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Abstract: This paper considers the variability in the impact of multi-dimensional meteorological 

information on power load in different regions. To improve the accuracy of load forecasting in the 

spatial dimension, the method of spatio-temporal fusion (SF) of multi-dimensional meteorological 

information is proposed. The Copula theory is applied to analyze the nonlinear coupling of 

meteorological information such as wind speed, rainfall, temperature, and sunshine intensity from 

multiple meteorological stations with the power load and to achieve spatio-temporal fusion. In the 

time dimension, the core parameters of the variational mode decomposition (VMD) are improved 

by the marine predators algorithm (MPA). The weighted permutation entropy (WPE) is used to 

construct the MPA-VMD fitness function for the adaptive decomposition of the load sequence. In 

addition, the input sets of the LSTM model and MPA-LSSVM model are constructed by 

combining each component of the time dimension and each meteorological information of spatial 

dimension to obtain the prediction results of each component. The prediction model corresponding 

to each component is selected according to the evaluation index, and reconstructed to obtain the 

overall prediction results. The analysis results show that the proposed forecasting method is better 

than the traditional forecasting method and effectively improves the accuracy of power load 

forecasting. 

Keywords: Short term electrical load forecasting; Marine predators algorithm; Spatio-temporal 

fusion; Copula theory; Variational modal decomposition 

1 Introduction 

Global problems like air pollution and global warming are receiving more and more attention. 

Many nations now agree that reducing greenhouse gas emissions and achieving "carbon 

neutrality" and "zero emissions" are important goals. Short-term power load forecasting is vital for 

the balance between supply and demand in the power grid [1-2]. According to the load forecast 

values, energy can be planned and dispatched effectively to decrease energy waste [3-4]. With the 

increasing proportion of renewable energy, stored energy, and electric vehicles in the power 

system [5], electrical consumption patterns tend to be more intricate. The nonlinear and 

non-smooth characteristics of power load data have intensified, making short-term load 

forecasting more demanding. Consequently, novel forecasting methods need to be proposed to 

satisfy the demand for higher accuracy in short-term load forecasting. 

Meteorology as a major influence on electrical load makes it highly influenced by thermal 

inertia and the impact varies by region [6]. In the conventional electrical load forecasting process 

for municipal areas, the forecasting model generally uses the city-wide meteorological information 

throughout the day as influencing factors, such as city-wide rainfall and maximum temperature [7]. 

However, meteorological information in different areas within the municipal area has certain 

different in effects on the electrical load. Consequently, it is essential to establish a short-term load 

forecasting model based on the correlation characteristics of meteorological information from 



different meteorological stations in the region and the electrical load in both time and space 

dimensions [8]. Commonly used correlation analysis methods are Pearson and Kendall algorithms, 

but both of them are mainly applied to linear analysis, which is not efficient for nonlinear power 

load data and meteorological data [9]. Copula theory has been applied to the study of complex 

problems in many fields in recent years and has many advantages such as flexible and variable 

forms, not being limited by marginal distribution, etc. It can analyze nonlinear correlations 

objectively, quantitatively, and accurately, and provide a methodological basis for the 

establishment of spatio-temporal fusion models of multi-dimensional weather information [10]. 

At present, machine learning techniques are introduced into load forecasting, which can be 

divided into two categories according to the number of forecasting models. One type of model is 

the single forecasting model, which first uses correlation analysis to extract the influencing factors 

with a high degree of coupling to the electrical load, and constructs the input feature set of the 

forecasting model. Then least squares support vector machine (LSSVM) [11], long short-term 

memory network (LSTM) [12], etc. are used to further extract the data features and obtain the load 

forecasting values. LSTM can solve the long-term dependence problem of recurrent neural 

network (RNN), and its long and short-term memory capability can significantly improve 

prediction accuracy and efficiency. LSSVM has the advantage of solving nonlinear problems and 

is widely used in the field of power load prediction. Due to the nonlinear and non-smooth nature 

of the electric load, the ideal prediction accuracy is difficult to be achieved with a single prediction 

model due to structural limitations. Therefore, the second type of 

"decomposition-prediction-reconstruction" model, which combines the advantages of signal 

processing and multiple prediction methods, has become the focus of research at this stage [13-17]. 

Wavelet decomposition, empirical modal decomposition, and variational modal decomposition 

algorithms have received much attention in short-term load forecasting [14]. Wavelet 

decomposition for load data processing is related to the number of mother wavelets and 

components and is not very adaptive. The empirical modal decomposition has some adaptiveness 

but has the defect of modal mixing in the decomposition process. The load data can be broken 

down using variable mode decomposition (VMD) into intrinsic mode functions (IMF) of various 

frequencies. It can be used to build models for short-term load forecasting because it is adaptable 

and non-recursive. However, parameter tuning in the VMD decomposition procedure is 

time-consuming and subjective, which impacts the decomposition's accuracy. Ref. [15-16] 

proposed a prediction method using an optimization algorithm for the automatic optimisation of 

key parameters of VMD, which achieved good prediction accuracy, but the model was complex 

and not adapted to time series. The permutation entropy method was suggested in the Ref. [17] to 

analyze the complexity of each modal function of VMD and reorganize the modal function to 

obtain subsequences, effectively increasing the efficiency of VMD in processing time series. 

