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Abstract13

Measurements of the surface ocean fugacity of carbon dioxide (fCO2) provide an im-14

portant constraint on the global ocean carbon sink, yet the gap filling products devel-15

oped so far to cope with the sparse observations are relatively coarse (1°x1° by 1 month).16

Here, we overcome this limitation by using the newly developed surface Ocean Carbon17

dioxide Neural Network (OceanCarbNN) method to estimate surface ocean fCO2 and18

the associated air sea CO2 fluxes (FCO2) globally at a resolution of 8-daily by 0.25°x0.25°19

(8D) over the period 1982 through 2022. Globally, the method reconstructs fCO2 with20

accuracy similar to that of low-resolution methods (∼19 µatm), but improves it in the21

coastal ocean. Although global ocean CO2 uptake differs little, the 8D product captures22

15% more variance in FCO2. Most of this increase comes from the better-represented23

subseasonal scale variability, which is largely driven by the better resolved variability of24

the winds, but also contributed to by the better resolved fCO2. The high-resolution fCO225

is also able to capture the signal of short-lived regional events such as coastal upwelling26

and hurricanes. For example, the 8D product reveals that fCO2 was at least 25 µatm27

lower in the wake of Hurricane Maria (2017), the result of a complex interplay between28

the decrease in temperature, the entrainment of carbon-rich waters, and an increase in29

primary production. By providing new insights into the role of higher frequency vari-30

ations of the ocean carbon sink and the underlying processes, the 8D product fills an im-31

portant gap.32

Plain Language Summary33

The ocean is important for the climate, as it takes up about a quarter of the car-34

bon dioxide (CO2) we release into the atmosphere. To determine this carbon sink, we35

measure the levels of carbon dioxide in the surface of the ocean. However, these mea-36

surements are limited to where ships measure CO2, leaving gaps in our understanding.37

To fill in these gaps, statistical methods are used, but previous approaches lack fine-scale38

detail. We overcome this limitation with a new neural network approach that estimates39

CO2 with more detail, with estimates every 8 days, at 25 km, compared to previous 10040

km monthly estimates. Globally, our method is as accurate as the previous methods, be-41

ing slightly more accurate in coastal areas. Although the total amount of carbon the ocean42

absorbs globally remains consistent, our results show more variability. Our method also43

detects short-lived local events, such as coastal upwelling and hurricanes. For example,44
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our results show that after Hurricane Maria in 2017, the ocean surface had lower car-45

bon dioxide. Overall, our detailed results give us new information about the small-scale46

changes in the ocean carbon sink and helps us fill in a gap in our understanding of sur-47

face ocean CO2.48
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1 Introduction49

The global ocean is playing a pivotal role in limiting global warming by having ab-50

sorbed approximately 25% of the anthropogenic carbon dioxide (CO2) emissions over the51

past 250 years (Sabine et al., 2004; Gruber, Clement, et al., 2019; Müller et al., 2023;52

Khatiwala et al., 2013). Although this uptake fraction has remained remarkably stable53

over time (Friedlingstein et al., 2022), the magnitude of the ocean carbon sink has var-54

ied substantially around this trend (Landschützer et al., 2015, 2016; Gruber, Landschützer,55

& Lovenduski, 2019; DeVries et al., 2023; McKinley et al., 2020; Rödenbeck et al., 2022;56

Bennington et al., 2022). The strongest evidence supporting this variability comes from57

observations of the surface ocean CO2 concentration (generally expressed in terms of its58

fugacity, fCO2), from which the air-sea CO2 flux (FCO2) can be inferred (R. H. Wan-59

ninkhof, 2014; Fay et al., 2021). Since the fCO2 observations are sparse in time and space,60

gap filling techniques are required to map them to the time-and-space continuous prod-61

uct needed for estimating the strength of the global ocean carbon sink over time (Rödenbeck62

et al., 2015; Fay et al., 2021). Most commonly, statistical or machine learning techniques63

are used to fill this gap (Telszewski et al., 2009; Landschützer et al., 2013; Rödenbeck64

et al., 2015; Gregor et al., 2019; Iida et al., 2021; Chau et al., 2022; Gloege et al., 2022),65

although also geospatial and data assimilation-type methods are used (Rödenbeck et al.,66

2022; Bennington et al., 2022). Owing to their global nature and good temporal cover-67

age, satellite observations have proven to be key enablers for all gap filling methods (Shutler68

et al., 2020, 2024).69

Typically, these fCO2 gap-filled products are produced at a monthly 1◦×1◦ res-70

olution (henceforth denoted by 1M). This resolution has proven to be sufficient to con-71

strain global ocean uptake of CO2 and its trends and variations (Landschützer et al., 2016;72

Gruber et al., 2023; DeVries et al., 2023; Gloege et al., 2021) as well as the seasonal vari-73

ations and their changes over time (Landschützer et al., 2018; Rodgers et al., 2023). As74

a result, these products have played an important role in global assessments, especially75

those of the Global Carbon Budget (GCB) (Friedlingstein et al., 2022, 2023; Hauck et76

al., 2023). But there is a large amount of variability that current fCO2-products can-77

not capture, especially at the regional and subseasonal scale. Modeling studies and ob-78

servations at these scales have regularly revealed fCO2 variations that exceed those seen79

in the 1M products (Yu et al., 2020; Nicholson et al., 2022; Turi et al., 2014; Arruda et80

al., 2015; Friederich et al., 2008; Resplandy et al., 2024). These variations are driven by81
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finer-scale temporal features such as storms and upwelling events, but also by finer-scale82

spatial features, such as those associated with mesoscale circulation or strong fronts. In83

addition, high-frequency variations in surface winds contribute to high frequency vari-84

ations in the air-sea CO2 fluxes as well (Whitt et al., 2019).85

Our current ability to constrain such high-resolution FCO2 and fCO2 variability86

from observations is very limited. This is, in no small part, a consequence of the segmented87

way the ocean CO2 system is currently sampled (R. Wanninkhof et al., 2019). On the88

one hand, we have underway CO2 measurements from ships that give a good perspec-89

tive of the variability in space along a limited number of survey lines (Jones et al., 2012).90

On the other hand, we have time-series observations from a few sites that provide de-91

tailed temporal information (Bates et al., 2014). But we rarely have observations that92

cover both time and space in a synoptic manner.93

The few observation-based studies clearly point to the scale of the challenge. Re-94

garding high frequency temporal variability, a glider-based study in the Southern Ocean95

found that mid-latitude cyclones can induce variability up to 20 µatm within a frequency96

range of 1 to 10 days (Nicholson et al., 2022). Another glider-based study suggested that97

pCO2 measurements need to be taken every three days to constrain uncertainty in dy-98

namically variable regions (Monteiro et al., 2015). Beyond the Southern Ocean, intense99

sporadic events like tropical cyclones and hurricanes can cause pCO2 fluctuations as large100

as 50 µatm within a two-day window (Yu et al., 2020; Bates et al., 1998; Koch et al., 2009).101

Mooring-based studies from various locations have also revealed variations of more than102

50 µatm within days to weeks (Leinweber et al., 2009; Sutton et al., 2014, 2017; Pardo103

et al., 2019; Torres et al., 2021).104

Regarding high resolution spatial variability, gradients exceeding several tens of µatm105

over tens of kilometers are regularly encountered along ship-tracks, especially in dynamic106

regions such as the Southern Ocean and boundary current regions. This leads to short107

spatial autocorrelation length scales (Jones et al., 2012). While the length scales for FCO2108

and fCO2 are typically around 100 km or more in open ocean gyre regions, they decrease109

to less than 50 km in these dynamic regions (Murphy et al., 2001; Jones et al., 2012).110

These findings are corroborated by drifting buoy and saildrone-based studies in the North-111

eastern Atlantic and Southern Ocean, which have reported spatial gradients of pCO2 on112
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the order of 10 µatm over 20 km (Boutin et al., 2008; Merlivat et al., 2009; Sutton et al.,113

2021).114

Better resolving the fine-scale variations of the air-sea CO2 fluxes matters for mul-115

tiple reasons. First, it permits to better resolve a number of key processes that govern116

the ocean uptake of CO2, providing novel insights into how the ocean carbon sink func-117

tions. Second, it permits us to assess the role of potential aliasing effects that stem from118

missing variability, thereby potentially aliasing our estimate of the global ocean carbon119

uptake (Koch et al., 2009). Third, such high-resolution products can also provide crit-120

ical constraints for assessing the impact of natural or man-made perturbations, such as121

those associated with marine heatwaves (Mignot et al., 2022) or the purposeful release122

of alkaline substances to enhance the oceanic uptake of atmospheric CO2 (González &123

Ilyina, 2016; Lenton et al., 2018).124

First attempts to cover global finer-scale variability than 1M in gap-filled fCO2125

products were undertaken by Rödenbeck et al. (2014) for the CarboScope Mixed-Layer126

