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Text S1: Data preprocessing 
There is considerable preprocessing that is applied to each of the predictor variables 

before being passed to the regression step. The pre-processing can be separated into 
several steps: 1) gridding, 2) variable stacking and/or gap-filling, 3) separation of 
anomalies from climatologies, 4) include the previous time step as a predictor.  

 

First, all variables are gridded to an 8-daily by 0.25°⨉0.25° resolution (abbreviated 
to 8D) where the first time-step of each year starts on January 1st. For daily datasets, this 
is easily achieved. However, for data with lower resolutions, data is weighted according 
to the contribution in time to that specific time step.  

 

Variable stacking is applied to SSS, which is simply the use of a certain product if it 
is available, and if not, then use another lower-priority product. For SSS, we make use of 
three products with the following order of priority: ESA CCI v3.21 (Boutin et al., 2018), 
CMEMS-Multiobs (Droghei et al., 2016), and salinity from the Simple Ocean Data 
Assimilation (SODA 3.4.2; Carton et al., 2018). The ESA CCI data is purely satellite 
data, while the CMEMS-Multiobs data is a data-based product that incorporates satellite 
and float-based measurements of salinity. Lastly, the SODA salinity is data-assimilated 
model output that represents the upper 5 m of the ocean rather than the surface layer, 
which is the case of the other two products. The change from one data product to another 
impacts the long-term trends of 𝑓CO!, but in the absence of a continuous time series over 
our period of interest (1982 onward), we resort to the variable stacking approach. 
Importantly, we provide a flag-variable for SSS indicating which product was used. Note 
that we also use SODA v3.4.2 density-based estimates of MLD as a predictor (Carton et 
al., 2018). 

 
For CHL, we use the ESA-OCCCI v6 product for which there is no gap-filled 

version, meaning that cloud gaps are still present in the dataset. We use a three-step 
approach for filling these gaps. First, we use linear interpolation in both space and time, 
limited to ±8 days and ±0.25°. In the second step, we use a simplified version of the 
DINEOF approach (Alvera-Azcárate et al., 2011). We use a singular value decomposition 
SVD) rather than an empirical orthogonal function (EOF) since this approach is 
functionally similar but computationally slightly more efficient. An 8-daily climatology 
of CHL is used as a first guess to speed up the optimization. Further, we fill the high 
latitudes of the 8-daily climatology with the long-term mean of CHL, which we then 
scale by photosynthetically available radiation so that the high latitudes have near-zero 
estimates of CHL-a during winter. The specific code for this function can be found in the 
GitLab repository for OceanCarbNN.  

 
The predictors are separated into climatological and anomalous components if time-

series data are available for that variable (as also done by T. T. T. Chau et al., 2022; 
2024). We create two types of climatological datasets: 1) the 8-daily climatologies 
*𝑋"#$% = 𝑋&- ., and 2) the difference of these 8-daily climatologies from the long-term 
mean (𝑋/), which we call the seasonal anomaly (𝑋'()'*+ = 𝑋&- −	𝑋/). The anomalies are 
simply the difference between the predictor and its 8-daily climatology (𝑋)+*% = 𝑋 −

https://gitlab.ethz.ch/oceansoda/oceancarbnn/-/blob/main/carbnn/data/regrid_25km_8daily.py?ref_type=heads#L1008
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𝑋&- ). The purpose of this split is that the anomalies provide information of interannual 
variability when that the data is available but is filled with zeros when there is no data. 
For example, CHL is only available from 1998 onward. Prior to this period, all CHLanom 
data are set to zero. The climatological variables (𝑋"#$%, 𝑋'()'*+) are used throughout the 
time series and capture seasonal cycle variability. The period over which the 
climatologies are calculated are specified in Figure 2. For SSH, we use absolute dynamic 
topography as the sea surface height and existing sea level anomalies from the Data 
Unification and Altimeter Combination System (DUACS) rather than calculating our 
own.  

