

is known to be successful in that isolation prevents new infections. In this stage, we developed another model to45

incorporate the detection and isolation of infected people. It helps determine the appropriate isolation measures to46

be taken for those who test positive. The model assumptions used in our analysis were simplistic, the parameter47

values were provisional, and we were not aiming for quantitative comparative verification.48

2 | METHODS49

2.1 | General approach50

We can define the loss caused by the epidemic as the sum of the damage by infection and the cost for the coun-51

termeasure. The objective of this research is reducing the total loss consisting of the death by infection and the52

socio-economic cost. In order to finding out an effective solution, we need to understand population dynamics un-53

der the epidemic. Converting the total loss and the cost into a monetary base helps us compare the trade-off and54

countermeasure plans.55

2.2 | Population dynamics56

2.2.1 | Early stage57

In the early stage of an epidemic, there would not be much information available. We used one of the simplest models58

and assumed the population dynamics of an EID are given as follows:59



dS

d t
= −(1 − f )βSI

dI

d t
= (1 − f )βSI − γI

dR

d t
= γI

(1)

where S , I , and R represent the density of susceptible, infected, recovered people, respectively. The total population60

density, including the number of deaths, S (t ) + I (t ) + R (t ) = 1 for any time. β is the infection rate, while γ is61

the recovery rate. The basic reproduction number, denoted by <0, is defined by β/γ. f is a control parameter and62

represents the degree of the behavioral restrictions. While f = 0 represents the absence of behavioral restrictions63

(usual state), f > 0 means that some policies, such as the restriction of movement, are implemented. We defined64

fmax as the maximum value of f and assume fmax = 0.6. We also defined fc as the threshold of f such that satisfies65

dI /d t ≤ 0 at any time t . We can obtain fc = 1 − γ/β from the second equation of Eq.1.66
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2.2.2 | Late stage67

In the late stage, we assumed that some information of the EID is available to make a decision. We developed a new68

epidemic model by adding two new compartments: E and H . E stands for "Exposed" and represents the density of69

thosewho are exposed to the virus. On the other hand, H stands for facilities for isolation such as "Home", "Hotel", and70

"Hospital" and represents the density of isolated people including those who are detected by testing and hospitalized71

by onset of the symptom. The population dynamics of our SEIHRS model are given as follows:72



dS

d t
= −βSI + ϵR

dE

d t
= βSI − ηE − θE

dI

d t
= ηE − λI − γI

dH

d t
= θE + λI − γhH

dR

d t
= γI + γhH − ϵR

(2)

where η is the reciprocal of the incubation period; θ is the detection rate of the exposed people. λ is the hospitalization73

rate of the infected people and the reciprocal of the time from onset to hospitalization. ϵ is the waning rate of the74

immunity; γ is the recovery rate of infected people, while γh is that of isolated people. We denoted vector state75

(S , E , I ,H , R ) byX. The total population S (t )+E (t )+I (t )+H (t )+R (t ) = 1 is constant for any time t . Infectionmortality76

would reduce the total population; however we assume that it can be negligible. θ and λ are control parameters in77

this system. When ϵ > 0, this system has two equilibrium points, X1 and X2.78

X1 = (S1, E1, I1,H1, R1)

= (1, 0, 0, 0, 0) (3)
X2 = (S2, E2, I2,H2, R2)

=

(
(η + θ) (λ + γ)

βη
,
λ + γ

η
I ∗, I ∗,

θ (λ + γ) + ηλ

ηγh
I ∗,

(λ + γ) (θ + η)
ηϵ

I ∗
)

(4)

where79

I ∗ =

(
1 − (η + θ) (λ + γ)

βη

) (
1 + λ + γ

η
+ θ (λ + γ) + ηλ

ηγh
+ (λ + γ) (θ + η)

ηϵ

)−1 (5)

2.3 | Trade-off between the mortality rate and the socio-economic cost80

2.3.1 | Early stage81

In the early stage, we assumed that the period of interest was 180 days (T = 180). The mass testing in this stage is not82

prepared well and pharmaceutical interventions such as vaccination are not available yet. We calculated the mortality83

rate, the density of susceptible and recovered people at dayT (S (T ) and R (T )), the maximum value of I (t ) , and the84
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day when I (t ) is maximized. Since the total population is assumed to be one in this paper, these indicators are per85

capita values.86

It is assumed that those who get sick die of infection at a rate. Let D (t ) be the mortality rate by COVID-19 in87

those who are newly confirmed cases from time 0 to t . we calculated it as follows:88