Scheme (CarboScope-MLS) and by Chau et al. (2024) for the CMEMS-FFNN product.127

The CarboScope-MLS, while having higher temporal resolution (daily), suffers from its128

coarse spatial resolution of > 2◦. CMEMS-FFNN offers superior spatial resolution, but129

resolves fCO2 only at monthly resolution. These limitations are, in part, technological130

in nature. For example, the commonly used Surface Ocean CO2 Atlas (SOCAT) provides131

a monthly 1◦×1◦ resolution gridded product alongside the ungridded cruise tracks (Sabine132

et al., 2013). Similarly, remote sensing and reanalysis products are often available at monthly133

resolutions in addition to daily files. There are, however, a few studies that have esti-134

mated high resolution fCO2 (∼ 5 km) at regional scales, e.g., the Gulf of Mexico (Chen135

et al., 2019) and South China Sea (Song et al., 2023). The regional constraint of these136

studies allows for simpler machine learning architecture (e.g., no clustering) that are able137

to predict fCO2 with greater fidelity than the global approaches.138

In this study, we aim to bridge the “high-resolution gap” in current fCO2 prod-139

ucts by generating estimates at an 8-daily, 0.25◦×0.25◦ (henceforth referred to as 8D)140

resolution for both fCO2 and FCO2. To achieve this, we introduce a novel machine-learning141

approach called the Ocean Carbon Neural Network (OceanCarbNN). OceanCarbNN builds142

on several lower-resolution previous approaches, but reaches an unprecedented resolu-143

tion in time and space.144
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The paper is organized as follows: First, we outline the datasets and methodology145

that underlie our innovative technique. Following this, we rigorously evaluate the model’s146

output. We then explore the implications of high-resolution pCO2 data on FCO2 vari-147

ability across different temporal scales. Finally, we assess the local and global impact of148

these high-resolution estimates, including a case study focused on the influence of a hur-149

ricane.150

2 Methods151

2.1 The Ocean Carbon Neural Network method152

2.1.1 Design elements of OceanCarbNN153

The Ocean Carbon Neural Network (OceanCarbNN) method is a classical machine154

learning-based regression approach to map the sparsely observed fCO2 data to the global155

surface ocean (Rödenbeck et al., 2015). To achieve the mapping at the 8D target res-156

olution, while maintaining robustness and scalability, several design elements are imple-157

mented, most of which build on the ideas of other studies.158

The first design element concerns the target variable. We first subtract atmospheric159

CO2 in order to remove most of the trend in the target variable (Ma et al., 2023). There-160

after, following Bennington et al. (2022), we remove the temperature effect from oceanic161

fCO2 leaving the non-thermal, i.e., chemically driven, part of the signal. These two trans-162

formations capture the impact of two well-understood and quantifiable drivers, such that163

the machine learning part is focused on the variability imparted on fCO2 through the164

other drivers, such as biology and mixing (Sarmiento & Gruber, 2006).165

The second design element is that we use a prior estimate of an 8-daily climatol-166

ogy of fCO2 as a predictor. This is inspired by the works of Landschützer et al. (2015)167

and Denvil-Sommer et al. (2019), both of which include information on the fCO2 sea-168

sonal cycle, the dominant mode of variability. The first study does this through cluster-169

ing based on a predefined monthly climatology of fCO2, and the second by removing170

the monthly climatological signal from fCO2 before training their neural network.171

The third design element is that we combine decision-trees and neural-networks.172

For the estimation of the climatological seasonal cycle, we use Gradient Boosted Deci-173

sion Trees (GBDT), thus taking advantage of the low bias nature of tree-based approaches.174
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For the estimation of the time-varying fCO2, we use a feed-forward neural network method.175

Theoretically, the differentiable nature of FFNNs better captures the relationships (i.e.,176

gradients) between the fCO2 and its drivers (Holder & Gnanadesikan, 2021).177

The fourth and final design element is that we include the rate of change of the drivers178

as predictors. More specifically, the difference between the current and previous time step179

is used for variables such as temperature and chlorophyll-a. This gradient adds additional180

information about the rates of change and further improves the stability of the fCO2181

predictions between time steps.182

Overall, this set of design choices improves the stability and robustness of our es-183

timates and improves the computational efficiency (compared to other methods), which184

is important given that the amount of data increased by a factor of ∼61 by going from185

the typical 1M resolution to 8D.186

Figure 1 summarizes the 6 steps involved in the estimation of fCO2 and FCO2 by187

OceanCarbNN: 1) Data preparation and preprocessing, including the detrending of the188

target variable by subtracting the atmospheric CO2 mixing ratio to form the variable189

∆∗CO2. 2) Machine learning part 1: Estimation of the 8-daily climatology of ∆∗CO2;190

3) Removal of the thermal component from ∆∗CO2; 4) Machine learning part 2: Esti-191

mation of the time-variable non-thermal target ∆∗COnonT
2 ; 5) Reverse transformation192

of ∆∗COnonT
2 to obtain the time-variable fCO2 field; 6) Estimation of the air-sea CO2193

fluxes, FCO2. The methods section, in large, describes these steps in greater detail. Fur-194

thermore, we describe the decomposition of the air-sea CO2 fluxes into different tempo-195

ral modes of variability.196

2.1.2 Step 1: Data preparation and preprocessing197

The target variable is fCO2 from the ungridded SOCAT v2022 cruise track dataset

(D. C. Bakker et al., 2016; D. C. E. Bakker et al., 2023). The data are first binned to

8-daily by 0.25°× 0.25° resolution. No weighting is applied during the binning, mean-

ing that the data is analogous to the unweighted fCO2 data from the gridded SOCAT

product. We then detrend the data using the CO2 concentration in the marine bound-

ary layer (xCOmbl
2 ) from Dlugokencky et al. (2021):

∆∗CO2 = fCOSOCAT
2 − xCOmbl

2 (1)
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∆∗𝐂𝐎𝟐𝐧𝐨𝐧𝐓 = ∆∗𝐂𝑶𝟐 − 𝒇𝐂𝐎𝟐𝐓

c) Step 3: Target transformation
remove anomalous thermal component from ∆∗CO"  

a) Step 1: Data pre-processing

Chl-a gap-filling

Salinity “stacking”

Transformations:
climatology (clim) 
anomaly (anom)
prev. time step (delta)

d) Step 4: Estimate 8-daily ∆∗𝐂𝐎𝟐𝐧𝐨𝐧𝐓
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MLD
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b) Step 2: Estimate 8-daily clim. as prior

∆∗𝐂𝐎𝟐𝐜𝐥𝐢𝐦
i) Predictors ii) Target

∆∗𝐂𝐎𝟐 = 𝒇𝐂𝐎𝟐 − 𝒙𝐂𝐎𝟐𝐦𝐛𝐥
SST

CHL

Salinity

+ SSH, MLD, 𝑥CO* 

SOCAT

e) Step 5: Inverse transformation  à 𝒇𝐂𝐎𝟐 

𝒇𝐂𝐎𝟐𝐬𝐞𝐚 = ∆∗𝐂𝐎𝟐𝐧𝐨𝐧𝐓

0011
234534

+ 𝒇𝐂𝐎𝟐𝐓

46789:;
<295.

+ 𝒙𝐂𝐎𝟐𝐦𝐛𝐥
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487BC

f) Calculate sea-air CO2 fluxes 
Quadratic formulation using ERA5 winds

atmospheric
CO2 trend

𝒇𝐂𝐎𝟐𝐓 = ∆∗CO*+,-. ⋅ 0.0423 ⋅ ∆𝑇
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𝒇𝐂𝐎𝟐𝐬𝐞𝐚

𝑭𝐂𝐎𝟐 = 𝑲𝟎 ⋅ 𝒌𝒘 ⋅ 𝒇𝐂𝐎𝟐𝐬𝐞𝐚 − 𝒇𝐂𝐎𝟐𝐚𝐭𝐦

𝑭𝐂𝐎𝟐
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𝒇𝐂𝐎𝟐𝐬𝐞𝐚

Figure 1. Diagram showing the 6 steps in the OceanCarbNN approach. (a): Step 1: Data

preparation and pre-processing (Figure 2, Section 2.1.2). Notably, we remove the atmospheric

CO2 trend from SOCAT fCO2 by removing the mole fraction of CO2 at the marine boundary

layer (xCOmbl
2 ). This yields the variabile ∆∗CO2. (b) Step 2: An 8-daily climatology of ∆∗CO2

is estimated and used as a prior in step-4 (Section 2.1.3). We use Gradient Boosted Decision

Trees (GBDT). (c) Step 3: The target variable is transformed by removing the anomalous ther-

mal component, fCOT
2 (after Bennington et al., 2022) (Section 2.1.5). The resulting non-thermal

component, ∆∗COnonT
2 , is used as the target for the next step. (d) Step 4: An ensemble of 35

FFNNs predicts ∆∗COnonT
2 at 8D resolution (Section 2.1.5). (e) Step 5: Reverse transformation:

The thermal component (fCOT
2 ) and atmospheric trend (xCOmbl

2 ) are added back to arrive at

the OceanCarbNN estimate of fCO2. (f) Step 6: Calculate the sea-air CO2 fluxes with the out-

put from the previous step (Section 2.1.7).
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For the detrending, we use xCO2 rather than atmospheric fCO2 in order to avoid198

any unwanted impact of variations in atmospheric pressure and vapor pressure.199

An important consideration for the selection of the predictor variable was the avail-200

ability of these predictors at the 8D target resolution. This required some gap filling, and201

some merging of different data sets. The final set is summarized in Figure 2 and con-202

sists of the following predictors: atmospheric CO2 concentration at Mauna Loa (xCOatm
2 ;203

Tans & Keeling, 2023), sea surface temperature (SST; Merchant et al., 2019), salinity204

(Boutin et al., 2018; Carton et al., 2018; Droghei et al., 2016), sea surface height (SSH;205

