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Abstract

The semantic segmentation task is a basic task in the field of Mobile Edge Com-
puting, which requires the classification of each pixel in the image, which has
higher requirements for classification accuracy than the image classification task.
Fine-grained classification tasks requires more detailed information, in addition to
classifying according to the semantic information and spatial information of each
pixel unit and the surrounding pixels, it is also necessary to distinguish from adja-
cent pixels, which is one of the main difficulties of the current segmentation task.
However, high-resolution input images can bring more detailed information, but they
are often accompanied by expensive computing costs, so smaller resolution images
will be put in practical applications to ensure computing speed. As another task of
computer vision, super-resolution recovery focuses on extracting information from
low-resolution pictures and reasoning into higher-resolution feature maps. Its re-
covered detail features contribute to the high-precision classification of semantic
segmentation tasks. Considering the complementarity of the two tasks, considering
the use of transformer as a feature extractor, the design algorithm realizes semantic
segmentation and super-resolution recovery tasks at the same time, multi-task learn-
ing can ensure that the backbone network obtains more common high-dimensional
information, and then we use the results of super-resolution recovery branches to
guide the semantic segmentation task to provide more detailed information and fi-
nally obtain an effective improvement on the original baseline.
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1 INTRODUCTION

Semantic segmentation is an intensive image classification task that plays a important role in multi-level scene understand-
ing. Its pixel-level accuracy often requires more high-resolution detail information. In order to obtain more information, most
complex models require large memory consumption and computational costs. How to ensure real-time segmentation without
increasing the amount of computation is a hot research direction.

At present, most of the semantic segmentation algorithms based on deep learning use an end-to-end structure, input the picture
into a feature extractor for encoding, gradually obtain a high-dimensional feature map, and then decode and enlarge it, and finally
output the original image size. Most methods extract feature representations for density prediction by designing complex feature
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extraction networks or deepening the network. The high-resolution network proposed by HRNet1 maintains the resolution of the
image throughout the process of feature extraction and prediction. While extracting low-resolution feature maps, high-resolution
feature maps are also retained, and detailed information is effectively guaranteed not to be lost by combining paths and horizontal
links with different resolutions. However, its network framework is relatively large. To improve the segmentation accuracy,
many algorithms design a variety of more complex auxiliary modules on the decoding branch of downstream tasks, such as hole
convolution, attention mechanism, context encoding, etc. However, these methods always involve more expensive computing
costs, limiting their application on resource-constrained devices. At the same time, the time cost of testing is getting longer and
longer. Especially for video segmentation tasks that require continuous processing, the long time cost cannot meet the needs
of real-time monitoring. In some scenarios, images with a lower resolution of the model are selected for real-time semantic
segmentation. Therefore, how to better use the existing image information for detailed feature analysis under the premise that
the model inference speed is not affected, remains to be studied.

In the semantic segmentation task, the dimension of the feature map is greatly reduced after passing through the encoder.
A low resolution of the input image causes more challenging for the back-end network. Most networks use parameter-free
operations to upsample the image size when restoring it, such as bilinear interpolation. This operation makes it hard to recover
the details for the final segmentation result. The SR single-image super-resolution recovery task is also a pixel-level processing
task, which requires understanding and optimizing the detailed features of the original image. This task is similar to the semantic
segmentation task.Therefore, we design an additional SR single-map super-resolution recovery branch, which can learn and
recover the detailed characteristics of the resolved map, and the resulting high-resolution feature map can provide more detailed
information for the semantic segmentation task. This branch can be deleted at the time of prediction, which can ensure that no
additional time is added.

In this work, we designed a semantic segmentation based on transformer. This method restores the detailed information of
the feature map by adding super-resolution auxiliary branches, which helps the semantic segmentation to obtain better results.
The main flowchart is shown below, In summary, our main contributions include.

1. We design a bottom-up multi-layer feature fusion module, which can decode and fuse the multi-layer feature map extracted
by the transformer encoder, and is suitable for both semantic segmentation and super-resolution recovery.

2. Consider how to combine with the semantic segmentation task to design a reasonable and effective super-resolution
recovery task to effectively improve the accuracy of semantic segmentation.