D (T ) = δ ×
∫ T

0
(1 − f )βS (t )I (t )d t (6)

where δ is the infection fatality rate, defined as the ratio of deaths to the number of infected cases. Nishiura et al.89

(2020) estimated that δ = 0.3% to 0.6%, and we assumed δ = 0.5%. There is a time lag between infection and recovery90

or death, but the lag is assumed to be negligible.91

In the absence of acquired herd immunity, the realistic option is to continue with behavioral restrictions until a92

medical resolution is found. There are suppression and mitigation strategies (Ferguson et al., 2020). We also defined93

the socio-economic cost resulted from behavioral restrictions as an indicator depending on the intensity of imple-94

mented behavioral restrictions and the management period. It is denoted by Cf and is calculated as follows:95

Cf (T ) =
∫ T

0
mf (f )d t (7)

where mf (f ) is the cost to maintain the behavioral restriction on a daily basis and is assumed mf (f ) = Mf · f /fmax .96

mf (0) = 0 means that the usual state is maintained, and mf (fmax ) = Mf is the cost per day required to execute a97

state of emergency.98

The inherent difference between impacts of D (T ) and Cf (T ) makes it difficult to compare them directly. To99

summarize the total loss of the damage by infection and the cost of countermeasures, we converted the D (T ) into a100

monetary base. In this paper, all costs are presented in Japanese yen. We then calculated the mortality rate converted101

into the monetary base, denoted by CM .102

CM (T ) = D (T ) ×MD (8)
where MD is the monetary loss per deaths by infection. The total loss per capita, denoted by Z , is given as:103

Z = CM (T ) + Cf (T ) (9)
This allows these different ideas to be directly compared. To plot the result of the simulation, we define z̄ = Z /MD104

and Mf /D = Mf /MD .105

z̄ =
Z

MD
= D (T ) + f̄ ·Mf /D (10)

where106

f̄ =

∫ T

0

f

fmax
d t (11)

We conducted simulations for three basic reproduction number (<0 = 1.5, 2.5, 3.0) and the initial state that I (0) =107

1.0 × 10−3, S (0) = 1 − I (0) , and R (0) = 0. We examined non-intervention (f = 0) and three types of degree of108
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behavioral restrictions: weak (f = 0.2), middle (f = 0.4), , and strong (f = 0.6). Variables and parameters are shown in109

Table .110

2.3.2 | Late stage111

We examined the late stage strategy in which we could reduce the total loss by the epidemic without behavioral re-112

strictions in the late stage. We assumed changes in the parameter values in the early and late stages (Table 2). We also113

assumed that some acquired the immunity against the virus through infection and vaccination . The main intervention114

is the detection and isolation of exposed people and the hospitalization of infected people instead of behavioral re-115

strictions, and their socio-economic costs were calculated in the late stage. We assumed that the immunity acquired116

by natural infection and vaccination would wane and the new strategy started from t = T0 in the simulation. We did117

not consider infection dynamics from the end of the early stage T to the beginning of the late stage T0. Therefore,118

the specific date ofT0 is not specified here, and the state at t = T0 is also given as an initial value of the late stage.119

Firstly, we explored the situation fromT0 toT1 and investigated the sensitivity of R (T0) and calculated the death120

by infection, the cumulative rate of detected cases and the cumulative rate of hospitalized cases. T1 is one year after121

T0, and that is,T1 = T0 + 365. It is assumed that those who get sick die of infection at a rate. Let D (t ) be the mortality122

rate by COVID-19 in those who are newly confirmed cases from timeT0 to t . We calculated it as follows:123

D (t ) = δ ×
∫ t

T0

βS (t )I (t )d t (12)

We used the cumulative rate of detected cases, denoted by c1, as an indicator of detection and isolation:124

c1 (t ) =
∫ t

T0

θE (t )d t (13)

We also used the cumulative rate of hospitalized cases denoted by c2, as an indicator of hospitalization:125

c2 (t ) =
∫ t

T0

λI (t )d t (14)