Taburet et al., 2019), chlorophyll-a (CHL; Sathyendranath et al., 2023), and mixed-layer206

depth (MLD; Carton et al., 2018). This set of predictors is rather similar to that used207

by most other gap-filling methods (Rödenbeck et al., 2015), except for the use of SSH,208

the addition of the temporal derivatives of the drivers and prioritising the use of climate209

data records.210

Pre-processing and transformation (Figure 1a) of these variables can be separated211

into: 1) gridding to 8-daily by 0.25° × 0.25°, 2) variable stacking for salinity and gap-212

filling for CHL, 3) separation of anomalies from climatologies (clim, anom), 4) calculat-213

ing the difference between the current and previous time step (delta) which is used as214

a predictor. For the full description of how these data were prepared, see Supplemen-215

tary Information Text S1.216

2.1.3 Step 2: Estimation of 8-daily climatology217

Landschützer et al. (2015) and Denvil-Sommer et al. (2019) have shown that the218

climatological seasonal cycle of fCO2 is a powerful predictor when filling the gaps. This219

is because to zeroth order, the seasonal cycle of fCO2 is relatively stationary, such that220

using the climatological mean value for a given month is a good first guess of that month’s221

value. Both aforementioned studies used the climatology of Takahashi et al. (2009) and222

interpolated it to the 1° resolution of their product. Here, we estimate this climatology223

ourselves, especially since we require it at 8D resolution.224

We estimate the quarter-degree 8-daily climatology of ∆∗CO2 using Gradient Boosted225

Decision Trees. We use climatological predictors along with transformations of the time226

and space coordinates (Figure 2) — see Supplementary Information Text S1. The es-227

timated ∆∗COclim
2 is smoothed with a rolling mean with a two-month by 0.75° window228

–10–



manuscript submitted to Global Biogeochemical Cycles

climatology: 1993 – 2019

climatology: 1990 – 2019
ESA CCS-C3S v2.1

𝑥CO!"#$ Mauna Loa (single value used globally)

ESA CCI v3.21

SODA 3.4.2 (equal length clim. from SODA and ESA-CCI)

CMEMS
Multiobs

CO2

SST
& ICE 

Salinity
stacked

SSH

Chl-a
gap-filled

MLD

Dec
2021

climatology: 2000 – 2009

climatology: 2010 – 2019

climatology: 1998 – 2019

climatology: 1990 – 2019

ERA5 for fluxes: (hourly u- and v-components, and sea level pressure) Wind

SODA 3.4.2 fills high-
latitude and coastal gaps

ESA CCI used where present à

climatology

climatology Jan
1998

Jan
2010

Jan
1993

SODA 3.4.2

Ssalto/Duacs (SLA used instead of calculated anomaly)

ESA OCCCI v6 (cloud gaps filled with DINEOF)

Figure 2. A Gantt chart showing the use of various datasets in the OceanCarbNN. Each vari-

able is represented by a color, with each product having its own horizontal bar and the thinner,

lighter shaded bars represent the periods over which the climatology was calculated for that vari-

able. In the case of salinity, where products overlap in time, the high-latitude and coastal gaps of

the ESA-CCI product are filled by the CMEMS-Multiobs product, with ESA-CCI always taking

priority. For a full list of these products, see Table S1 in the Supplementary Information.
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(seven 8-day time steps) to avoid overfitting. We choose a large temporal window, but229

narrow spatial window to preserve spatial gradients, particularly in the coastal regions.230

2.1.4 Step 3: Target transformation231

Predictor variables for the second machine learning step include all variables as anoma-

lies, together with their 8-daily climatologies, and the differences between the current

and previous time step. The target, ∆∗COnonT
2 , is estimated by removing the thermal

component of fCO2 (Figure 1c), after Bennington et al. (2022):

∆∗COnonT
2 = ∆∗CO2 − (fCOclim

2 · 0.0423 ·∆T︸ ︷︷ ︸
thermal component

), (2)

where, fCOclim
2 is the long-term mean estimate of the fugacity of CO2, and ∆T is the232

temperature anomaly (as in Bennington et al., 2022), i.e., the anomaly relative to the233

long-term mean sea-surface temperature.234

2.1.5 Step 4: Estimation of ∆∗COnonT
2235

We use a Feed-Forward Neural Network to estimate ∆∗COnonT
2 . This choice is based236

on the work of Courtois et al. (2023), who demonstrate that such networks (that are not237

too wide or deep) are able to extrapolate beyond the training observations. In addition,238

neural networks were shown to be better able to capture the true relationship between239

a target variable and its predictors (Holder & Gnanadesikan, 2021).240

The collocated ship-track and predictor data are split into training, testing, and241

validation subsets. We use the same approach as Bennington et al. (2022) where every242

seventh month is considered a test (or validation) month. The validation subset uses the243

same seven-month split, but with a three-month offset. The validation split is used to244

avoid overfitting of the FFNN by stopping training when no improvement is observed.245

Test data are not used during training of the FFNN and are used to assess performance.246

Given the structure of our splits, seven train-test-validation splits can be created by start-247

ing on a different month in 1982 (January through July), meaning that we can fully re-248

construct the SOCAT cruise tracks with only test splits (Figure S1).249

We use an ensemble of FFNNs to predict ∆∗CO2, with five FFNNs per train-test-250

validation split. Together with the 7 splits, this results in a total of 35 ensemble mem-251

bers. We use TensorFlow and Keras to construct our neural network ensemble (Abadi252
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et al., 2015). Each ensemble member has two hidden layers with 64 and 32 neurons with253

ReLu activation (see Supplementary Information Text S2).254

2.1.6 Step 5: Retransformation255

The predicted output is first transformed back to ∆∗CO2 from ∆∗COnonT
2 using256

the thermal component of Eq. 2. The ∆∗CO2 variable is in turn further transformed back257

to fCO2 using Eq. 1. All 35 ensemble members are then averaged for the estimates of258

fCO2 and the standard deviation of the ensemble is calculated (σens).259

2.1.7 Step 6: Calculation of Fluxes260

We calculate sea-air CO2 fluxes (FCO2) using the bulk formulation:

FCO2 = K0 · kw · (fCO2 − fCOatm
2 ) · (1− ice), (3)

where K0 is the solubility of CO2 in seawater from Weiss (1974), kw the gas transfer ve-261

locity (R. H. Wanninkhof, 2014; Sarmiento & Gruber, 2006), fCO2 is the surface ocean262

CO2 fugacity predicted by OceanCarbNN, fCOatm
2 is the atmospheric marine bound-263

ary layer CO2 fugacity, and ice is the sea-ice fraction from the temperature product shown264

in Figure 2. The sign convention is that a positive flux in (3) is upward, i.e., indicating265

outgassing of oceanic CO2.266

Atmospheric fCO2 is calculated from the dry air mixing ratio of atmospheric CO2

in the marine boundary layer from NOAA, i.e., xCOmbl
2 (Dlugokencky et al., 2021) :

fCOatm
2 = xCOmbl

2 × (Patm − pH2O)× virial factor, (4)

where Patm is the mean sea-level pressure from ERA5 (Hersbach et al., 2020), pH2O is

the partial pressure of water vapor based on Weiss and Price (1980), and the virial factor

accounts for the non-ideal behavior of CO2 (Weiss, 1974). For kw, we use the quadratic

formulation of the sea-air CO2 fluxes from R. H. Wanninkhof (2014) scaled for ERA5

winds:

kw = 0.271 ·U2
10 ·

(
Sc

660

)−1

, (5)

where U2
10 is the second moment of the wind speed, and Sc is the Schmidt number for267

CO2 (Jähne et al., 1987). The second moment of the wind speed is calculated from hourly268

ERA5 data using u2+v2, where u and v are wind vectors. U2
10 is then regridded in the269

time dimension to match the resolution of our output. The coefficient of gas transfer (0.271)270
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was obtained by ensuring that the global mean gas transfer coefficient for the period 1990271

and 2019 and for the ice-free ocean matches the constraint of kw = 16.5±3.2 cm hr−1
272

(Sweeney et al., 2007; Naegler, 2009; Fay et al., 2021).273

2.2 Decomposition of fluxes274

We decompose the temporal variability of the air-sea CO2 fluxes into three modes275

by integrating over the frequencies in the Fourier domain (after Gu et al., 2023): sub-276

seasonal, < 3 month frequencies; seasonal, 3 to ∼15 month frequencies; and interannual,277

> 15 month frequencies. In some cases, we further separate the interannual variability278

into sub-decadal (15 months to 8 years) and decadal (> 8 years) variability. To simplify279

the Fourier decomposition, we give all time steps the same length, i.e., 365
46 days for the280

high-resolution 8D product and 365
12 days for the 1M low-resolution product.281

To identify the drivers of the air-sea CO2 flux variability, we apply a Reynolds de-

composition (y = y + y′) to Eq. 3. We thereby combine kw and K0 as the gas trans-

fer coefficient kx = K0·kw, in order to focus on the role of the wind variability (Doney

et al., 2009) – the temperature dependencies in kw and K0 account for < 1% of the vari-

ability of kx (Woolf et al., 2016). We also look only at the role of the air-sea difference

in fCO2, i.e., ∆fCO2, since the variability of atmospheric fCO2 is much smaller than

that of the oceanic fCO2. Furthermore, we neglect the role of sea-ice variations. With

these simplifications we decompose the air-sea CO2 flux, FCO2, as follows:

FCO2 = kx ·∆fCO2︸ ︷︷ ︸
mean state

+ k′x∆fCO2︸ ︷︷ ︸
wind variability

+ kx∆fCO′
2︸ ︷︷ ︸

fCO2 variability

+ k′x ·∆fCO′
2︸ ︷︷ ︸

cross-term

. (6)

Since we are interested in the variability of FCO2 we do not have to consider the

first term where the long-term averages are taken for both variables. We calculate the

variability as representations of the variance (σ2). If we represent each of the terms in