3. In the Cityscapes urban landscape dataset, our algorithm is fully experimented, combined with the qualitative and quantita-
tive results of comparative experiments, and finally it is proved that adding super-resolution recovery branch for assistance
can effectively improve the accuracy of the semantic segmentation algorithm.

2 RELATED WORK

2.1 Semantic Segmentation
With the development of the CNN convolutional neural network, its powerful local feature extraction ability is soon applied to

semantic segmentation task. Full convolutional network2 (FCN) proposes to eliminate the full connection layer from a variety of
traditional networks, and the network only extracts deep semantics due to multiple convolutional layers and activation layers, thus
realizing the semantic segmentation network. Most mainstream semantic segmentation models are symmetrical U-shaped codec
structures, represented by U-Net3, SegNet4, RefineNet5 and other segmentation models. The mainstream backbone network has
the following shortcomings for semantic segmentation tasks, such as the loss of location label information within the feature
layer, the inability to process global context knowledge, and the lack of multi-scale processing, etc. Most subsequent studies have
proposed various architectural technologies to solve these problems. PSPNet6 pyramidal pool network makes use of the features
of multi-layer networks. DeepLab7 proposed by Chen et al in 2017 proposed the void convolution structure, and DeepLabv2
proposed the ASPP void convolution pyramid structure, which uses the void convolution to extract and integrate multi-scale
features. For the feature fusion stage of different layers of pyramid features, ICNet8 added an additional convolution structure
to realize the alignment of features at different scales, and also used the cascade label method to guide model training. CBAM9

proposed the channel attention mechanism and the spatial attention mechanism to emphasize the concerned information and
suppress the invalid information in the feature map to obtain the appropriate feature prediction map.
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2.2 Transformer network
In computer vision, Dosovitiskiy10 first proposed a fully transformer-based image classification network, the Visual Trans-

former (ViT), and broke the ImageNet best performance. ViT chooses to cut the input image into a series of non-overlapping
patches. ViT performs a linear projection of the block into a sequence vector. After that, the vector is put into the Transformer en-
coder for the calculation of self-attention, and the vector output of the module is obtained and classified. This paper realizes the
first application of pure Transformer structure model in computer vision, and provides a new research direction for many fields
of deep learning. SETR11 first introduced pure Transformer encoders into the field of semantic segmentation, and made several
attempts at the design of the decoder, and the final results show that progressive upsampling works best. PVT? introduced a
pyramid structure into ViT, which makes transformers better applied to dense prediction tasks. Different from the mainstream
semantic segmentation methods that perform mask prediction at the pixel level, Cheng et al. treat the semantic segmentation
task as a mask prediction problem and propose maskformer12.

2.3 Super-Resolution
Image resolution is used to evaluate how much detailed information a picture can contain, which reflects the ability of the

picture to reflect detailed information. High-resolution images often contain richer texture information and larger pixel density.
Super-resolution (SR) restoration task refers to the process of using digital image processing and other related knowledge to re-
construct the details in the image and improve the Low-Resolution image to a High-Resolution image. In 2016, Dong et al. first
applied convolutional neural network to super-resolution recovery task and proposed SRCNN13. Firstly, multiple convolution
layers are used to extract the features of the image, and the extracted feature maps are converted into high-dimensional feature
vectors through nonlinear mapping. The high-dimensional feature vectors are convolved again to reconstruct the high-resolution
feature images as the output. The VDSR14 model first proposed that the residual network was used in the super-resolution recon-
struction network, and the input image was directly connected to the high-frequency features of the reconstruction through the
residual structure. While reducing the amount of calculation, the supplement of low-frequency information in the reconstructed
image was completed, and the efficiency of the model was significantly improved. In 2016, Shi et al. proposed ESPCN15, which
proposed a sub-pixel convolutional layer. Firstly, the feature channels of the image were changed by convolution, and then the
feature layers of different channels were fused by pixel rearrangement to realize the enlargement of the feature map. Compared
with the common upsampling methods, the proposed method has more context information, which is conducive to the recovery
of image detail features.