Next, we examined reasonable policies to reduce the total loss in a long run under parameters in Table 2. The126

total loss per capita, Z , is given as:127

Z (t ) = CM (t ) + Cθ (t ) + Cλ (t ) (15)
where CM , Cθ , and Cλ are the monetary loss of death by infection, the socio-economic cost relating the detection128

and isolation, and that of the hospitalization, respectively.129

CM is given as:130

CM (t ) = D (t ) ×MD (16)

Cθ consists of the cost to maintain the detection and isolation system, mθ (θ) , and the cost resulted from the131



7

detection.132

Cθ (t ) =
∫ t

T0

mθ (θ)d t +
m1

π
c1 (t ) (17)

where m1 is the unit cost for the detection per day per person and π is the positive rate.133

Cλ consists of the cost to maintain the hospitalization system, mλ (λ) , and the cost resulted from the hospitaliza-134

tion.135

Cλ (t ) =
∫ t

T0

mλ (λ)d t +m2c2 (t ) (18)

where m2 is the mean unit cost for the hospitalization per day per person.136

In a long run, we explored how the total loss increases on a daily basis. we took a time derivative of Z at X = X2.137

d

d t
Z (t )

���X=X2 =
d

d t
CM (t )

���X=X2 + d

d t
Cθ (t )

���X=X2 + d

d t
Cλ (t )

���X=X2
= δβS2I2MD +M (θ) + m1

π
θE2 +M (λ) +m2λI2 (19)

We defined z as dZ (t )/d t |X=X2 . This problem can be interpreted as a minimization problem:138

Minimize z (20)
139

constraint to θ ≥ 0 (21)
λ ≥ 0 (22)

0 ≤ S2 ≤ 1 (23)
However, it is hard to solve this problem analytically and some parameters are uncertain. We define z̄ = z/MD and140

assume mθ (θ) = θ ·Mθ and mλ (λ) = λ ·Mλ .141

z̄ = δβS2I2 + θMθ/D +
m1/D
π

θE2 + λMλ/D +m2/DλI2 (24)
where Mθ/D = Mθ/MD , Mλ/D = Mλ/MD , m1/D = m1/MD , and m2/D = m2/MD . We aimed to minimize this z̄ and142

prepared candidate policies based on two strategies: elimination and cohabitation. We referred to a policy in whichX2143

(Eq.4) did not exist as the "intensive (intervention) policy”. The parameter set (λ, θ) satisfies λ ≥ βη/(η +θ) −γ. On the144

other hand, the policy with the cohabitation strategy in which X2 exists is called “moderate (intervention) policy”. Of145

the latter, a policy that does not intervene at all (λ = θ = 0) is called a “non-intervention policy”. Table 3 shows policy146

cases and their combinations of θ and λ. We assumed four combination cases of m1/D and m2/D : (m1/D ,m2/D ) =147

(10−5, 10−3) , (10−5, 10−4) , (10−4, 10−3) , and (10−4, 10−4) .148
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3 | RESULTS149

3.1 | Early stage150

We conducted simulations and calculated the mortality rate D (T ) , S (T ) , R (T ) , the maximum value of I (t ) during151

the management period, and the day when I (t ) is maximized. Table 4 shows results of the simulations. A larger <0152

and a lower f increased D (T ) and the maximum value of I (t ) . When f ≥ fc , the mortality can be greatly reduced but153

few people were immunized. On the other hand, the peak of I (t ) was delayed when f < fc .154

We examined the total loss during the first 180 days of the epidemic. Figure 1 demonstrates the reasonable155

policy to reduce the total loss during the early stage with differentMf /D . WhenMf /D was small, the total loss by the156

epidemic was relatively small and the strong behavioral restriction (f = 0.6) was recommended with any<0 (Figure 1157

(a), (b), and (c)). As Mf /D became larger, the strong behavioral restriction was not effective in reducing the total loss158

and middle or weak behavioral restriction became a better solution. The total loss under non-intervention (f = 0) was159

constant and could be a better strategy when Mf /D was large. These intermediate interventions are only supported160

in a narrow region, and either non-intervention or strong behavioral restrictions are effective. The non-intervention161

is favored when the economic loss of behavioral restrictions is more important than the economic value of life. In162

the case of a larger <0, the domain in which the middle and weak behavioral restrictions were favorable decreased.163