Eq. 6 as a, b, and c respectively, the total variance is represented by:

σ2(a+ b+ c) = σ2(a) + σ2(b) + σ2(c)

+ 2 · cov(a, b) + 2 · cov(a, c) + 2 · cov(b, c)︸ ︷︷ ︸
covariances ≈ residual

.
(7)

Given that we calculate the variance from the frequency domain, we calculate the

covariance for the different modes of variability as the residual of the total and summed
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variances. The fraction contribution by each term is computed as:

σ2(wind)

σ2(total)
,
σ2(fCO2)

σ2(total)
,
σ2(cross term)

σ2(total)
,
covariances

σ2(total)
. (8)

Note that since the covariances can be negative, the fractional contribution can be282

negative, too.283

3 Evaluation and assessment284

We first evaluate the 8D fCO2 product estimated by OceanCarbNN by determin-285

ing the large-scale offsets against the test and training data, and by comparing these off-286

sets against the ensemble spread that we use as an estimate of the prediction uncertainty.287

We then investigate in what way the high-resolution product is able to capture finer-scale288

structures in time and space. To this end, we focus on high-frequency observations from289

open ocean mooring stations (Sutton et al., 2019). We also assess how well the high-resolution290

estimates can track high-resolution spatial features observed along cruise tracks.291

3.1 Uncertainties292

To determine the bias and root mean squared differences (RMSD) of the 8D prod-293

uct against the SOCAT data, we rely only on predictions that have not been used to train294

the subset of ensemble members. Given that we use an ensemble of results where the start-295

ing month changes (1-7), we have a complete representation of the SOCAT dataset (Figure296

S1; Gregor et al., 2019; Bennington et al., 2022).297

The unweighted bias and RMSD for the fCO2 estimated by OceanCarbNN are low298

at a global scale at -0.06 µatm and 19.2 µatm, respectively (Table S2), where a negative299

bias indicates that OceanCarbNN underestimates fCO2 relative to SOCAT. The open300

(coastal) ocean has a bias of 0.07 µatm (-0.23 µatm) and an RMSD of 13.0 µatm (25.4301

µatm) (Figure 3, Table S2), where the coastal ocean is defined as the ocean region within302

300 km from the coast or the 1000 m isobath (Laruelle et al., 2017). Given the spatial303

and seasonal inhomogeneity in the SOCAT observations, biases and RMSDs are also as-304

sessed over time and space (Figure 1 with weighted averages). We assess both metrics305

for three latitude bands: the high northern (blue lines; > 35°N) and southern latitudes306

(yellow lines; > 35°S) and the bounded lower latitudes (red).307
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Figure 3. Metrics using test data estimates from OceanCarbNN. Time series on the left show

latitudinally averaged biases (a) and root mean squared difference (RMSD in c) with a one-year

rolling mean applied. The legend also contains the time-averaged mean values (in µatm) weighted

by number of samples. The smaller time series figures on the right show seasonally averaged

biases (b) and RMSD (d). The maps below show test bias (e) and RMSD (f) with the values

showing the spatial average of the respective metrics weighted by area.
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Biases are larger and more variable before 2000 when data are more sparse (Fig-308

ure 3a). The spatial separation also reveals that biases compensate meridionally, result-309

ing in lower global biases due to aggregation. There is no seasonality in the biases in any310

of the latitude bands. Spatially (Figure 3e), biases are mostly low (|bias| < 2.5 µatm)311

except for the coastal regions and a few open ocean regions, e.g., the southern Indian312

Ocean, where there is a positive bias (red in Figure 3e).313

In the northern high latitudes, the RMSD increases slightly over time (∼15 to >20314

µatm; blue line in Figure 3c). This is likely due to the increase in the variance of the train-315

ing data over time, particularly in the coastal ocean, where there is typically higher bio-316

geochemical complexity (Figure S2). The RMSD for the tropics and southern regions317

remains constant (∼15 µatm) throughout the forty-year period, with no significant slope.318

On average, RMSDs are larger in the summer months compared to the winter months319

(∼25 µatm vs. ∼15 µatm) of both the northern and southern high latitudes (blue and320

yellow lines in Figure 3d). The seasonality of the RMSD in the low-latitudes (red line321

in Figure 3d) is lower by comparison, but has a slight bias to the Northern Hemisphere322

summer, likely due to the Northern Hemisphere sampling bias.323

At a global scale, the spatial distribution of the RMSD resembles the ensemble stan-324

dard deviation (σens) with a spatial correlation r2 of 0.65 for the time averaged maps.325

This suggests that the ensemble spread is a good indicator of the spatial structure of the326

quality of the estimated fCO2. This relationship was exploited by Chau et al. (2024)327

who scaled σens to match the RMSD as closely as possible. Here, we follow the same idea328

to obtain a global map of uncertainty of our 8D product, but we simply multiply σens329

with a factor of 5.7, i.e., the global mean ratio of RMSD
σens

= 11.3
2.0 .330

3.2 Assessing spatial and temporal scales of variability331

The benefit of estimating fCO2 at high resolution becomes most obvious when com-332

paring the estimated product against the raw observations in SOCAT. The majority of333

the SOCAT data set consists of ship cruise tracks. In Figure 5, we compare three rep-334

resentative cruise tracks in the Atlantic and Pacific with the OceanCarbNN test-subset335

of fCO2, where the test-subset is a subset of our output that has not been trained with336

the data that it is estimating. Along all three tracks, the large-scale variability of the337

SOCAT fCO2 observations is well represented. In open ocean regions, the RMSD scores338
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Figure 4. (a) The long-term mean of fCO2 for 1982 to 2022 and (b) the scaled standard de-

viation (5.7σ) of the ensemble members of OceanCarbNN.

are actually substantially lower than the global average. An exception to this occurs in339

poorly sampled regions, such as the South Atlantic gyre (Figure 5d, where the regional340

biases can be > |5| µatm). Most important, however, is the fact that the high-resolution341

product captures a substantial fraction of the fine-scale structures of the observed fCO2.342

For example, the 8D product properly represents the strong outgassing signals associ-343

ated with the upwelling driven by the gap winds off the coast of Central America (Fig-344

ure 5a). The impact of these ephemeral winds, called Tehuano and Papagayo jets, on345

the surface ocean CO2 system on ocean biogeochemistry has been well documented by346

in situ measurements (Chapa-Balcorta et al., 2015), but is generally not well captured347

by the global 1M products. Further, the 8D product properly captures the magnitude348

of the equatorial upwelling in both the Atlantic and Pacific (Figure 5c,d), as well as the349

strong variations off the coast of Europe (Figure 5d). At the same time, some deficien-350

cies also emerge. The specific structure of the upwelling signal associated with the gap351

winds is missed, as is the exact location of the equatorial upwellings offset. Furthermore,352

the signals of two tropical instability waves in the equatorial Pacific (Figure 5c) are com-353

pletely missed by the 8D product. Finally, the neural network cannot capture some ex-354

tremely sharp gradients observed near New Zealand (Figure 5c).355

Similar successes and limitations of the 8D product can be identified when com-356

paring it with high-frequency observations from long-term moorings. Within SOCAT,357

we identified five open-ocean mooring programs that have measured fCO2 at sub-daily358

frequency for multiple years (Sutton et al., 2019; D. C. Bakker et al., 2016). These are359

located in the Pacific and the Pacific sector of the Southern Ocean (Figure 6). The ob-360

served fCO2 is well represented by the fCO2 estimated by OceanCarbNN at locations361

–18–



manuscript submitted to Global Biogeochemical Cycles

b

c
d

(a)

0 2500 5000 7500 10000 12500 15000 17500 20000

300

350

400

450

500

8-daily × 0.25°
SOCAT v2023

Tehuano
gap winds Papagayo

Jet

(b) Japan to New York (15 Jan  11 Feb 2008)

MAD: 6.9 µatm; Median AD: 3.2 µatm
r2: 0.73; Bias: 1.8 µatm; RMSD: 15.5 µatm

0 2000 4000 6000 8000 10000 12000
Distance (km)

350

400

450

fC
O

2 
(µ

at
m

)

Equatorial
Pacific

Tropical Instability waves

(c) New Zealand to Los Angeles (13  26 Nov 2014)

MAD: 7.2 µatm; Median AD: 4.9 µatm
r2: 0.88; Bias: -1.7 µatm; RMSD: 9.8 µatm

0 2500 5000 7500 10000 12500 15000 17500
Distance (km)

250

300

350

400

450

South Atlantic
Gyre

Equatorial
Atlantic

(d) Atlantic Meridional Transect (1  31 Dec 2018)

MAD: 8.6 µatm; Median AD: 6.7 µatm
r2: 0.88; Bias: 3.9 µatm; RMSD: 11.4 µatm

Figure 5. Comparison of the observed fCO2 along three selected cruise tracks contained

within the SOCAT database (black lines) with the estimated fCO2 from the 8D OceanCar-

bNN test-subset (blue lines). The blue envelope shows the scaled ensemble standard deviation

(5.7σens). (a) Locations of the cruise tracks with the colors indicating the measured fCO2. (b)

Transect from Japan to New York occupied between Jan 15, 2008 and Feb 11, 2008. (c) Tran-

sect from New Zealand to Los Angeles occupied between Nov 13, 2014 and Nov 26, 2014. (d)

Transect between Southampton and Punta Arenas occupied between Dec 1, 2018 and Dec 31,