However, the parameter setting is still arbitrary, which affects prediction accuracy. 

 The marine predators algorithm (MPA) chooses between the Lévy flight and Brownian 

motion as the optimum foraging strategy by simulating the evolution of predators and prey in the 

ocean [18]. MPA has the advantages of minimal model parameters, difficulty in falling into local 

optimums, and great optimization efficiency when compared to other techniques such as particle 

swarm optimization (PSO). 

Based on the above described investigation, this paper proposes a short-term load 

combination prediction model based on the spatial-temporal fusion of multi-dimensional 



meteorological information and MPA to optimize the key parameters of VMD. In the spatial 

dimension, meteorological information from multiple meteorological stations such as wind speed, 

wind direction, temperature, and sunshine intensity are fused with power load information in time 

and space. The nonlinear coupling between power load and multi-dimensional meteorological 

information is correlated by using Copula theory to filter out the important features, reduce the 

feature dimension, and improve forecasting efficiency. In the temporal dimension, firstly, MPA 

was used to find the optimum for the key VMD parameters. To take into account the change 

magnitude of different components and to adapt to short-term load prediction, the sum of 

weighted permutation entropy (WPE) of modal functions with different frequencies is minimized 

as the objective function to decompose the original load data into components with different 

frequency characteristics. Moreover, to improve prediction accuracy by combining the prediction 

advantages of different prediction models for different frequency components. The LSTM model 

and MPA-LSSVM model were used to obtain the prediction results of each component, and the 

corresponding prediction model for each component was selected according to the prediction 

evaluation index. Finally, reconstruction is used to obtain the overall prediction results. Based on 

actual load data, a multi-group comparison study is carried out to validate the generalization and 

superiority of the prediction method proposed in this paper. 

The novel perspectives of the proposed model are summarized as follows: (1) To investigate 

the nonlinear coupling of meteorological data from various meteorological stations with the power 

load and to accomplish spatio-temporal fusion, the Copula theory is utilized in the spatial 

dimension. (2) The MPA enhances the fundamental VMD features in the temporal dimension. The 

WPE is used to construct the MPA-VMD fitness function for adaptive decomposition of load 

sequences. (3) The combined forecasting method of LSTM and MPA-LSSVM is used to validate 

the prediction accuracy and generalization ability of the proposed model by comparing it with 

traditional forecasting methods, and analyzing the working days and holidays in spring, summer, 

autumn and winter respectively. 

The remainder of this paper is organized as follows: Section 2 provides an overview of 

Copula theory, performs spatio-temporal fusion analysis of multi-dimensional meteorological data, 

and creates the matrix of influencing factors; Section 3 provides a VMD optimization technique to 

test the convergence of the suggested method and introduces the fundamentals of VMD and MPA; 

The SF-MPA-VMD combined forecasting model is established in Section 4, and the performance 

evaluation indicators of this paper are provided; Section 5 validates the prediction approach put 

out in this work, discusses the model's superiority and effectiveness, and thoroughly analyzes the 

findings; The complete text is summarized in Section 6. 

2 Related algorithm basis 

2.1Correlation analysis based on Copula theory 

Copula theory can conduct nonlinear coupling analysis on numerous variables and does not 

require any linear or Gaussian assumptions. Therefore, the Copula theory is applied to perform a 

quantitative correlation analysis on the power load and multi-dimensional meteorological data 

[19]. 

Assume the electric load sequence is u and the temperature sequence is v in the example of 

electric load and temperature. If H(u,v) is defined as the joint distribution function of both, and the 

edge distribution function corresponds to Fu(u) and Fv(v), then a Copula function C(·) exists that 

associates the joint distribution and the edge distribution with two functions: 



                        
 ( , ) ( ), ( )u vH u v C F u F v

                        
(1) 

For the correlation analysis between the two in this paper, the Kendall rank correlation 

coefficient method with high applicability is chosen, and the expression is as follows: 

                    
( , ) ( , )C u v dC u v   

1 1

0 0
4 1                      (2) 

where  is the outcome of Kendall correlation analysis. The closer the value of || is to 1, the 

stronger the correlation between the variables. 

There are some common Copula functions such as t-Copula, Gumbel Copula, Clayton 

Copula, Frank Copula, and Normal Copula. The correlation analysis of various sequences can be 

performed by using each different Copula function, so it is essential to choose the appropriate 

Copula function for accurate analysis. In this study, the best Copula function for the nonlinear 

coupling analysis of meteorological information series and load series is chosen using the minimal 

Euclidean distance approach [20]. 