When<0 = 3.0, the non-intervention or the strong intervention was effective (Figure 1 (c)).164

3.2 | Late stage165

We conducted simulations in the late stage from T0 to T1 and calculated the mortality rate by infection D (T1) , the166

cumulative rate of detected cases c1 (T1) , and the cumulative rate of hospitalized cases c2 (T1) . Figure 2 shows the167

sensitivity of indicators with increasing the detection rate θ and the hospitalization rate λ. Results of indicators with168

different densities of those who has recovered by the late stage R (T0) were similar, and they became lower as R (T0)169

got higher. D (T1) was monotonically decreasing with increasing θ or λ (Figure 2 (a) and (b)). The shape of lines of170

c1 (T1) seemed convex with increasing θ (Figure 2 (c)). The curves reached their peaks at a higher θ as R (T0) got171

higher. The similar behaviors were obtained in c2 (T1) with increasing λ (Figure 2 (f)). c1 (T1) with increasing λ and172

c2 (T1) with increasing θ were monotonically decreasing (Figure 2 (d) and (e)).173

Figure 3 shows the reasonable policy with different Mθ/D and Mλ/D . It depended on Mλ/D which policy should174

be implemented. Intensive policies were reasonable in Mλ/D < 3 × 10−5, the non-intervention policy was in Mλ/D <175

2 × 10−4. When m1/D = 10−5, the total loss was minimized with a moderate policy in a limited area (Figure 3 (a) and176

(b)). The area in which policy G was reasonable was around Mθ/D < 9 × 10−6 and 7 × 10−5 ≤ Mλ/D < 2 × 10−4. When177

m1/D = 10−4, most of the area was replaced by policy F (Figure 3 (c) and (d)). Other moderate policies (H-K) were not178

favored in any region. As Mθ/D was increasing, the policy with a lower θ became more effective.179

4 | DISCUSSION180

We examined early and late stages of an epidemic caused by an EID and proposed a framework to reduce the total181

loss caused by the epidemic. There is not much information available in the early stage of the epidemic, and the182

situation changes over time afterward. We converted the mortality rate and the socio-economic cost into a monetary183

base (Figure 1). Our result demonstrated non-intervention or the strong behavioral restriction may be effective in184

reducing the total loss with different <0. Especially when the <0 was large, middle or weak behavioral restrictions185



9

did not reduce the number of deaths by infection so much. As a result, they became less supportive. Essentially,186

the ratio of Mf to MD (Mf /D ) is an important criterion for making a decision. The socio-economic cost resulted from187

behavioral restrictions is flexibly changed depending on the purpose. Zeytoon-Nejad and Hasnain (2021) proposed188

and examined the trade-off relationship between saved lives and saved jobs. Instead of saved jobs, we can also adopt189

indices such as the reduction of individual consumption or the gross domestic product. The behavioral restriction is a190

countermeasure until other intervention become available. When the mass testing which detects the infected people191

becomes available, these interventions are combined to reduce the effective reproduction number. Holtem ¥o ller et al.192

(2020) conducted an economic impact assessment of the disease and itsmitigationmeasures in a standard neoclassical193

growthmodel. He concluded that the optimal policy would be a mixture of temporary partial shutdowns and intensive194

testing and long-term quarantine of infected individuals.195

We explored the late stage of epidemic after leaving the behavioral restriction policy. We used the SEIHRSmodel,196

assuming that some information relating the virus and countermeasures had been available. We calculated three197

indicators one year after leaving the behavioral restriction policy: the cumulative detected case rate, the cumulative198

hospitalized rate, and the mortality rate. Utilizing the positive rate, we can estimate the necessary amount of resource199

for testing. When the initial value of the density of immunized people was high, indicators resulted in smaller values200

(Figure 2). This result implieswhen the behavioral restriction policy should be lifted. Continuedmonitoring of antibody201

retention rates may reduce the need for repeated behavioral restrictions if the efficacy of the antibody is knownwhen202

a mutant strain emerges.203

We also examined the reasonable policy to reduce the total loss in a long run. Our conclusion is that the moderate204

intervention policy is supported only in very limited circumstances, and either the intensive intervention policy or non-205

intervention policy is recommended. It depended on the ratio of the cost to maintain the hospitalization system to206

the monetary loss per deaths by infection which policies should be adopted (Figure 3). It is desirable to develop a207

cost-effective hospitalization system in which infected individuals can quickly take a medical care.208