2.4 Multi-task learning
Multi-tasking learning means that the model learns multiple tasks with related representations at the same time to improve

learning efficiency, prediction accuracy, and generalization performance. Multitasking learning is widely used in machine learn-
ing, natural language processing, computer vision and other fields4,5,6,7. MultiNet4 has designed a kind of network structure,
that can simultaneously image segmentation, target detection, such as semantic segmentation visual tasks. Cross-stitch Net-
works5 studied the sharing method of neurons in multi-tasking networks and proposed that sharing layer can be automatically
determined by end-to-end learning. Multitasking learning neural networks focus on parallel learning of computer vision tasks,
requiring trade-offs between multiple task outcomes. In order to achieve optimal results for a single task, AAA puts forward the
concept of task affinity. By calculating the affinity between different tasks, it sets groups for multiple tasks to optimize the final
training results of tasks. The multi-task learning proposed in this paper needs to distinguish the main task from the auxiliary
task in multi-task learning, and only focus on the training effect of the main task. We use the domain-specific information in the
training signal of the auxiliary task to improve the generalization effect of the main task and optimize the final result.

3 PROPOSED APPROACH

3.1 Approach Overview
This paper designs a semantic segmentation algorithm based on transformer, which adds a super-resolution auxiliary branch to

restore and supplement the detail information of the feature map, and guides the main branch to segment to obtain better results.
We choose to use mix-transformer as the feature extractor to perform semantic segmentation and super-resolution recovery
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Figure 1 Network framework

tasks simultaneously, assuming that the input image size is H*W, The encoder outputs multi-scale feature maps with the size of
(1/4H*1/4W,1/8H*1/8W,1/16H*1/16W,1/32H*1/32W) for the two tasks. In order to ensure that the results of the two tasks can
learn from each other, we design the basic feature decoder that is suitable for both tasks. In the decoding process, feature maps of
different scales are used, and a bottom-up feature alignment module is used to perform intensive reading promotion on the two
tasks at the same time, and the final output feature map size is (1/4H*1/4W). In the main branch, we use bilinear interpolation
to restore the feature map to its original size (H*W) as the result r1 of semantic segmentation. In addition to the basic decoder,
SRB (super-resolution-branch) also includes a super resolution decoder, which performs super-resolution restoration on the low-
resolution feature output to obtain high-resolution feature map (H*W) r2. The process is all supervised by the original image.
Finally, this high-resolution feature map is used to supplement the semantic segmentation result f2 with fine-grained structural
features, and the optimized semantic segmentation result r3 is obtained.

3.2 Design of auxiliary branches
Semantic segmentation requires sufficient detailed features, and super-resolution recovery tasks can effectively deduce de-

tailed features, so we consider using it as an aid. The input low-resolution feature map is recovered by SR super-resolution to
improve its resolution and supplement more detailed information, which helps the semantic segmentation to obtain more accu-
rate results in the subsequent process. We try to assist the original task with series and parallel.The experimental results show
that concatenation of the two tasks after the same decoder can ensure that the features of the two tasks are in the same feature
space. However, because the feature information required by the two tasks is not completely consistent, it is difficult to use one
encoder to achieve the prediction of the two tasks. Our main task is semantic segmentation, and too much attention to super-
resolution recovery task will lead to a decline in the final semantic segmentation results. Therefore, we use parallel to perform
two tasks at the same time, which reduces the weight of the auxiliary task and ensures the original effect of segmentation.By
comparing the final feature map similarity matrix of the two branch tasks, the detail part of the main task is supplemented to
optimize our main task.

3.3 Basic decoder design
The range of receptive field provided by CNN is limited. Therefore, in order to obtain more comprehensive context infor-

mation, context modules such as ASPP are often needed. These modules expand the receptive field, but make the decoding
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Figure 2 Two design ideas

terminal redundant. Benefit from the self-attention mechanism in Transformer to generate both high local and non-local at-
tention. Therefore, we use MLP multilayer perceptron for the main module of feature decoding. Firstly, considering that both
semantic segmentation and high-resolution tasks are fine-grained tasks, which require multiple layers of features to obtain cer-
tain context information at the same time, in order to ensure that the final segmentation graph can align the original image and
segmentation graph at the same time, we choose to design a bottom-up alignment mode. A As shown in Figure 3, the original