2.2 Spatial-temporal fusion of multi-dimensional meteorological information 

To comprehensively assess the meteorological data of various locations during different seasons, 

this paper employs a spatio-temporal fusion method of multi-dimensional meteorological data 

based on Copula theory. It consists of three phases specifically: 1) For the twelve meteorological 

information shown in Fig.1, the optimal Copula function is selected for the nonlinear coupling 

analysis based on the minimum Euclidean distance method. The primary meteorological data that 

influences the power load for each season is chosen; 2) As shown in Fig. 2, based on Copula 

theory, the spatial-temporal correlation analysis of the primary meteorological information from 

meteorological stations in various distribution areas and the power load is conducted to determine 

their correlation degree respectively; 3) Choosing the meteorological station data with the highest 

correlation with the power load to obtain the meteorological information fusion result and form 

the influencing factor matrix. 

 

Fig. 1 Meteorological information and load characteristics 



 

Fig. 2 Spatio-temporal interaction diagram of multi-dimensional meteorological information 

2.3 Spatio-temporal fusion of multi-dimensional meteorological information based on Copula 

theory 

In Fig. 3(a), the square Euclidean distance value of each Copula function for the 

spatio-temporal fusion of multi-dimensional meteorological data from March to May (Spring) is 

displayed. The corresponding thermodynamic diagram with load is created for each 

meteorological information sequence by choosing the best Copula function using the least 

Euclidean distance method, as shown in Fig. 3(b). The correlation degree is indicated by each 

color block in the figure，the deeper the color block, the higher the correlation. The correlation 

degree, which can be employed as a load influencing factor, is larger than or equivalent to 0.3 

[21]. 

 
(a) Square Euclidean distance of each Copula function under different meteorological information 



 

(b) Copula related thermodynamic diagram of influencing factors 

Fig. 3 Spatio-temporal fusion of multi-dimensional meteorological information based on Copula 

theory 

The strongest correlation, 0.589, between surface temperature and load may be found in Fig. 

3(b). In addition, there is a strong correlation between load and temperature at the height of 2 

meters, precipitation, dew point temperature, east wind speed, net sunshine intensity, total 

sunshine intensity, and ultraviolet rays intensity. Since there are high mutual correlations between 

temperature at the height of 2 meters, surface temperature, and dew point temperature, and 

between net sunlight intensity, total sunlight intensity, and ultraviolet rays intensity, to reduce the 

input dimensionality, they can be considered as a class of meteorological information respectively, 

and represented by the meteorological information with the highest correlation to the load. As a 

result, the primary meteorological data are the surface temperature, precipitation, the east wind 

speed, and net sunshine intensity. 

Table 1 Correlation coefficient of each weather station 

Meteorological stations Surface temperature Rainfall Eastward wind speed Net sunshine intensity 

FA 0.431 0.354 0.418 0.481 

FB 0.364 0.410 0.391 0.443 

FC 0.407 0.519 0.367 0.371 

FD 0.271 0.342 0.443 0.218 

FE 0.349 0.274 0.317 0.344 

FF 0.212 0.412 0.510 0.319 

FG 0.371 0.334 0.271 0.541 

FH 0.228 0.419 0.329 0.351 

The data from meteorological stations FA-FH are then filtered and spatial-temporally merged, 

as indicated in Table 1, by the spatial-temporal correlation between the primary meteorological 

information of each meteorological station and the electrical load. An influencing factor matrix is 

created using the following variables: FA surface temperature, FC precipitation, FF east wind speed, 

and FG net sunshine intensity. The analysis procedure is the same in the summer, fall, and winter 

as described above. 

3. Variational modal decomposition and prediction model 

3.1 Variational mode decomposition 



The electrical demand is affected by a variety of factors, such as the weather, holidays, etc., which 

exacerbates its nonlinear and non-stationary characteristics and makes projections more 

challenging [22]. Power load data can be deconstructed into modal components with different 

frequencies using VMD to lessen their complexity and non-stationary characteristics[23-24]. 

Assume the input signal f(t) is decomposed into k modes uk(t), and Hilbert transformation is 

performed for each mode to obtain the analytic signal of uk(t). We have the following calculation 

formula: 
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where {uk} and {ωk} are the modal functional and central frequency of the k-th intrinsic mode 

functions (IMF) component, and δ(t) is the unit impulse signal. 

Using the augmented Lagrange function to solve Eq. (3), we obtain: 
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where α denotes a penalty parameter, λ(t) represents a Lagrangian multiplier, K is the number of 

modal decomposition. 

Then, using the alternating direction method of multipliers (ADMM) to solve Eq. (4). The 

iterative formulas of which can be deduced as follows: 
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where, 
1ˆ ( )n

ku ω
 is the Wiener filter results corresponding to IMF components, and 

1n

kω


 is the 

center frequency of the components. 