There are some limitations in our research. Even though this model assumes a homogenous population, the popu-209

lation is actually heterogeneous. Furthermore, the difference between the infection rate andmortality rate at different210

age is important when looking at actual data. An indicator such as the maximum value of the density of hospitalized211

people in a day can be converted into the maximum amount of health care facilities. However, it is not clear whether212

the required medical personnel can be obtained or not. We assumed that the monetary cost was linearly increasing213

with the intensity of each intervention (mf (f ) , mθ (θ) , and mλ (λ)); however the non-linearity may change the favor-214

able policy. The quantitative verification of this model cannot be guaranteed. We didn’t consider the opportunity215

cost when calculating the total loss. Recession caused by behavioral restrictions increases the unemployment rate216

and imposes psychological stress on many people, and those factors have also been shown to result in an increase in217

the suicide rate (e.g. Kawohl and Nordt, 2020; Reger et al., 2020; Sher, 2020).218

Many nations shifted from suppression to mitigation strategies, partly due to the widespread use of vaccina-219

tion. However, the validity of this change has been insufficiently evaluated. We adopted a one-shot intervention to220

demonstrate the total loss in the early stage; however, it can be investigated under a cycle of behavioral restrictions221

and relaxation (e.g. Chowdhury et al., 2020; Watanabe and Matsuda, 2022). We examined the elimination strategy222

in the late stage simulation and proposed intensive intervention policies; however, the immigration of infected per-223

sons from other countries should also be considered. This paper can provide a framework to compare strategies and224

policies, although the quantitative results need to be improved. If the values of the parameters vary from country to225

country, the appropriate strategy may also differ (Khalifa et al., 2020). The knowledge provided by these models can226

only be understood in terms of a dynamical system. It must be stressed that there is no objective optimal solution,227

and that evaluation in decision-making depends on the values of policymakers. Further consideration is required with228
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regard to the decisions, the justifications of those decisions, and their impact.229

Since the outbreak, the SARS-CoV-2 has been being replaced by different variants, probably with increased re-230

production number (e.g Tanaka et al., 2021; Campbell et al., 2021; Furuse, 2022). Some reported that the omicron231

variant has the property that reduces the effectiveness of the vaccine against the symptomatic disease and evades the232

immunity (Andrews et al., 2022; Tan et al., 2023). Furuse (2021) conducted numerical simulations and examined how233

the property of a new variant and human antibodies influenced the epidemic. Ferguson et al. (2006) recommended234

using the real-time data to allow interventions to be tuned to match the virus. We have to observe the property of235

such a new variant and EIDs to take a quick countermeasure.236

Some studies measured the burden and the damage of COVID-19 and pointed out that they are unevenly dis-237

tributed by a part of people (e.g. Yoshikawa and Kawachi, 2021; Silva et al., 2023). As a lesson from the epidemic of238

SARS-CoV-2 and previous events, Norheim et al. (2021) showed the importance to set up systems that can provide239

for open and inclusive decision-making in an institutionalized manner rather than as ad hoc efforts when hard policy240

choices and trade-offs are called for on a regular basis. Furthermore, as Grimm et al. (2020) argued, it is important to241

keep in mind that the responsibility for using model outputs lies with decision makers. For the epidemic in the future,242

it is necessary to develop a decision-making system showing who is responsible for the decision clearly.243
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TABLE 1 The list of variables, indicators, and parameters

Symbol Definition
S (t ) Density of susceptible persons at time t

E (t ) Density of those who are exposed to the virus at time t

I (t ) Density of infected people at time t

H (t ) Density of isolated people at time t

R (t ) Density of recovered persons at time t

D (t ) Mortality rate by infection during the management period
λ Hospitalized rate of infected people
θ Detection rate of exposed people
<0 Basic reproduction number
T0 Start time of the late stage
f Degree of behavioral restrictions, such as the restriction of movement and shortening business hours

fmax The maximum degree of behavioral restrictions (assuming fmax = 0.6)
f̄ Mean of f during the period of interest
Z The total loss caused by the epidemic (Eqs.9, 15)
z Differential coefficient of Z at X = X2 (Eq.19)
z̄ z/MD (Eqs. 10, 24)