Figure 3 Basic Decoder design

image forms two branches after feature extraction, which are c1,c2,c3,c4 and f1,f2,f3 extracted by multiple Transformer blocks.
The top to bottom path of the first layer in the figure is the feature layers with different resolutions extracted through the self-
attention mechanism, which is the same as the Transformer backbone network part. Considering that the lower level feature
map has richer spatial structure information than the higher level feature map, we choose the bottom-up method to recover the
feature map in the second level path. The low-dimensional features with rich spatial structure information are used to generate
bias fields to guide the alignment of adjacent layer features. As shown in the figure, there is no upsampling operation in the
recovery path of the lower layer, and the feature layer always keeps the initial size, so as to ensure that the initial spatial infor-
mation is not affected. With the fusion of the upper feature layers, the semantic information in the lower graph path is gradually
enriched, forming the final feature map. The proposed decoding method can be effectively used in semantic segmentation and
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super-resolution recovery tasks. Therefore, the decoding part of the two branches can use this decoding method to obtain the
final feature fusion map for further downstream task expansion.

3.4 SR decoder

Figure 4 Design of SR Decoder

As shown above, only relying on the feature map obtained by the Decoder A decoding module is not enough to obtain the high-
resolution semantic features of the original image as input, because the second half of the decoder uses bilinear upsampling or
simple subnetworks to recover the features, which does not bring additional information. Here, we design the Decoder B2 part to
recover the low-resolution feature output results. This branch aims to construct high-resolution information with low-resolution
feature layers, which is supervised by the original image, so that it can not only capture part of the semantic information, but also
effectively reconstruct the fine-grained structural information of the image. Although the focus of the task is super-resolution
recovery, the part of the contour information obtained may not contain enough categories, but it can still be effectively divided
into groups by pixel and pixel, and the relationship between the region and the region, which can effectively recover part of the
segmentation boundary problem, so as to refine the semantic segmentation results. Therefore, we use the results recovered by
the final super-resolution to guide the semantic segmentation results.

Specifically, as shown in Figure 4, it is composed of three super-resolution recovery modules. Each module includes an up-
sampling layer for resolution improvement and an EDSR Block, which is mainly used to extract the mapping relationship from
low-frequency information to high-frequency information. Because most of the low-frequency information of the high-resolution
and low-resolution images is similar, EDSR does not repeat the learning of this part of the content, but uses the difference part to
reconstruct the high-frequency content in the network path. On the premise of saving the learning cost, the required segmentation
mapping relationship is effectively extracted. Compared with the residual network, the BN normalization layer is also removed.
This is because when BN is used in traditional image classification tasks, the absolute differences between image pixel features
will be ignored and the relative differences will be considered more, while in the super-resolution recovery task, the absolute
detail information is more important.
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3.5 Feature guidance module(FGM)

Figure 5 Design of FGM

Since the super-resolution auxiliary branch has more complete structural information than the branch obtained by the semantic
branch, we add the FA feature guidance module, and use the result graph obtained by the auxiliary branch to guide the main
branch to learn the high-resolution representation of the details in the image. Feature similarity learning is mainly used to reduce
the similarity of the two feature layers. We first calculate the feature similarity matrix of the two branch feature maps. The
similarity matrix describes the pairwise relationship between pixel values on the same feature layer, as shown in the following
equation(1), where𝑆𝑖𝑗 represents the feature similarity between pixels i and j. Then, the distance between the two-point similarity
matrices is calculated, as shown in Equation (2).
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𝑆𝑠
𝑖𝑗𝑒𝑔 and 𝑠𝑖𝑗𝑠𝑟represent the similarity matrix of features obtained by semantic segmentation branch and super resolution

auxiliary branch, and p and q represent norm normalization of features. 𝑊 ⋅𝐻 represents the size of the feature graph. The P
and q representations are used to normalize the features.