3.2 Marine predator algorithm 

The marine predator algorithm replicates the differential mobility of active and passive 

predators in marine animals at different velocities to enhance the merit-seeking capability of the 

algorithm in a parallel architecture[25-26]. The optimal foraging strategies of marine predators are 

Lévy wandering and Brownian wandering, which allow the algorithm to seek merit both locally 

and globally. The mathematical model of the MPA algorithm is as follows: 

Firstly, the prey matrix P is initialized. The following equation is used to establish each 

element Xij in the matrix: 

   min max min(0 1) ( )ijX X rand X X   ，
                  

(7) 

where Xmax and Xmin are the upper and lower bound of the solution, respectively. rand(0,1) refers to 

a random coefficient in the range of (0,1). 

The prey matrix P is obtained as follows: 
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where n is the number of search agents and d is the position of each dimension. 

The fitness value is calculated for each individual Xi=[Xi,1,Xi,2,...,Xi,d] in each prey matrix P. 

The top predator matrix E is obtained by copying n copies of the individual Xi
I 
with the best 

fitness: 

                        

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

I I I

d

I I I

d

I I I

n n n d

X X X

X X X

X X X

 
 
 
 
 
  

E

                    

(9) 

During the optimization process, t denotes the current number of iterations, tmax denotes the 

maximum number of iterations, and the optimization search process is divided into three stages, 

the locally optimal solution is disturbed using the FADs effect, and the post-perturbation fitness is 

calculated to update the iterative process. The moving step of prey matrix P and top predator 

matrix E in the iterative process is denoted by di. RL denotes Lévy motion, RB denotes Brownian 

motion, and the Kronecker product of prey and top predator under the two wandering modes and 

three stages is used as the influencing factor of the moving step di. 

Phase 1: When t < tmax/3 is a high-velocity ratio stage, the top predator gives up hunting, the 

prey for Brownian motion, the mathematical expression is as follows: 

                          
p   i+1 i iP P R d                           (10) 
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where p is taken as a constant 0.5, R is a uniform random number between 0 and 1, Pi and Ei are 

the prey position, and top predator position at the current moment t respectively. 

Phase 2: When tmax/3 < t < 2tmax/3 is the equal-velocity ratio phase, the population is updated 

in two parts: the first half of the population is the Lévy motion population, which is responsible 

for exploitation, and the second half of the population is the Brownian motion population, which 

is responsible for exploration. The parallel architecture of the MPA algorithm is reflected by this 

evenly divided population, and the mathematical expression of this phase is shown as follows: 
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FC t t                          (14) 

where p is taken as 0.5 as above, and CF is the adaptive coefficient to control the movement step 

of the predator.  

Phase 3: When t > 2tmax/3 is the low-velocity ratio stage, the prey adopts the same Lévy 



motion as the top predator for movement, and the mathematical expression at this time is shown as 

follows: 

                       Fp C   i+1 i iP E d                            (15) 

                 
( ), 1,...,i n    i L L i id R R E P                        (16) 

Furthermore, fish aggregation devices (FADs) or eddy formation effect usually alters the 

foraging behavior of marine predators, and this strategy allows the algorithm to avoid local 

extremes as much as possible during the iterative process in order to achieve better optimization 

results. The following are the mathematical expressions: 
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where U is a randomly generated binary vector, pF is the perturbation probability factor, which 

takes the value of 0.2, r is a uniform random number from 0 to 1, and the Pr1 and Pr2 are the 

randomly removed individuals in the prey matrix, respectively. 

3.3 MPA-based VMD optimization method 

In the parameter initialization process of VMD, two important parameters, penalty factor α 

and the number of decompositions k, need to be adjusted first. If the value of k is too small, the 

decomposition is incomplete and will cause information loss; conversely, over-decomposition will 

occur [27-28]. The penalty factor α mainly affects the bandwidth of the decomposed spectrum of 

each mode and the degree of convergence of the algorithm [29]. Artificially set parameters make 

the decomposition structure subjective; for this reason, this paper proposes to optimize the 

parameters of VMD using the MPA algorithm. 

3.3.1 MPA optimization algorithm tests 

VMD parameter optimization can be considered as a two-dimensional function optimization 

problem, and to verify the advantage of MPA in this optimization problem, optimization 

experiments are performed for the function in Eq. (14): 

                    
2 210cos(2 ) 10cos(2 ) 10f x x y y                      (18) 

Particle Swarm Optimization (PSO), Sparrow Search Algorithm (SSA), and MPA were 

selected to find their minimum values, respectively. The population sizes of the three algorithms 

are set the same to ensure the rationality and fairness of the experiments: the population size is set 

to 20 and the number of iterations is set to 500. Both the individual learning factor and the social 

learning factor of the PSO algorithm are set to 1.5, the safety threshold of Sparrow Search ST is 

0.8, the discoverer is 20% of the population size, and the number of vigilantes is set to 5; the FAD 

of MPA algorithm is 0.2. The convergence curves corresponding to each algorithm are depicted in 

Fig. 4. 