 

We also include information about the previous time step as a predictor, since this 
could add information about the rate of change of the predictor features, which could also 
impact Δ𝑓CO!.  

 

Finally, for training, we mask all regions where the ice fraction exceeds 85%, 
Hudson Bay, the Baltic Sea, Black Sea, and Red Sea. Masking the ice-covered regions 
may result in a loss of product coverage, but under-ice observations are scarce, meaning 
that we don't have a reliable way to test the predictions. These missing regions account 
for <1% of the global ocean.  

 
Further, masking the marginal seas during training reduces the complexity of the 

target variable, where the marginal seas have complex marine carbonate chemistry due to 
sediment interaction, anoxic conditions, and injection of freshwater that is high in total 
alkalinity which often cannot be captured by the available predictors (Burt et al., 2016; 
Goyet et al., 1991; Müller et al., 2016). Note that these regions might not be masked 
during inference. 
 

Text S2: Machine learning: OceanCarbNN details 
Estimation of Δ𝑓CO!"#$%  

Since we remove the atmospheric CO2 mole fraction (xCO2) rather than the fugacity, 
our target variable is ∆∗CO!"#$% averaged to an 8-daily climatology, since we assume that 
the atmospheric increase in xCO2 represents the majority of long-term trend (Ma et al., 
2023). We use Gradient Boosted Regression Trees (GBRT) from the LightGBM package 
in Python to perform the regression (Ke et al., 2017). The following non-default 
parameters are used: 

- maximum depth for each tree = 5 
- number of trees = 100 
 

We include coordinates in the form of trigonometric transformations of latitude (lat), 
longitude (lon) and day of the year (d) after Gade (2010): 
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𝑁 =

sin ,
𝑙𝑎𝑡 ⋅ 𝜋
180 5

sin ,
𝑙𝑜𝑛 ⋅ 𝜋
180 5 ⋅ cos ,

𝑙𝑎𝑡 ⋅ 𝜋
180 5	

cos ,
𝑙𝑜𝑛 ⋅ 𝜋
180 5 ⋅ cos ,

𝑙𝑎𝑡 ⋅ 𝜋
180 5

	(S1)	 

 

	
𝐷 = 𝑠𝑖𝑛 ,

𝑑	𝜋	
3655

𝑐𝑜𝑠 ,
𝑑	𝜋	
3655

	 	(S2) 

Here N contains three vectors that represent the spatial coordinates, and D contains 
the temporal coordinates.  

 

The estimate of ∆∗CO!"#$% is smoothed with a rolling mean with a two-month 
window (seven 8-day time steps) in the time dimension and a window width of 0.75° in 
the latitudinal and longitudinal dimensions. Note that we allow for a large temporal 
window, but narrow spatial window to preserve spatial gradients, particularly in the 
coastal regions. Importantly, the long rolling window in the time dimension means that 
our estimates are not overfit.  
 
Train-test-validation split  

To avoid over-fitting of our model, we split our data into training, testing, and 
validation datasets. We create test splits using the same approach as Bennington et al. 
(2022), where every seventh month is considered a test month. This amounts to roughly 
15% of data being reserved for testing. We also set data aside for validation as every 
seventh month with a three-month starting offset.  

 
Given that we perform our train-test split based on every seven months, we can 

create seven train-test-validation splits, each starting on a different month in 1982 
(January through July). This is useful since we can create reconstruction of test 
uncertainties corresponding with the full dataset. 
 

Neural Network Architecture and optimization 
Recent studies have shown that GBMs may be better at predicting surface ocean 

CO2 (Gloege et al., 2022). However, tree-based methods are not able to extrapolate 
outside the observed dataset. Recent work has shown that Neural Networks (NN) that are 
not too wide or deep are able to extrapolate beyond the training observations (Courtois et 
al., 2023). Further, it was shown that NNs are better able to capture the true relationship 
between a target variable and its predictors than random forests (Holder & Gnanadesikan, 
2021). We thus opt to use NNs to perform the regression step.  