2018 as part of the Atlantic Meridional Transect program. The distance along the x-axes of the

cruise tracks (b, c, d) is plotted with zero being the most western point, regardless of the actual

direction of travel.
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with a large seasonal cycle. The 8D product captures 90% of the variability observed at362

the KEO mooring off the coast of Japan (Figure 6a), 82% at the SOFS mooring south363

of Tasmania (Figure 6e) and 71% at the STRATUS mooring site off the coast of South364

America (Figure 6f). Also, shorter-term variations are generally well captured at these365

three sites. The performance of the OceanCarbNN 8D product is somewhat weaker at366

the other two sites. While the fCO2 estimates at the PAPA mooring location (Figure367

6b) are able to represent most of the seasonal variability, some extremes are not captured.368

This leads to only 50% of the observed variability being captured by the OceanCarbNN369

8D product. In the equatorial Pacific (TAO125W in Figure 6d) the OceanCarbNN 8D370

product appears to miss a substantial fraction of the high-frequency variability. Much371

of this variability is caused by equatorial instability waves. This mismatch is consistent372

with the mismatches seen in the Equatorial Pacific when analyzing the cruise line data373

(Figure 5c).374

In summary, the 8D product is able to resolve simultaneously large and fine-scale375

structures in the observed fCO2, with a few important exceptions. One example are very376

short-lived excursions, such as those associated with tropical instability waves. This is377

largely a consequence of these features having a propagation speed of around 30 km day−1
378

(Legeckis, 1977), such that an 8-day resolution ∼25 km product is insufficient to correctly379

capture their dynamics.380

4 Patterns and variability of fCO2381

4.1 Representation of high-resolution features382

Recognizing some shortcomings of our high-resolution mapped fCO2 product, it383

is nevertheless instructive to visualize its strengths in representing fine-scale features pre-384

viously not seen in gap filled fCO2 products. In Figure 7 we depict 5 snapshots from385

different regions of the global ocean (Supplementary Information Video S1). The 8D es-386

timates are able to represent a lot of fine-scale spatial variability in fCO2 that hitherto387

could not be seen in the 1M products. For example, the 8D estimates depict important388

fCO2 details in the eastern boundary upwelling regions off northwestern Africa (Figure389

7a) and off the U.S. West Coast (Figure 7b). Of special note are the high fCO2 values390

tagging the coasts, reflecting recently upwelled waters, and the rapid offshore decrease391

of fCO2 owing primarily to strong biological drawdown. Also, the filamentous features392
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Figure 6. Mooring stations from Sutton et al. (2019) where fCO2 was measured. Blue lines

show the OceanCarbNN test-subset of ∆fCO2, with the blue envelope showing the scaled en-

semble standard deviation (5.7σens). Black lines show the measured mooring data resampled

to a daily resolution. Model metrics are shown in gray in the bottom of each plot. Note that

these estimates are not used to train the model. The map (c) shows the location of the moorings.

Mooring locations roughly match the subplot locations.
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Figure 7. fCO2 for different regions with the period represented shown by the date in brack-

ets. (a) North-West African coastline, (b) The North-West coastline of the USA where the cal,

(c) the West coast of Central America where the Tehuano gap winds, and Papagayo Jet winds

occur, (d) the Malvinas (Falkland) current off the southeast coast of Argentina, (e) the equatorial

Pacific from 165°W to 75°W.

of these low fCO2 waters are clearly visible. These structures correspond very well to393

detailed regional observations and modeling studies (Turi et al., 2014; Lachkar & Gru-394

ber, 2013; Friederich et al., 2002).395

Similarly, off the West coast of Central America, the 8D estimates reveal the spa-396

tial extent of the upwelling driven maxima in fCO2 downstream of the Papagayo and397

Tehuantepec gaps (Figure 7c). Despite the ephemeral nature of these gap winds, which398

last for hours to several days (Romero-Centeno et al., 2003; Liang et al., 2009), their oceanic399

signatures remain for long enough to be picked up well by our 8 daily product. The spa-400

tial structure of these mountain gap wind features in fCO2 are consistent with what is401

known from in-situ observations (see comparison to the cruise data above (Figure 5a)402
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and the work by e.g., Chapa-Balcorta et al. (2015). Still, the spatial mismatches we iden-403

tified in comparison with the cruise line data suggest that the 8-daily resolution is not404

entirely sufficient to fully capture these ephemeral events.405

The high spatial resolution is also able to resolve the very dynamic structure of the406

fCO2 in the Malvinas Current region (Figure 7d). In this region, strong biological pro-407

ductivity over the Patagonian shelf interacts in a complex manner with the mixing of408

very different waters masses, i.e., the mixing of the warm southward-flowing Brazil Cur-409

rent (BC) and the cold northward flowing Malvinas Current (MC) (Arruda et al., 2015).410

The meandering features have been seen in modeling studies (Arruda et al., 2015) and411

the strong gradients created by the mixing are also regularly captured in the raw SO-412

CAT cruise data (see also Figure 5d).413

And finally, in the equatorial Pacific, the 8D fCO2 product begins to resolve the414

tropical instability waves (Figure 7e). Their shapes are, however, a little distorted and415

overly smoothed, which is as expected given their rapid propagation speeds (Legeckis,416

1977). This mismatch has already been seen in the cruise line data (see also Figure 5c)417

and also the mooring data from the TAO125W site (Figure 6d).418

4.2 Comparison with other fCO2 products419

The improvement of the OceanCarbNN 8D fCO2 estimates is also evident when420

comparing it to several other fCO2-products (Figure 8), namely, CMEMS-LSCE (1M421

by 0.25° Chau et al., 2024), ULB-MPI-SOMFFN (1M by 0.25° Roobaert et al., 2023),422

Jena-CarboScope by (daily by 2.0° Rödenbeck et al., 2014), MPI-SOMFFN by (1M by423

1° Landschützer et al., 2016), and LDEO-HPD by (1M by 1° Bennington et al., 2022).424

Apparent in the comparison is that the fine-scale gradients of the 8-daily OceanCarbNN425

estimates are sharper compared to the other approaches. In this scenario, we find that426

the mean gradients (∥∇fCO2∥) of OceanCarbNN fCO2 are 60% stronger than the two427

other high-resolution products (Figure 8b,c), and more than three times those of the monthly428

by 1° resolution products (Figure 8e,f). The gradient increases to 0.41 µatm km−1 when429

considering the 95th percentile (representing dynamic regions) or ∼8 µatm over 20 km,430

thus approaching the sharp gradients recorded in observational studies (i.e., ∼10 µatm431

over 20 km Sutton et al., 2021).432
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Figure 8. A comparison of fCO2 from different fCO2-products around Southern Africa,

which includes the Agulhas Current and Benguela upwelling system. (a) OceanCarbNN fCO2

(this study) for the 8-day period 17 to 24 January 2014 (8-daily by 0.25°). (b) CMEMS-LSCE

(monthly by 0.25°) by Chau et al. (2024), (c) ULB-MPI-SOMFFN (monthly by 0.25°, coastal

only) by Roobaert et al. (2023), (d) Jena-CarboScope (daily by 2°) by Rödenbeck et al. (2022),

(e) MPI-SOMFFN (monthly by 1°) by Landschützer et al. (2016), and (e) LDEO-HPD (monthly

by 1°) by Bennington et al. (2022). The metric ∇ represents the average horizontal gradient of

fCO2 for the plotted region and ∇q95 represents its 95th percentile.
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In summary, the OceanCarbNN method captures fine-scale spatial variability of433

fCO2 with some skill. Though, there are still some high-frequency features (e.g., trop-434

ical instability waves) that are not well captured, even at the 8D resolution. However,435

our method is able to capture realistic variability that other methods tend to underes-436

timate.437

5 Variability of the ocean carbon sink438

5.1 Mean, trend, and variability of FCO2439

The globally integrated flux FCO2 inferred from the OceanCarbNN-8D product440

increases from 1.51 PgC yr−1 in 1990 to around -2.31 PgC yr−1 in 2019, corresponding441

to a mean trend of -0.26 PgC yr−1 decade−1 over these 3 decades (Figure 9a). Over this442

period (1990–2019) this gives a mean global uptake of -1.89 PgC yr−1. The trend and443

mean uptake compares very favorably with previous estimates based on of gap filled fCO2444

products (DeVries et al., 2023). Concretely, it falls within the 1σ-bounds of the SeaFlux445

ensemble of 6 fCO2 products of −1.92± 0.20 PgC yr−1 calculated with ERA5 winds446

(Table 4 in Fay et al., 2021). Accounting for the outgassing of natural carbon associated447

with the balance between river input and burial, i.e., the so-called steady-state river out-448

gassing flux of about 0.65 PgC yr−1 (Regnier et al., 2022), the OceanCarbNN-8D prod-449

uct gives a total sink for anthropogenic CO2 of -2.31 PgC yr−1 for 1990-1999, of -2.50450

PgC yr−1 for 2000-2009, and of -2.82 PgC yr−1 for 2010-2019, consistent with the cur-451

rent best estimates of the magnitude and change of the ocean carbon sink (Gruber et452

al., 2023; DeVries et al., 2023).453

The globally integrated flux varies substantially around these mean uptakes, with454

the seasonal cycle contributing the most variance (Figure 9a). There is also clear evi-455

dence of an increase in the magnitude of the seasonal cycle over time, confirming pre-456

vious findings based on theory, models, and observations (Landschützer et al., 2018; Rodgers457

et al., 2023). In addition, clear subseasonal variations are visible in the global timeseries,458

as well as interannual to decadal variations. Regarding the magnitude of the interannual459

to decadal variability, the OceanCarbNN-8D-based flux estimates tend to be on the lower460

end of the spectrum compared to other gap filled fCO2 products (DeVries et al., 2023).461

Still, it shows a clear stalling of the trend toward stronger uptake in the 1990s, and an462
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Figure 9. (a) Globally integrated sea-air CO2 fluxes (FCO2) for 8-daily (8D, blue) and

monthly (1M, yellow) estimates, where the latter is calculated by resampling the inputs of Eq.