 
(a) Benchmark function 3D model 

 
(b) MPA, PSO, SSA convergence curves 

Fig.4 Comparison of optimization algorithm test 

From Fig. 4(b), it can be seen that compared with PSO and SSA algorithms, the MPA 

algorithm has a faster search speed and the fastest convergence; in the case of 500 iterations, the 

PSO search result is 0.0234, the SSA search result is 0.0127, and the MPA algorithm search result 

is 1.2347×10
-5

, which is closer to the global optimum. To sum up, MPA has better optimization 



efficiency. Therefore, the MPA algorithm is used to optimize the key parameters of VMD to 

reduce the loss of the decomposition process, and the subjectivity of the decomposition structure, 

and improve the decomposition effect. 

3.3.2 Design of the fitness function 

The convergence speed of the optimization algorithm and the solution of the optimal solution 

position is influenced by the fitness function. The permutation entropy (PE) algorithm can better 

reflect the change pattern and complexity of the time series [30-32], and the alignment entropy 

algorithm is used to construct the fitness function in this paper. 

Let the time series be decomposed into {y(1),y(2),…,y(k)} components and {s(t),t=1,2,…,N} 

be the time series of IMF, and the series be processed using phase space reconstruction: 

                 [ ( ), ( + ) ( + 1 )]jx s j s j s j m  ， ,                       (19)
 

where m is the number of dimensions, j=1,2,...,N-(m-1) τ, and τ is the delay time. The sequence of 

the reconstructed matrix after sorting is: 

                          1 2( ) ( , , )mS g j j j                           (20)
 

where g=1,2...,l. After calculating the probability values P1, P2, ..., Pl for the occurrence of each 

symbol in S(g), we then obtain the permutation entropy of the sequence {s(t),t=1,2,...,N}: 
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The normalized form of the permutation entropy HP(m) is obtained: 
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The permutation entropy HP value measures the degree of randomness of the sequence, with 

larger values indicating a more random sequence or smaller values indicating a more regular 

sequence. 

From Equations (17) and (18), the magnitude of each component permutation entropy is 

calculated as {PE(1),PE(2),…,PE(k)}, respectively. To sum the PE values of each component, 

weighted permutation entropy (WPE) is utilized. The average amplitude ratio of each component 

to the original sequence is used to calculate the weight value. The WPE value is calculated, and 

the fitness function of the MPA algorithm is set to the WPE value, so that the VMD penalty factor 

α and the number of decompositions k can be ideally determined [29-30]. 

3.4 LSTM Neural Network Forecasting 

In the LSTM network, the hidden layer neurons of the traditional RNN network are replaced 

by a memory unit [33-35]. The structure of this memory unit consists of input gates, forgetting 

gates, and output gates. The cell transmits data over arbitrary time periods. The gates follow the 

input and output data flow from the cell. LSTM network can be used to reduce difficulties with 

gradient disappearing and exploding that were discovered by RNN. The structure of LSTM is 

shown in Fig. 5. 



 

Fig.5 Schematic diagram of LSTM structure 

In Fig. 5, xt denotes the current input information, st-1 is the state of the implied layer at the 

previous moment, and the quantities are calculated as: 

                 1( )t fx t fs t ff sigmoid W x W s b                       (23)
 

                1( )t ix t is t ii sigmoid W x W s b                         (24)
 

                
'

1tanh( )t cx t cs t cc W x W s b                            (25) 

                 1( )t ox t os t oo sigmoid W x W s b                       (26) 

                
' tanh( )t tc c                                        (27)

 

where Wfx, Wix, Wcx, Wox, Wfs, Wis, Wcs, and Wos are the weight matrices, and bf, bi, bc, and bo are 

the bias terms. Moreover, ft, it, and ot are real numbers between [0,1], which determine the 

forgetting ratio of c, thus obtaining the st corresponding to moment t: 

                            
'

1t t t t tc f c i c                               (28)
 

                            
'

t t ts o c                                    (29)
 

3.5 MPA-LSSVM Neural Network 

Least-Squares Support Vector Machine (LSSVM) is a better model obtained by optimizing 

on the Support Vector Machine (SVM) model to improve the convergence speed and the accuracy 

of the final prediction results during the iterative process [36-38]. However, the selection of 

parameters in the LSSVM model has a great impact on the performance of the model, so this 

paper proposes MPA to optimize the parameters of the LSSVM model [39]. The optimization 

model of LSSVM is as follows: 
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(30)
 

The optimal MPA-LSSVM model is obtained by iteratively finding the optimal 

MPA-LSSVM model based on the MPA algorithm for the regularization parameter γ and the 



kernel function parameter σ. The optimization steps are as follows: 

1) Initialize of the MPA algorithm's parameters, such as population size, position, iterations, 

and so forth. 