 

We use an ensemble of FFNNs to predict ∆∗CO!, with five FFNNs per train-test-
validation split, resulting in a total of 35 ensemble members. We use TensorFlow and 
Keras to construct our neural network ensemble (Martín Abadi et al., 2015).  
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Each ensemble member has the same architecture, with an overview shown in Table 
S1. First, all predictors are passed through a normalization layer, so that the mean = 0 and 
the standard deviation = 1 for each predictor. We use two fully connected hidden layers 
with 64 and 32 neurons. Given that we use 15 predictor variables, this amounts to ~3'000 
trainable weights, in the order of that used in the SOMFFN approach (Landschützer et al., 
2016). Grid search was used to find the optimal network architecture and 
hyperparameters. Batch normalization is applied after each hidden layer to speed up the 
convergence of the weights. A dropout layer reduces potential over-fitting by randomly 
dropping 10% of neurons during training. We then use a Rectified Linear Unit (ReLU) 
activation function, as it has been proven to be accurate and efficient for non-linear 
regression problems (Fukushima, 1969). 

 

We use the Adam optimizer with a mean squared error (MSE) loss function to 
perform back-propagation using a batch size of 2048. We use an initial learning rate of 
0.01 that decreases when no improvement is detected in the validation subset for 10 
epochs. If no improvement is detected in the validation scores after 15 epochs, the 
training process is stopped.   

 

Text S3: Evaluation 
Metrics 

We assess the performance of our model on fCO2. Bias, mean absolute difference 
(MAD) root mean squared difference (RMSD) are used to assess our model.  

 

𝐵𝑖𝑎𝑠 =
1
𝑛;

(𝑦>- − 𝑦)
.

-/0
	 	(𝑆3) 

 

𝑀𝐴𝐷 =
1
𝑛;

|𝑦- − 	𝑦>-|
.

-/0
	 	(𝑆4) 

 

𝑅𝑀𝑆𝐷 = H;
(𝑦- − 𝑦>-)!

𝑛

.

-/0
	 	(𝑆5) 

where 𝑦- is the observed (transformed) target at location 𝑖, 𝑦>- is the estimated value for 
that location, and n is the number of train/test/validation observations. We provide 
assessment of these metrics for the global, open, and coastal ocean defined as the region 
within 300 km from the coast or the 1000 m isobath (Laruelle et al., 2017). Further, we 
provide metrics for three latitudinal bands: the high northern (> 35°N) and southern 
latitudes (> 35°S) and the bounded lower latitudes.  

 
Note that we use the term difference instead of the typically used error, since the 

latter implies that we are predicting a quantity that is perfectly known. However, fCO2 
carries uncertainties associated with measurement and gridding (Bakker et al., 2016). 
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Evaluation data sets 
We evaluate against autonomous open ocean mooring stations with fCO2 from 

Sutton et al., (2019). Note that we do not apply quality control to these moorings. An 
important consideration is that these data are also used in the SOCAT database. However, 
as with the assessment of our model performance, we use only test predictions. Meaning 
that the mooring data have not been used to train the ensemble members that produce the 
test output.  

 
Gradient analysis 

To quantify the sharpness of 𝑓CO! gradients, we use the mean gradients over a 
domain: 

‖∇𝑓CO!‖ = H
𝛿𝑓CO!!

𝛿𝑥 +
𝛿𝑓CO!!

𝛿𝑦  

 

where 1234!
15

  is the zonal partial derivative (i.e., longitude) of fCO2, and the 
equivalent applies to latitude (y) in the meridional dimension. Note that latitude and 
longitude are converted to kilometers. The normed sum of the derivatives is taken to 
represent the gradients in the units μatm km−1. 