4 EXPERIMENTS

4.1 valuation Dataset
We choose the public datasets Cityscapes and ADE20K as the main validation datasets. Cityscapes is a dataset of urban

scenes with high resolution, which is mainly used in the field of autonomous driving. The dataset provides a variety of semantic
segmentation annotations and instance segmentation annotations with 30 categories, including lane, car, pedestrian, building,
sky bike, etc. ADE20K16 contains annotations for a variety of tasks and was published by a team at MIT. The ADE20K dataset is
collected from the network, and has large differences in size, resolution, and scene. The dataset provides pixel-level annotations
of more than 3,000 categories. In addition to city streets, it also includes outdoor scenes, indoor home scenes, lakes, tables,
doors, Windows, books, etc. The dataset not only annotates the semantic level of some meaningful object categories, but also
subdivides the parts of the same category, such as the wheel of a bicycle, the frame of a bicycle, etc. Common evaluation metrics
for semantic segmentation include mIoU, mAcc, allAcc. In this experiment, the Mean Intersection over Union (mIoU) is mainly
used as the main evaluation index. The union of the real value set and the predicted value set is used as the numerator, and the
union is used as the denominator. The ratio of the intersection and union obtained is called IoU value. mIoU calculates the IoU
of each class separately and then averages it.



8 XiBei Jia ET AL

4.2 Implementation Details
In order to ensure fairness, the same training strategy was adopted throughout the experiment. Two data sets of ADE20K

and Cityscapes were used as the main data set, and all the main stems were initialized using pre-training weights. In the data
enhancement part, we randomly adjusted the size of the image at a ratio of 0.5−2.0, and expanded the data by random horizontal
flip and random cropping to a specific size. AdamW optimizer was used for experiments. The initial learning rate was set to
𝑏𝑎𝑠𝑒𝑙𝑟 = 1𝑒( − 5), and the learning rate was dynamically adjusted according to Poly of 𝑏𝑎𝑠𝑒𝑙𝑟∙((1 − 𝑖𝑡𝑒𝑟∕(𝑡𝑜𝑡𝑎𝑙𝑖𝑡𝑒𝑟))𝑝𝑜𝑤𝑒𝑟.
The 𝑤𝑒𝑖𝑔ℎ𝑡𝑑𝑒𝑐𝑎𝑦 was set to 0.01. 𝑚𝑜𝑚𝑒𝑛𝑡𝑢𝑚 was set to 0.9. All the ablation experiments in this chapter were carried out
on two A10 cards, using a distributed framework and a multi-threaded approach to accelerate the training. Due to hardware
limitations, batchsize was set to 8 for cityscapes and 16 for ade20K. In the ablation experiment, in order to maintain the balance
between accuracy and experiment time, we generally set the number of iterations as 40K. The final experimental effect will be
demonstrated with 160K. We do not use any additional data sets during validation.

4.3 Ablation Study on Network Structure
4.3.1 Ablation experiment of key modules

In order to prove the effectiveness of our main improvement modules, we conducted ablation experiments on the overall model,
as shown in Table 1. Our main improvement modules included adding super resolution auxiliary recovery branch and feature
guide module. Therefore, we took the model with two key parts removed as the base, where SR represents super resolution
auxiliary branch. FA indicates the feature boot module. It can be found through the experiment that adding auxiliary branches
can effectively improve the accuracy, but the high-resolution feature map is more important for the guidance of the original
image. After adding the guidance module, the mIoU of 1.2 can be improved.

Table 1 Ablation experiment of key modules

Model Backbone Iter mIoU(%) 𝑚𝐼𝑜𝑈𝑛𝑜𝑏𝑎𝑐𝑘(%) allAcc (%)
Base Transformer 16K 80.78 87.63 93.45

Base+SR Transformer 16K 81.02 88.01 94.57
Base+SR+FA Transformer 16K 81.98 90.45 95.45

4.3.2 Super Resolution restoration branch ablation experiment
First of all, we designed the auxiliary branch of recovery superresolution. At first, we tried to conduct the superresolution

recovery module directly through the feature map of backbone network, without the same DecoderB1 as semantic segmentation.
The EDSR module is directly transplanted and the upsampling is used to restore the superresolution alternately. Meanwhile,
the weight of the superresolution restoration branch loss is reduced, but it will affect the effect of the main branch. As shown
in the table above, baseline represents the performance of the baseline model. We directly input the features extracted from the
backbone network into the EDSR module and conduct upsampling for super resolution recovery. At this time, the loss of the
auxiliary branch has been set to 0.1, which still affects the performance of the main branch of semantic segmentation, resulting
in a 3.15 reduction in accuracy. It is considered that both the predicted result loss and the predicted branch format differ greatly
between the two tasks. In order to ensure the stability of the model, we decided to add Decoder B1, which is exactly the same as
the main branch, before the super resolution recovery module. The results are shown in the table, which can effectively maintain
the stability of the model and improve the mIOU by about 0.1 compared with the original model