CM Monetary loss of death by infection (Eq.16)
Cf Socio-economic cost resulted from the behavioral restrictions (Eq.7)
Cθ Socio-economic cost caused by the detection and isolation (Eq.17)
Cλ Socio-economic cost caused by the hospitalization (Eq.18)
MD Unit monetary loss per deaths by infection
Mf Unit monetary cost to convert the degree of behavioral restrictions
Mθ Unit monetary cost to convert the detection and isolation
Mλ Unit monetary cost to convert the hospitalization

Mf /D Relative cost to conduct the detection (Mf /MD )
Mθ/D Relative cost to conduct the detection (Mθ/MD )
Mλ/D Relative cost to conduct the hospitalization (Mλ/MD )
m1 Unit monetary cost for detected people
m2 Unit monetary cost for hospitalized people
m1/D Relative cost of m1 to MD (assuming m1/D = 1 × 10−4 or 1 × 10−5)
m2/D Relative costof m2 to MD (assuming m2/D = 1 × 10−3 or 1 × 10−4)
c1 (t ) Cumulative rate of detected cases (Eq.13)
c2 (t ) Cumulative rate of hospitalized cases (Eq.14)
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TABLE 2 Parameter values for simulations

Parameter Definition Early stage Late stage
β Infection rate 0.75, 0.125, 0.15 0.3
γ Recovery rate of infected people 0.05 0.1
γh Recovery rate of isolated people - γh ≈ γ

η Reciprocal of the incubation period - 0.3
δ Infection fatality rate 0.005 0.001

T Management period for the early stage 180 days -
T1 End time of the late stage - 365 days afterT0

TABLE 3 Simulation cases in the late stage. Non-intervention policy (A), the intensive intervention policies (B-F),
and moderate policies (G-N).

Policy θ λ

A 0.00 0.000
B 0.00 0.200
C 0.06 0.150
D 0.10 0.125
E 0.20 0.080
F 0.30 0.050
G 0.30 0.040
H 0.15 0.050
I 0.20 0.070
J 0.10 0.120
K 0.06 0.075
L 0.05 0.125
M 0.03 0.150
N 0.00 0.180
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TABLE 4 Results of simulations in the first 180 days of the epidemic. The mortality rate D (T ) , the density of
susceptible, infected, recovered (immunized, including death) people at t = T , the maximum value of I (t ) , andTmax ,the day when I (t ) is maximized.

<0 fc f D (T ) S (T ) R (T ) max0≤t≤T I (t ) Tmax

1.5 0.33 0 8.88 × 10−4 0.821 0.130 4.81 × 10−2 180
0.2 1.41 × 10−4 0.971 2.39 × 10−2 5.35 × 10−3 180
0.4 2.63 × 10−5 0.994 5.87 × 10−3 1.00 × 10−3 0
0.6 7.26 × 10−6 0.998 2.43 × 10−3 1.00 × 10−3 0

2.5 0.6 0 4.41 × 10−3 0.118 0.856 0.234 98
0.2 3.58 × 10−3 0.283 0.631 0.154 136
0.4 8.88 × 10−4 0.821 0.130 4.81 × 10−2 180
0.6 4.40 × 10−5 0.990 8.84 × 10−3 1.00 × 10−3 0

3.0 0.67 0 4.69 × 10−3 6.15 × 10−2 0.929 0.301 77
0.2 4.31 × 10−3 0.136 0.830 0.219 104
0.4 2.72 × 10−3 0.456 0.436 0.118 161
0.6 1.41 × 10−4 0.971 2.39 × 10−2 5.35 × 10−3 180
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FIGURE 1 The total loss caused by deaths by infection and the cost of countermeasures against the infection
under four different degrees of behavioral restrictions f = 0, 0.2, 0.4, and 0.6.
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FIGURE 2 Sensitivity of indicators with the detection rate θ and the hospitalization rate λ. Lines demonstrate
results of different R (T0) = 0, 0.1, 0.2, 0.3, 0.4, 0.5.
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FIGURE 3 Reasonable policies with different Mθ/D and Mλ/D . The numbers in brackets in panels a to d indicate the
values of (m1/D ,m2/D ) . Domain A represents the non-intervention policy, domains B to F represent intensive
intervention policies, and domain G is one of moderate policies (Refer to Table 3).