3 to a lower monthly × 1.0° resolution and then calculating FCO2. (b) The standard deviation

(σ) of FCO2 for the 8D estimates. (c) The difference between (b) and the 1M (monthly × 1.0°

resolution).

acceleration thereafter (Landschützer et al., 2015; DeVries et al., 2019; Gruber, Clement,463

et al., 2019; Gruber et al., 2023).464

To assess the impact of the higher resolution on our estimates of the variability of465

the ocean carbon sink, we contrast our 8D estimate with a monthly by 1° × 1° (1M) es-466

timate we obtain by averaging fCO2 from OceanCarbNN and all other inputs to Eq. 3467

to 1M (Figure 9a). Even though the 1M results are based on the averages of the 8D es-468

timates, the global fluxes of the two products are not identical on longer timescales, i.e.,469

the 1M product has a marginally smaller mean (1990-2019) uptake of -1.87 PgC yr−1.470

This small difference is likely due to small co-variances between wind and ∆fCO2, whose471

magnitude is scale-dependent (see below). As expected, much larger differences occur472

on subseasonal timescales, where the 8D product reveals higher crests and deeper troughs473

than the 1M product. This results in higher temporal variance, which is best analyzed474

spatially.475
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The map of the total standard deviation of the air-sea CO2 flux FCO2 reveals strong476

spatial differences ranging from near zero to more than 7 mmol C m−2 day−1 (Figure477

9b). The northern mid- to high-latitudes have the largest variability (> 5 mmolC m−2478

day−1), particularly in the Pacific basin. Some island and coastal regions (e.g., Kerguélen479

Plateau and Oman upwelling regions) have similarly large variability. The low-latitude480

regions have low variability (< 1 mmolC m−2 day−1), except for the central and east-481

ern tropical Pacific. In the global mean, the temporal standard deviation of the 8D prod-482

uct amounts to σ =2.45 mmolC m−2 day−1. This is about 10% more than the global483

mean temporal standard deviation σ of the 1M product (2.20 mmolC m−2 day−1).484

While the global increase in the captured variability of the 8D product is modest,485

regionally, the gain in variability of the air-sea CO2 fluxes can be much more pronounced486

(Figure 9c). The increase in variability is most notable along a band (∼40°S) in the Sub-487

Antarctic Zone (SAZ) in the Southern Ocean, where the 8D product increases the vari-488

ability relative to the 1M product by more than 50% in some parts. This corresponds489

well with the results from (Monteiro et al., 2015). The northern high-latitude Atlantic490

Ocean exhibits a particularly large increase in variability (≳ 1.5 mmolC m−2 day−1).491

However, the relative increase is smaller when compared with the SAZ (< 40%).492

5.2 Temporal decomposition of variability of FCO2493

As seen already in the global timeseries, the total variability of FCO2 is dominated494

by the seasonal mode (10b), i.e., by variability at timescales between 3 and 15 months.495

The standard deviation of the flux on this timescale goes up to more than 6 mmolC m−2
496

day−1, with highest values found in the North Pacific. In contrast, the tropical regions497

exhibit nearly no variability on seasonal timescales. Globally, the standard deviation on498

seasonal timescales amounts to σ = 2.61 mmolC m−2 day−1. The difference between499

σ(1M) and σ(8D) is small (0.03 mmolC m−2 day−1), indicating that, at the seasonal scale,500

monthly data captures most of the variability.501

The subseasonal mode (< 3 months) is the next largest contributor to FCO2 vari-502

ability (σ = 1.24 mmolC m−2 day−1, Figure 10a). The contribution to variability on these503

shorter timescales is dominated by the mid-latitudes and the equatorial Pacific, with some504

regions exceeding 2.5 mmolC m−2 day−1. To first order, the spatial distribution of the505

subseasonal variability is similar to that of the seasonal variability (Pearson R =∼ 0.69).506
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Figure 10. Maps of the standard deviation of the seasonal (a), sub-seasonal (b), and interan-

nual (c) components of 8-daily by 0.25° FCO2. Values on the plots show the area weighted mean

of the variance in (mmolC m−2 day−1)2. See Tables S3, S4, and S5 for low and high-resolution

variance, standard deviation, and percentages, respectively.

An important difference is the strong sub-seasonal contribution in the Oman upwelling507

system and in the Coral Sea and Tasman Sea regions east of Australia. As expected, the508

gain in information by going from 1M to 8D is the largest in this sub-seasonal mode. Glob-509

ally, the standard deviation increases from the 1M product nearly by a factor of 3 (see510

Tables S3 and S4).511

Finally, variability on time-scales longer than 15 months (interannual mode) con-512

tributes the least to the overall standard deviation (Figure 10c). The global mean tem-513

poral standard deviation amounts to 0.52 mmolC m−2 day−1, for both the 8D and 1M514

products. Here, the interannual variability of the equatorial Pacific driven by El-Niño—Southern515
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Oscillation (ENSO) is the most dominant feature, but also the higher latitudes contribute516

substantially, with several regions having standard deviations of more than 0.8 mmolC517

m−2 day−1.518

This attribution of the total variability of the air-sea CO2 fluxes to three different519

modes of variability is qualitatively similar to that undertaken by (Gu et al., 2023). Per-520

haps unsurprisingly, there is good agreement between our studies with regard to the par-521

titioning into subseasonal, seasonal, and interannual modes of variability. They found522

that the total energy of seasonal variance was an order of magnitude larger than for the523

subseasonal and interannual modes. This aligns with our findings, where we find an even524

stronger relative contribution of the subseasonal mode to the total variance, particularly525

at the 1M resolution.526

5.3 Drivers of the variability of FCO2527

The Reynolds decomposition of the air-sea CO2 fluxes (Eq. 6) permits us to iden-528

tify the main drivers for each mode of variability (Figure 11). The seasonal variability529

is dominated by changes in ∆fCO2, contributing 97% to the total seasonal changes. This530

is also the case for the longer modes of variability, with ∆fCO2 contributing ∼60% to531

either the sub-decadal and decadal of modes variability. Wind variability, expressed in532

the variations in the gas transfer coefficient, matters as well, especially for the sub-decadal533

modes, where it contributes more than 40%. The cross-term contributions tend to be534

relatively unimportant for the seasonal and longer modes, contributing less than 10%535

to the overall variability. The co-variances between the different Reynolds terms (see Eq.536

7) are negative, thus contributing negatively to the overall variability. This is likely a537

result of negative correlations between the mean state and the variability, e.g., high wind538

speed regions/times tend to be regions/times with low variations in the air-sea differ-539

ence in fCO2. This offsetting effect is particularly strong on the seasonal timescale, where540

it offsets the variability by more than 20%. Given the small difference between the 8D541

and 1M products on the seasonal and longer timescales, the results of the Reynolds de-542

composition are also nearly the same for these timescales.543

This is not the case for the sub-seasonal mode of variability (Figure 11). And more544

interestingly, the large increase in the subseasonal mode of variability between 1M and545

8D is due to all components of the Reynold’s decomposition (Table S3). Still, the largest546
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Figure 11. The contribution of ∆fCO′
2 (dark shading), wind and temperature (k′

x, medium

shading), and the cross-term (∆fCO′
2 · k′

x, light shading) to each temporal mode of variability

for 8-daily (blue) and monthly (yellow) FCO2. The covariances are shown in light gray. The

height of the bars (positive only) shows the total standard deviation (σ) and the black numbers

above each bar show the total variance (σ2). The total height of the bar (positive and negative)

represents the sum of the variances without the covariance term. The percentage contributions of

k′
x, ∆fCO′

2, cross-term, and covariances are with respect to the total variance. Thus, multiplying

σ2 with the percentage is approximately the variance for that component (within the uncertainty

of rounding). See Tables S3, S4, and S5 for low and high-resolution variance, standard deviation,

and percentages, respectively.
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gain comes from the enhanced resolution of the wind variability as expressed in the con-547

tribution of k′x, which increases nearly threefold from 0.40 mmolC m−2 day−1 to 1.12548

mmolC m−2 day−1 (1M to 8D). The cross-term variability at the subseasonal mode also549

increases significantly from 0.32 mmolC m−2 day−1 to 0.82 mmolC m−2 day−1. This in-550

dicates that there is an increase in the interaction between kx and fCO2 in the high-resolution551

fluxes. Mechanistically this makes sense, since wind-driven upwelling (captured by kx)552

can lead to rapid changes in ∆fCO2, thus resulting in larger FCO2. This is also expressed553

in the larger covariance term that increases by a similar magnitude (negatively) to the554

cross-term 11. The increase in σ(FCO2) due to high-resolution ∆fCO2 is 0.48 mmolC555

m−2 day−1 — smaller than the other subseasonal increases from 1M to 8D, but still larger556

than for any other mode (Table S3). Particularly striking too is the very strong nega-557

tive contribution of the co-variance term, which reduces the overall variability by around558