2) Determine the fitness function and calculate the fitness. 

3) Update the parameters and calculate the fitness, compare the historical optimum with the 

current fitness, and if the latter is greater, set the current top predator position as the optimum to 

achieve the position update. 

4) Determine whether the maximum number of iterations is reached, If not, return to step 3) 

until the maximum number of iterations is reached. 

5) Output the optimal regularization parameter γ and the kernel function parameter σ to 

complete the MPA-LSSVM model, and bring the optimal parameters into the LSSVM model to 

complete the prediction of temporal data. 

4 SF-MPA-VMD combined forecasting model 

Fig. 6 depicts the general framework of multi-dimensional meteorological information 

spatio-temporal fusion and MPA-VMD decomposition of the short-term load combination 

forecasting model used in this paper. The Copula theory is used to calculate the influencing factor 

matrix by examining the spatio-temporal correlation between meteorological data and the power 

load of weather stations in various regions. When combined with MPA-VMD, the IMF 

components are obtained by decomposing the load data from the model input matrix, and the input 

matrix is divided into training and testing. The training set optimizes the LSTM and MPA-LSSVM 

model parameters to obtain the best prediction model and predicted value for each IMF 

component, the test set selects the prediction model corresponding to each frequency component 

based on the evaluation index, and the test set feeds each frequency component into the 

corresponding prediction model. The prediction model is reconstructed to obtain the final 

prediction result. 

 



Fig. 6 Short term load combination forecasting model based on multi-dimensional meteorological 

information spatio-temporal fusion and MPA-VMD 

4.2 Evaluation index of prediction results 

In this experiment, there are two error statistics, namely root mean square error (RMSE) and 

mean absolute percentage error (MAPE), were used as evaluation indicators of the prediction 

results: 
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where ˆ
i

y is the predicted value of load power, iy is the corresponding true value of load power, 

and n is the number of prediction points. 

5 Analysis of algorithms 

5.1 Model sources and data preparation 

The experimental data include 35040 points of power load data sampled every 15 minutes from 

March 1, 2020, to February 28, 2021, for the city of Yichang in Hubei province, in the middle of 

China, as well as the historical meteorological data sampled every 15 minutes by eight 

meteorological stations in the region. As shown in Fig. 1, the data set contains the contents. 

Considering the characteristics of power load in each season, we divide the data set into four 

periods: March to May (Spring), June to August (Summer), September to November (Autumn), 

and December to February (Winter). Each period data was divided into weekdays and holidays 

according to weekdays or not. The precede 80% of the data in each period is taken as the training 

set, and the subsequent 20% is taken as the test set. Each data point is normalized to [0,1] to 

remove the influence of varying factor magnitudes. The influence factor matrix is then created 

using the multi-dimensional meteorological information fusion method described in Section 1.3. 

The input set is made up of MPA-VMD load decomposition components. The single-step rolling 

forecast is then used to predict the load value at 96 points for the next 24 hours. The model is 

updated with the projected load values as new features, and the predicted load values are then 

acquired and back-normalized. 

5.2 MPA-VMD load series decomposition 

To demonstrate the benefits of MPA-VMD load data decomposition, the VMD parameters 

were obtained by optimizing the objective function constructed in Section 3.3.2 using PSO, SSA, 

and MPA, and the load sequence was decomposed into the corresponding components, and the 

resulting parameter values and load decomposition loss values are shown in Table 2. 

Table 2 Decomposition parameter setting and experimental results of VMD 

Method of decomposition 
Decomposition parameters Results of decomposition 

Number of decomposition k Penalty factor α Decomposition of loss（MW） 

VMD 

PSO-VMD 

SSA-VMD 

5 

15 

13 

1000 

2546 

2358 

20.33 

15.46 

9.65 

MPA-VMD 9 1443 2.97 

As shown in Table 2, compared with the empirical setting parameters and the PSO and SSA 

setting parameters, the decomposition loss is smaller using MPA setting parameters, which is 



reduced by 85.39%, 80.79%, and 69.22%, respectively. From the above analysis, it can be 

concluded that the MPA-VMD decomposition can reduce the decomposition loss and improve the 

decomposition effect by adaptively determining the optimal parameters of VMD while avoiding 

the randomness brought by the empirical setting parameters, and the decomposition sequence 

obtained by decomposing the load data using the MPA-VMD method is shown in Fig. 7.  

 

Fig. 7 Load data decomposition 

5.3 Short-term load forecasting results 

5.3.1 SF-MPA-VMD combined forecasting 

The high and low-frequency components of the training set were brought into the combined 

LSTM and MPA-LSSVM prediction models, and the prediction results were obtained by using the 

LSTM and MPA-LSSVM models for each component, and the evaluation indexes RMSE and 

MAPE values of each component prediction result are shown in Table 3. 