 

Text S4: Integration of Fluxes 
We calculate the integrated flux (F) with: 

𝐹 =;𝐹56
56

⋅ 𝐴56	 	(𝑆6) 

Where 𝑥𝑦 represents a pixel with a latitude and longitude coordinate, Fxy represents 
the flux per unit area for a specific pixel, and Axy represents the area per pixel. Here the 
units of Fxy are grams of carbon per meter squared per day, and the units of A are meters 
squared. The units of the integrated fluxes are thus grams of carbon per day. This can 
easily be converted to the typical Peta grams per year with 𝐹 ⋅ 789

0:"#	
, where 365 is days per 

year and 1015 is grams per Peta gram.  

Text S5: Computing the modes of variability 
We use the Fast Fourier Transform (FFT) to compute the power spectral density, 

S(x), of each pixel through time after data has been detrended over time. Using Parseval's 
Theorem, we can integrate over the frequencies of interest to approximate the variances: 

𝜎! ≈ 2S 𝑆(𝑥)
2!

20
𝑑𝑓	 	(𝑆7) 

where 𝜎! is the variance in the time domain, f is a given frequency, and f1 and f2 
represent the upper and lower frequencies. We thus separate the variability in the 
frequency space into three modes by integrating over the frequencies in the Fourier 
domain after Gu et al. (2023): sub-seasonal, < 3 month frequencies; seasonal, 3 – 15 
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month frequencies; and interannual, > 15 month frequencies. Later, we also separate the 
interannual variability into sub-decadal (15 months to 8 years) and decadal (> 8 years) 
variability.  
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Figure S1. A schematic showing the concept of the full training dataset reconstruction. 
Since every seventh month is selected as a training month, we can create seven training 
subsets, where the starting month numbers from 1-7 (January to July). Gathering all the 
test-months allows for a full reconstruction consisting only of test estimates. 
 
 

 
Figure S2: Increasing number of coastal ocean observations north of 35°N, which also 
leads to increased variance for that region. This contributes to decreasing RMSD 
estimates over time. 
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Figure S3: (a) The sensitivity of ∆fCO2 to salinity anomalies for a mean state ocean, i.e., 
all anomalies are set to 0 except for salinity anomalies. (b-d) Salinity anomalies are 
averaged over three different decades to show the variability of each salinity product. (e) 
Salinity time series in the western equatorial Pacific shown by the marker in (a-d). The 
vertical lines denote the change in the salinity products (aligned with first, second, and 
third rows) also indicated in Figure 2. Multiplying (a) by (b-d) gives the expected change 
in ∆fCO2. 
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Table S1. Table showing the structure of a feed-forward neural network ensemble 
member used to predict ∆∗CO!+*+<. We also show the number of trainable weights for the 
fully connected layers. This does not include the bias terms associated with the 
Activation functions. 
Layer type Description 

Inputs 15 pre-processed variables for input 

Normalization Scales input variables so µ = 0 and σ = 1 

Fully connected 64 neurons, 960 weights 

Batch normalization Scales weights per batch to speed up training time 

Dropout 10% of neurons dropped during training to prevent over-fitting 

ReLu Activation Rectified Linear Unit activation for non-linear responses 

Fully connected 32 neurons, 2'048 weights 

Batch normalization Scales weights per batch to speed up training time 

Dropout 10% of neurons dropped during training to prevent over-fitting 

ReLu Activation Rectified Linear Unit activation for non-linear responses 

Fully connected 1 neuron, 32 weights 
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Table S2: Table showing unweighted metrics for different masks and regions. MAD = 
mean absolute difference, RMSD = root mean squared difference, r2 = variance 
explained. All columns have units µatm, except r2. The mask used to define oceanic and 
coastal areas is from RECCAP2 (DeVries et al., 2023), the remaining regions are the 
biomes from Fay et al. (2014). 