4.3.3 Ablation experiment of feature-guided module
After determining the stability of the model, we used the superresolution results of the auxiliary branch to guide the detailed

features of the main branch. As shown above, FA represents the feature guidance module. We added the feature fusion module
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Table 2 Super Resolution restoration branch ablation experiment

Model Iter mIoU mIoU_noback(%) allAcc(%)
baseline 4K 72.59 81.87 95.27

Base+EDSR*3 4K 69.44 80.56 96.45
Base+decoderb1+EDSR*3 4K 72.68 80.45 95.12

on the basis of adding the auxiliary branch, and the results showed that the accuracy of the feature fusion module could be
improved by about 1.0 more effectively.

Table 3 Ablation experiment of feature-guided module

Model Iter mIoU mIoU_noback(%) allAcc(%)
base 4K 72.59 81.87 95.27

Base+Decoder2+EDSR 4K 72.68 81.65 95.45
base+Decoder2

+EDSR+FA 4K 74.31 83.06 95.53

4.3.4 Decoder ablation experiment
Considering that the direct use of semantic? segmentation branches may not be fully applicable to the superresolution recov-

ery task, we also make further attempts for the decoder of this branch. In Segformer, the original text uses four MLPS to decode
the four layers of features obtained, and then splice them, and then use one layer of convolution as the final feature fusion result.
In the previous experiment, we directly used this decoding structure. Here, base_sr represents the model that uses MLP decod-
ing terminal and adds super resolution assisted recovery and feature guidance, and then synchronically changes the structure of
the two branches.

Table 4 Decoder ablation experiment

Model Iter mIoU mIoU_noback(%) allAcc(%)
base_sr 4K 72.59 83.9 95.72

base_sr_td 4K 73.98 83.46 95.06
base_sr_bu 4K 74.71 84.35 95.46

4.3.5 Comparison with Other Methods
We compared our results with existing methods on ADE20K17, Cityscapes. To better compare existing methods, we used

four RTX3090s to train our model for the 16w era in order to maximize its effectiveness. Table 5 records how our model
compares to the existing model on the results of the two data sets. We replicated some of the methods on four cards to compare
with our experimental results. It lists scores from Cityscapes tests, in two widely used training Settings (by training or training
+val). Appropriate model results are selected from the mmsegmentation3 for comparison. The results show that we are 3 points
higher than the classical method on ade20K data set, and 3 points higher than SETR18 in a network where the transformer is
the backbone network. For our baseline Segformer19, we uniform the input size to 512*1024 for replication, which is easy to
compare. As a result we improved by 1.48 points. On the ade20K dataset, we typically improved by 5 points compared to the
classical approach, and by 2.38 points compared to the baseline segmented.
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Table 5 Comparison with Other Methods

Method Backbone mIoU
Cityscapes ADE20K

FCN ResNet-101 76.58 41.4
PSPNet ResNet-101 81.01 44.39

DeepLabv3 ResNet-101 80.2 45
OCRNet HRNetv2 81.35 43.25

DeepLabv3+ ResNest101 79.62 46.47
PVT Transformer - 44.8

SETR Transformer 79.21 47.34
Segformer Transformer 80.78 48.8

Ours Transformer 82.26 51.18

5 CONCLUSION

Aiming at the semantic segmentation algorithm based on Transformer, this paper designs a super resolution recovery auxiliary
branch to assist the semantic segmentation task. The network uses Transformer as a feature extractor to carry out semantic
segmentation task and super-resolution recovery task at the same time. The feature map of auxiliary task recovery is used to
supplement specific details with semantic segmentation feature map. We analyzed the similarities between the two tasks. Various
attempts were made to design appropriate decoding branches, and a bottom-up feature fusion module was used to integrate multi-
layer feature information, which improved the accuracy without spending extra time and cost in the prediction. The effectiveness
of various components was verified on Cityscapes data set. The same type of high-density prediction tasks can play a similar
auxiliary role, including panoramic segmentation, pose estimation and other scene understanding tasks. How to take into account
the commonality of multitasking and optimize for specific tasks is also a meaningful direction to try.
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