Table 3 Evaluation index of each prediction model 

IMF 
LSTM MPA-LSSVM 

RMSE/MW MAPE/% RMSE/MW MAPE/% 

IMF1 7.169 3.358 5.073 3.147 

IMF2 1.493 2.599 0.158 0.672 

IMF3 0.573 1.866 0.701 1.975 

IMF4 0.349 1.347 10.967 3.523 

IMF5 0.350 1.494 11.262 3.597 

IMF6 0.524 1.948 7.872 3.367 

IMF7 0.461 1.765 6.002 3.231 

IMF8 0.481 1.895 3.716 2.962 

IMF9 0.290 0.738 1.051 2.256 

As shown in Table 3, for the IMF1 and IMF2 components, the RMSE and MAPE values of 

the predicted values obtained using MPA-LSSVM forecasting are smaller than those of the LSTM 

forecasting model, and for the IMF3-IFM9 components, the RMSE and MAPE values of the 

predicted values obtained using the LSTM forecasting model are smaller than those of the 

MPA-LSSVM, so these two evaluation indexes are considered together to obtain IMF1-IMF2 by 



using MPA-LSSVM prediction model, and IMF3-IMF9 by using LSTM prediction model. Based 

on the above method, the prediction results of each component on April 30, 2021, are obtained as 

shown in Fig. 8(a), and the overall load prediction results are obtained by reconstructing the 

component prediction results as shown in Fig. 8(b). 

 

(a) SF-MPA-VMD-combined prediction results for each component 

 

(b)SF-MPA-VMD- combined forecast load prediction results 

Fig. 8 SF-MPA-VMD combined forecasting component and load forecasting result 

5.3.2 Comparison with other methods 

To verify the effectiveness of the proposed method, the following three sets of comparative 

experiments are designed to predict the validation set load data and conduct comparative analysis. 

1) Comparison experiment 1 

To verify the influence of the spatio-temporal fusion of multi-dimensional meteorological 

information on the accuracy of load forecasting, the meteorological data for which feature 

selection and spatio-temporal fusion were used as two sets of influencing factors, and the 

components obtained from the MPA-VMD decomposition formed the input matrix of the LSTM 

forecasting model to obtain the MPA-VMD-LSTM and SF-MPA-VMD-LSTM forecasting results, 



and the evaluation indicators are shown in Table 4. 

Table 4 Comparison of prediction evaluation indexes between single meteorological station and spatio-temporal 

fusion 

Model RMSE/MW MAPE/% 

MPA-VMD-LSTM 25.321 0.964 

SF-MPA-VMD-LSTM 11.946 0.494 

From Table 4, the influencing factors matrix formed through the spatio-temporal fusion of 

multi-dimensional meteorological information, compared with the influencing factors matrix 

formed by feature selection only, the prediction evaluation indexes of the proposed model such as 

the value of RMSE is reduced by 13.375 MW, the value of MAPE is reduced by 0.47%. It is 

hereby proved that the accuracy of load forecasting can be enhanced by spatio-temporal fusion of 

multi-dimensional meteorological information effectively. 

2) Comparison experiment 2 

To verify the effectiveness of the MPA-VMD decomposition signal, the meteorological data 

after the spatio-temporal fusion of multi-dimensional meteorological information is used as the 

input matrix of influence factors, and the load data are processed by PSO-VMD, SSA-VMD, 

MPA-VMD decomposition, and empirically set VMD parameter decomposition respectively. Four 

groups of decomposition results are obtained, and each constitutes an input matrix with influence 

factors and is input to the LSTM prediction model The prediction results of the four 

decomposition methods, SF-PSO-VMD-LSTM, SF-SSA-VMD-LSTM, SF-MPA-VMD-LSTM, 

and SF-VMD-LSTM, were obtained, and the evaluation indexes were compared as shown in Table 

5. 

Table 5 Comparison of MPA optimized VMD decomposition load forecasting evaluation indexes 

Model RMSE/MW MAPE/% 

SF-VMD-LSTM 

SF-PSO-VMD-LSTM 

SF-SSA-VMD-LSTM 

23.622 

21.564 

18.463 

0.883 

0.821 

0.762 

SF-MPA-VMD-LSTM 11.946 0.494 

From the evaluation results in Table 5, it can be seen that the prediction ability of the 

prediction model is further improved after optimizing the VMD decomposition parameters by 

PSO, SSA, and MPA, while compared with the traditional empirical setting of VMD parameters, 

PSO-VMD and SSA-VMD for load data decomposition prediction, the proposed MPA-VMD 

method in this paper, RMSE and MAPE are decreased by 49.43%, 44.60%, and 35.30% versus 

44.05%, 39.83%, and 35.17%, indicating that MPA has the best finding effect and effectively 

improves the prediction accuracy. 