50%.559

The results of the Reynold decomposition for the seasonal and longer timescales560

are similar to those of Gu et al. (2023). The main consistency is that, on seasonal time-561

scales, variations in kx, i.e., wind dominate, while at longer timescales, the ∆fCO2 term562

dominates. More specifically, Gu et al. (2023) attributed 66% of subseasonal variabil-563

ity (< 3 months) to the wind component, while we attribute 71% at the 1M-scale (com-564

parable to their study).565

In summary, improved representation of sub-seasonal variability requires high-frequency566

information on both wind and ∆fCO2, and perhaps even more importantly, excellent567

information about their co-variances.568

6 Case study: Hurricane Maria569

The importance of co-analyzing wind variations with changes in surface ocean bio-570

geochemistry and hence surface ocean fCO2 is best shown through an example, for which571

we use Hurricane Maria as a case study. Hurricane Maria occurred in September 2017572

and belongs to the 10 most intense Atlantic hurricanes ever recorded. It made history573

as it made first landfall in Puerto Rico before it turned northward and plowed through574

the northwestern North Atlantic. Hurricane Maria was most intense from the 17th to 27th575

of September, maintaining hurricane status throughout this period (shown by the black576

contours in Figure 12a-c). Thereafter, the system moved eastward. Here, we investigate577
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Figure 12. The mean of the 8-daily (a) and monthly (by) FCO2 for September 2017. The

contour line shows the path of Hurricane Maria from 17th to 27th September, where hourly winds

exceeded 20 m s−1. (c) the difference between the 8-daily mean and monthly values. (d) a bar

plot of FCO2 for the four time steps in September 2017 for the location indicated by the circle in

the maps (a-c). (e) and (f) represent the same, but for ∆fCO2 and kw respectively. The FCO2

shown in (d) can be thought of as the product of the corresponding bars in (e) and (f) which are

scaled by the solubility (not shown). Slight differences between averages (horizontal lines in e,f)

are due to the marker not being at exactly the same location for high and low-resolution esti-

mates.

the local-scale impacts of the increase in variance by assessing the FCO2 during the pas-578

sage of Maria, which represents a short-lasting extreme event that is missed in monthly579

reconstructions.580

At first glance, the spatial distribution of the September 2017 mean of the 8D and581

1M FCO2 look similar (Figure 12a,b). However, the difference between the two mean582

states (Figure 12c) shows that outgassing was in fact less intense along the northern part583

of the hurricane path for the 8D FCO2 relative to 1M. To better understand the lower-584

than-expected outgassing, we plot the temporal evolution of the fluxes, ∆fCO2 and kw585

at a point location (29°N, 72°W) for each of the 8-daily time steps in September 2017586

(Figure 12d-f). The location exhibits one of the strongest differences between the 8D and587

1M FCO2 for the spatio-temporal domain.588
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Figure 13. Maps showing the difference in (a) sea surface temperature, (b) chlorophyll-a, (c)

∆fCO2 before and after Hurricane Maria in 2017. The two time periods are in September 13 –

20, and September 21 – 28. The black contour line shows the path of Hurricane Maria, defined

by wind speeds > 20 m s−1.

Importantly, we can also show that the response in Figure 12 is not just due to the589

intensification of the wind, but also due to changes in fCO2 (Figure 12e,f). OceanCar-590

bNN is able to capture a decrease in ∆fCO2 from the period centered on the 17th to the591

following period on the 25th of September, particularly between ∼ 25°N to ∼ 30°N (Fig-592

ure 13c). The decrease (> |15| µatm) co-occurs with a reduction in sea surface temper-593

ature and an increase in chlorophyll-a (Figure 13a,b), a relationship which has been pre-594

viously observed (Babin et al., 2004; Reul et al., 2021).595

Mechanistically, the decrease in fCO2 is consistent with past studies that have found596

tropical cyclones to cool the surface ocean (decreasing fCO2), but also inducing mix-597

ing that entrains carbon-rich waters, thus increasing fCO2 (Yu et al., 2020). This is fol-598

lowed by an increase in primary productivity (i.e., a reduction in fCO2 Babin et al., 2004;599

Lévy et al., 2012; Yu et al., 2020). For our point location, SST decreased by 2.6 °C be-600

tween the two periods (Figure 12a), which would lead to a reduction in fCO2 of ∼42601

µatm. However, OceanCarbNN predicts a reduction of 24 µatm, leaving an excess of 18602

µatm, which we attribute to the entrainment of DIC-rich waters. However, an increase603

in chlorophyll-a would result in a further decrease in fCO2, meaning that the contribu-604

tion of entrainment could be even larger; however, this contribution cannot be empir-605

ically determined.606
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While OceanCarbNN captures the impacts of Hurricane Maria on FCO2 and fCO2,607

the magnitude of the event is likely underestimated. For example, observation-based stud-608

ies found that high-velocity winds increased outgassing by > 30 mmolC m−2 day−1 for609

∼24 hrs (Yu et al., 2020; Ye et al., 2020), compared to the 2 mmolC m−2 day−1 increase610

observed from 9 to 17 September (Figure 12d). The 8D resolution averages out the short-611

lasting spikes (∼24 hrs). Furthermore, satellite and reanalysis products may underes-612

timate the spikes; for example, ERA5 underestimates extreme wind conditions by be-613

tween 5–10% (relative to satellites Campos et al., 2022). Future work could address this614

by investigating the influence of using 8-daily ∆fCO2 with hourly, daily, 8-daily and monthly615

kw using an extreme wind speed specific wind speed dataset (e.g., https://www.maxss616

.org).617

7 Discussion618

We provide here for the first time a global-scale gap filled fCO2 product at an 8619

daily and 0.25° × 0.25° resolution, from which we can compute the air-sea CO2 fluxes620

at the same unprecedented resolution. But what are we gaining from this increase in res-621

olution in terms of quality and what are we learning from this in terms of processes? Next,622

we discuss these two questions in turn.623

7.1 Does higher resolution reduce uncertainty in the mapping of fCO2?624

In their work investigating a range of gap filled fCO2 products at 1M resolution,625

Gregor et al. (2019) found that all products had very similar RMSD estimates ranging626

between 15–20 µatm. They proposed that this is a methodological wall beyond which627

it would be difficult to progress. Our question is thus, can higher resolution get us over628

the wall?629

In the open ocean, we find little to no reduction in the uncertainties, i.e., the RMSD630

of our 8D product in the open ocean (∼13 µatm) is similar to that of the previous ap-631

proaches at 1M resolution (Figure 3f). Further, relatively large biases still occur in some632

poorly-sampled regions (Figures 5 and 6). In the coastal ocean there is a some gain, with633

OceanCarbNN having a lower RMSD (25.4 µatm) relative to OceanSODA-ETHZ (27 µatm),634

a monthly by 1° pCO2-product (Gregor & Gruber, 2021). An improvement in the coastal635

ocean RMSD was also reported by Chau et al. (2024) in the CMEMS-FFNN approach636

–34–



manuscript submitted to Global Biogeochemical Cycles

(28.5 µatm to 27.6 µatm) by increasing the spatial resolution from 1° to 0.25° (though637

not the temporal resolution). The slight reduction in coastal RMSD in both approaches638

is likely due to the fact that sharper gradients and fine-scale features are better repre-639

sented in high-resolution estimates (e.g., Figure 8). In other words, there is better match-640

up between the gridded fCO2 observations and the gridded predictors, also called the641

representation uncertainty by (Gregor & Gruber, 2021).642

Thus, while there is an improvement in the random uncertainties of the gap-filled643

fCO2 product at 8D resolution, this is not a breakthrough. Some further reduction may644

be achieved by going to even higher resolution, especially in time, as this would permit645

to capture the more ephemeral or faster developing features, such as the tropical insta-646

bility waves and short-lived upwelling events. The big challenge here is the global-scale647

availability of predictor variables. The continuing development of global ocean reanal-648

yses that also increasingly incorporate ocean color (e.g., Green Mercator) or commer-649

cial satellite observations at daily and 10 m spatial resolutions (Shutler et al., 2024) may650

soon provide such very high frequency predictors.651

At the same time, we may be at the limit of the capability of the current gener-652

ation of gap-filling methods that use simple architecture. With the current architecture,653

where each sample is independent in space and time, gap-filling methods need to solve654

two problems: 1) the basin-scale problem, where high accuracy of the inferred fCO2 is655

absolutely essential for constraining the ocean carbon sink, and 2) a fine-scale problem,656

where drivers can cause rapid and short spatial scales variations in fCO2 that need to657

be tracked with high precision. The challenge for the statistical methods is not simple,658

since similar changes in the drivers can have opposite effects on fCO2. A typical exam-659

ple occurs during El Niño phases in the eastern equatorial Pacific. Warm phases in this660

region typically go together with low fCO2 as a result of the cessation of upwelling (Feely661

et al., 1999). At the same time, a local heatwave would still push up fCO2. One option662

to explore is the use of multiscale methods that use information about the neighboring663

observations fCO2 or features (in space and time), such as those used for weather fore-664

casting (e.g., GraphCast and FourCastNet; Lam et al., 2023; Pathak et al., 2022).665
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Figure 14. (a) The mean absolute difference (MAD) between FCO8D
2 and FCOupscaled

2 , where

the latter is calculated with k8D
x and ∆fCO1M

2 upscaled to 8D. Thus, (a) shows the impact of

using high resolution ∆fCO2, even if a high resolution gas transfer velocity is used. (b) shows

the MAD from (a) scaled to the standard deviation of the high resolution fluxes (Figure 9b). The

values in the color bar represent the percentage cover that the histogram bin occupies in (b).