 Bias MAD RMSD r2-score 

Global -0.13 11.3 19.2 0.81 

Oceanic 0.07 8.81 13.1 0.87 

Coastal -0.4 14.8 25.3 0.76 

NP-ICE -0.18 31.2 43.5 0.62 

NP-SPSS -0.18 18.3 28.9 0.73 

NP-STSS 0.64 7.9 11.5 0.88 

NP-STPS -0.12 6.4 8.8 0.91 

PEQU-W -0.07 8.3 11.1 0.72 

PEQU-E 0.22 17.5 24.3 0.82 

SP-STPS 0.13 6.9 9.9 0.92 

NA-ICE -1.7 23 30.5 0.58 

NA-SPSS -0.39 14 20.8 0.79 

NA-STSS -0.16 8.8 12.2 0.8 

NA-STPS -0.44 6.7 10.3 0.83 

AEQU -0.21 10.2 14 0.75 

SA-STPS -0.74 7.3 9.8 0.83 

IND-STPS 0.9 6.8 9 0.85 

SO-STSS -0.04 9.9 15.3 0.72 

SO-SPSS 0.4 9.3 13.5 0.68 

SO-ICE 0.03 19.2 27.6 0.7 
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Table S3: Global area-weighted averages of the variance of fluxes (mmolC m-2 day-1). 
The first four columns show the variance for the different components for the different 
modes of variability. Σ shows the total variance. Note that the covariance is calculated as 
the total variance less the sum of the remaining columns.   

  Wind fCO2 Cross-term Covariance Σ 

Subseasonal 1M 0.15 0.08 0.1 -0.11 0.22 

 8D 1.24 0.34 0.67 -0.71 1.54 

Seasonal 1M 1.22 6.41 0.49 -1.52 6.59 

 8D 1.26 6.52 0.53 -1.55 6.76 

Subdecadal 1M 0.09 0.13 0.04 -0.06 0.21 

 8D 0.09 0.14 0.04 -0.06 0.22 

Decadal 1M 0.02 0.03 0.01 0 0.06 

 8D 0.02 0.04 0.01 0 0.07 
 
Table S4: Same as Table S3 but for standard deviation. Covariance is calculated as the 
square root of the absolute value of the variance.  

  Wind fCO2 Cross-term Covariance Σ 

Subseasonal 1M 0.39 0.28 0.32 -0.34 0.47 

 8D 1.11 0.58 0.82 -0.84 1.24 

Seasonal 1M 1.1 2.53 0.7 -1.23 2.57 

 8D 1.12 2.55 0.73 -1.24 2.6 

Subdecadal 1M 0.3 0.36 0.2 -0.24 0.46 

 8D 0.31 0.38 0.21 -0.25 0.46 

Decadal 1M 0.15 0.19 0.08 -0.02 0.25 

 8D 0.15 0.19 0.08 -0.03 0.26 
 
  



 
 

13 
 

Table S5: Same as Table S3 but for percent contribution to total variance. 

  Wind fCO2 Cross-term Covariance 

Subseasonal 1M 70 35 46 -51 

 8D 81 22 44 -46 

Seasonal 1M 18 97 7 -23 

 8D 19 96 8 -23 

Subdecadal 1M 44 63 20 -27 

 8D 43 65 20 -28 

Decadal 1M 35 55 11 -1 

 8D 34 56 11 -2 
 

Video S1. Air-sea CO2 fluxes calculated at a 4-hourly temporal resolution using Eq. 3. 
The 8-daily ∆𝑓CO! (𝑓𝐶𝑂! − 𝑓CO!)=%) is linearly interpolated to a 4-hourly resolution. 
Similarly, daily SST, ICE and SSS are linearly interpolated to a 4-hourly resolution to 
calculate 𝑘> and 𝐾:. In the calculation of 𝑘> the winds are averaged from the original 
hourly resolution, to 4-hourly. Data was prepared by Luke Gregor; animation was created 
by Eike Köhn.   
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