3) Comparison experiment 3 

To verify the influence of the combined forecasting model on the accuracy of load 

forecasting, the meteorological data after the spatio-temporal fusion of multi-dimensional 

meteorological information is used as the influencing factor, and the load components 

decomposed by MPA-VMD form the input matrix, which is the input to the LSTM forecasting 

model, MPA-LSSVM forecasting model, and combined LSTM and MPA-LSSVM forecasting 

model, and the forecasting results of each model are obtained. The prediction results of SF 

-MPA-VMD-LSTM, SF-MPA-VMD-MPA-LSSVM, and the method SF-MPA-VMD-combination 

of this paper are shown in Fig. 9. 



 
Fig. 9 Comparison of load forecasting effect 

Summarizing the above three sets of experiments, the comparison of prediction evaluation 

indexes for a total of seven prediction methods in three groups of comparison tests was obtained 

as shown in Fig.10. 

 

Fig. 10 Comparative results of different forecasting methods 

As shown in Figs. 9-10, compared with other forecasting models, the RMSE of the 

SF-MPA-VMD-combined forecasting model proposed in this paper decreases by 17.114 MW, 

15.415 MW, 13.357 MW, 10.256 MW, 10.128 MW, and 3.739 MW, respectively, from the 

perspective of the average absolute percentage error. In terms of the average absolute percentage 

error, the MAPE values of the proposed model decreases by 65.46%, 62.29%, 59.44%, 56.30%, 

46.72%, and 32.59%, respectively. In summary, the multi-dimensional meteorological information 

spatio-temporal fusion and MPA-VMD decomposition short-term load combination forecasting 

model proposed in this paper has better stability and the accuracy of load forecasting has been 

significantly improved. 

4) Model generalization ability test 

To verify the generalization ability of the model proposed in this paper, choose 12
th
 and 16

th
 May, 



2020 as spring weekday and holiday forecast samples, 27
th
 and 29

th
 August, 2020 as summer 

weekday and holiday forecast samples, 24
th

 and 28
th
 November, 2020 as autumn weekday and 

holiday forecast samples, and 22
th

 and 26
th
 February, 2021 as winter weekday and holiday forecast 

samples, respectively, the load forecast results are obtained as shown in Fig. 11, and the evaluation 

indexes are shown in Fig. 12 

 

Fig.11 Load forecast results of working days and rest days by season in Spring, Summer, Autumn and Winter 

 



 

(a) RMSE values for weekdays and holidays by season, spring, summer, fall and winter 

 

(b) MAPE values for weekdays and holidays by season, spring, summer, fall and winter 

Fig. 12 Forecast evaluation of working days and rest days by season in spring, summer, autumn and winter 

From Figs. 11-12, it can be seen that the proposed forecasting model in this paper has the best 

RMSE and MAPE values for weekday and holiday forecasting in Spring, Summer, Autumn, and 

Winter seasons, which shows that the model is suitable for electrical load forecasting in different 

seasons and fully reflects the model generalization ability and forecasting performance. 

In summary, the proposed multidimensional meteorological information spatio-temporal 

fusion and MPA-VMD short-term load combination prediction model has good stability and the 

generalization ability and the load prediction accuracy have been significantly improved. 

The forecasting method is applied to the local power grid load forecasting, which has 

achieved excellent results, improved the power grid operation efficiency, and reduced the work 



intensity of the operation and maintenance personnel 

6 Conclusion 

To improve the prediction accuracy of electric load, this paper considers the characteristics of 

the load and meteorological information in both time and space dimensions and designs a 

combined MPA-VMD short-term load prediction model in the time dimension. In the spatial 

dimension, the meteorological information such as wind speed, wind direction, temperature, and 

sunshine intensity from multiple meteorological stations are temporally and spatially fused with 

the electrical load information to forecast the load according to the meteorological factors in the 

region, and the following conclusions are obtained based on the comparative analysis of 

experimental results. 

(1) Based on Copula theory, the spatio-temporal fusion of power load and meteorological 

data from multiple meteorological stations, and the minimum Euclidean distance method to select 

the optimal Copula function for nonlinear coupling analysis of meteorological information series 

and load series in each season can effectively reduce the feature dimension and improve the 

prediction efficiency and accuracy. 

(2) The MPA search algorithm has better search capability and speed than the PSO algorithm 

and SSA algorithm, and can effectively avoid falling into local optimum in the search process. 

MPA is used for VMD key parameter optimization, compared with PSO, SSA optimized VMD 

parameters, and empirically set VMD parameters, the RMSE and MAPE values are optimal, fully 

demonstrating the necessity of optimizing VMD parameters, and also proving the effectiveness of 

constructing the objective function according to the ranked entropy algorithm, and the superiority 

of MPA optimized VMD parameters to achieve adaptive decomposition of load sequences. 

 (3) Using a combination of LSTM and MPA-LSSVM forecasting methods, the experimental 

results show that the proposed model has better forecasting accuracy and generalization ability by 

comparing with traditional forecasting methods and forecasting weekdays and holidays in Spring, 

Summer, Autumn, and Winter. 
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