7.2 What do we learn from high resolution FCO2?666

Our results show that there are distinct benefits of high resolution predictions of667

fCO2 and air-sea CO2 flux. First, the high-resolution predictions of fCO2 reduce the668

uncertainty of the estimates relative to past low-resolution estimates in the coastal ocean669

due to improved match-ups between the in-situ target data (i.e., SOCAT) and the re-670

mote predictors (Section 7.1). And, the higher resolution captures more variability of671

fCO2 and air-sea CO2 fluxes (Figure 11). However, we also show that the majority of672

the gained variability, particularly at the subseasonal scale, is due to an increase in the673

temporal resolution of wind represented by kx.674

Since winds drive the majority of the increase in variability, a key question is whether675

a similar result can be achieved by “upscaling” the fluxes. The upscaled fluxes (FCOupscaled
2 )676

are calculated using low-resolution fCO2 and high-resolution kx. The difference between677

FCO8D
2 and FCOupscaled

2 (Figure 14a) quantifies the amount of information missed when678

relying solely on FCOupscaled
2 . In large parts of the ocean, particularly the gyre regions,679

we find minimal differences between FCO8D
2 and FCOupscaled

2 (< 0.4 mmolC m−2 d−1,680

as shown in Figure 14a). However, in dynamic regions of the ocean, the differences can681

be substantial (> 1 mmolC m−2 d−1).682
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Scaling these results by the standard deviation of FCO8D
2 indicates the local im-683

portance of using the high resolution FCO2 (Figure 14b). The Antarctic Circumpolar684

Current (ACC) is the most striking feature, where significant additional variability is added685

due to the high resolution. Interestingly, this aligns with an observation-based study by686

in the Atlantic sector of the ACC that suggested a 3-daily sampling frequency of fCO2687

is required to constrain fluxes to a 10% uncertainty threshold (location indicated by the688

marker in Figure 14; Monteiro et al., 2015). This also holds true for the eastern bound-689

ary upwelling regions, and the continental shelf regions in the high latitude Pacific and690

Atlantic. Thus, it is in regions where there is the combination of high spatio-temporal691

variability and high wind speeds that drivers the large differences between FCO8D
2 and692

FCOupscaled
2 . However, it is also important to recognize that more sporadic events, such693

as Hurricane Maria, are also captured, but they may contribute little to the large-scale694

variability due to their short-lived nature (Lévy et al., 2012). While a step in the right695

direction, we also have to note that the magnitude of the variability is likely underes-696

timated at the 8-daily resolution, e.g., Hurricane Maria (Lévy et al., 2012; Yu et al., 2020;697

Ye et al., 2020).698

Despite the increases in local-scale variability, we do not see major differences be-699

tween the mean air-sea CO2 fluxes at 8-daily and monthly-resolutions at global and in-700

terannual scales (Figures 9a and 11). Thus, if the aim is to constrain fCO2 at a large701

scale, e.g., for the Global Carbon Budget (Friedlingstein et al., 2022), our analysis sug-702

gests that there is little reason to use 8-daily by 0.25° estimates. Importantly, increas-703

ing the resolution of fCO2 does not solve current unanswered problems and questions.704

For example, the growing divide in globally integrated fCO2 between the fCO2-products705

and Global Ocean Biogeochemical Models (GOBMs) over the last decade (2010−2022).706

Several studies have pinned this divergence on the overestimation of decadal variabil-707

ity by the fCO2-products (Gloege et al., 2021; Hauck et al., 2023), though the evidence708

is not conclusive, and it may be GOBMs that underestimate decadal variability (Mayot709

et al., 2023). However, the fact remains that fCO2-products suffer from observational710

paucity and sampling biases (Rödenbeck et al., 2015; Ritter et al., 2017; Gloege et al.,711

2021; Hauck et al., 2023), a problem that the high-resolution FOC2 estimates presented712

here cannot solve.713

–37–



manuscript submitted to Global Biogeochemical Cycles

8 Caveats714

There are a number of specific caveats and challenges that need to be considered715

in our novel 8D product. The first concerns the use of the NOAA marine boundary layer716

product for the atmospheric dry air mixing ratio (xCOmbl
2 ) for the computation of the717

air-sea CO2 difference. The second concerns the use of a stacked salinity product in or-718

der to produce a high resolution product spanning four decades.719

The use of the NOAA xCOmbl
2 product most likely will underestimate the oceanic720

CO2 uptake in regions downwind of the high anthropogenic CO2 emission regions. This721

is because the NOAA xCOmbl
2 product is constructed from marine stations primarily lo-722

cated in the Pacific Ocean, maximally away from any emissions. This contrasts with many723

regions in the North Atlantic, in the western Pacific, and close to the continents that are724

downstream of the major emitters and thus have substantially higher xCO2 than sug-725

gested by the marine boundary layer product (Leinweber et al., 2009). (Palter et al., 2023)726

recently pointed out that this effect can be quite substantial in the downwind regions,727

and suggested that this effect needs to be included in regional assessments. At the same728

time, they pointed out that this effect is negligible when the global ocean uptake is con-729

sidered. Still, as we are pushing the oceanic fCO2 to higher resolution, we should also730

pay more attention to the spatio-temporal variations in atmospheric CO2.731

The second caveat concerns the difficulties associated with the estimation of fCO2732

over a four decade period, given limitations in the availability of the predictors of choice733

(Figure 2). For chlorophyll and sea surface height, this means that climatologies are used734

for the periods where there is no coverage (prior to 1998 and 1993 respectively). Given735

that climatologies have smoother fields, the fCO2 estimates reflect this smoother input736

data. In the case of salinity, three different products are used over the four decade pe-737

riod (Figures 2, S3a).738

The difference in variability between the salinity products can be large for some739

regions (e.g., Figure S3e). For the majority of the open ocean, the difference between740

salinity products does not make a significant difference, since salinity is a weak driver741

of ∆fCO2 (< |5| µatm PSU−1; Figure S3a). However, in the equatorial Pacific, partic-742

ularly in the western part of the basin, the sensitivity of ∆fCO2 to salinity is large (>743

20 µatm PSU−1). This means that salinity anomalies typically drive a change of more744

than ∼ 10 µatm in the western equatorial Pacific for the SODA v3.4.2 salinity (Figure745
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S3b). For the ESA-CCI salinity, the salinity climate data record product, salinity drives746

an average change of ∼6 µatm.747

We stress that this only impacts the variability of ∆fCO2 since the mean state is748

captured by the 8-daily climatology of salinity. However, it does mean that variability749

of fCO2 in the western equatorial Pacific, may be overestimated in the period 1982-1992750

(SODA salinity) and underestimated from 1993-2009 (CMEMS-Multiobs). This applies751

particularly to the large-scale changes in salinity driven by El Niño. While this is a lesser752

problem for ∆fCO2 predictions, this will have a much stronger influence on machine learn-753

ing estimates of total alkalinity (e.g., Gregor & Gruber, 2021)754

9 Conclusions and next steps755

In this study, we present the first 8-daily by 0.25° × 0.25° estimates of air-sea CO2756

fluxes at a global scale over four decades. The high-resolution pCO2-product, Ocean-757

CarbNN, is able to capture significantly more variability in air-sea CO2 flux, with the758

majority of the increased variability is driven by higher resolution winds, rather than fCO2.759

However, we also show that high resolution fCO2 is important in regions with high vari-760

ability. This includes short-lived high intensity events such as upwelling events and hur-761

ricanes.762

Following the approach of (Gregor & Gruber, 2021), the fCO2 estimates from the763

OceanCarbNN approach can be combined with high resolution estimates of total alka-764

linity to estimate high resolution ocean acidification parameters that could be used to765

better understand ocean acidification extremes, for example (Gruber et al., 2021; Desmet766

et al., 2022; Burger et al., 2020). Understanding such extreme events from historical data767

is important so that the drivers of extremes can be better characterized (Gruber et al.,768

2021). This then also allows us to understand current extreme events, such as the North769

Atlantic marine heatwave in 2023, that could drive anomalous changes in ocean acid-770

ification. This requires near real-time capability of machine learning approaches, which771

is technically quite feasible. However, the current release cycle of SOCAT means that772

near-real time estimates would be predicting up to 1.5 years beyond the target data (D. C. Bakker773

et al., 2016). The impact of predicting beyond the target data needs to be investigated774

before results can be used.775
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Another area of improvement lies in the temporal resolution of our air-sea CO2 fluxes.776

The psuedo-daily estimates of air-sea CO2 fluxes could quite simply be estimated by up-777

scaling ∆fCO2 to daily resolution while using daily estimates of kw. This could be fur-778

ther improved by using daily predictors for those that are available (e.g., SST, and SSH)779

alongside upscaled predictors for those that are not. However, the gain from 8-daily to780

daily fCO2 at the current spatial resolution (0.25°) is unlikely to be as large as the im-781

provement from monthly to 8-daily (Monteiro et al., 2015).782

Finally, the field of machine learning is developing at an unprecedented rate. New783

approaches such as Fourier neural operators used in Nvidia’s FourcastNet could be in-784

corporated to better capture fine-scale variability of fCO2. However, it is unclear if even785

these approaches would be able to reduce the uncertainties beyond “the wall” that sits786

between 15 and 20 µatm.787

10 Open Research788

The OceanCarbNN dataset of ∆fCO2 and FCO2 produced and used throughout789

this study are available at https://data.up.ethz.ch/shared/ESA-OHOA/OceanSODA790

ETHZ HR-v2023.01-full carbsys/ (this will change to a repository with a DOI once791

publication is accepted). Code to create the OceanCarbNN data is hosted on https://792

gitlab.ethz.ch/oceansoda/oceancarbnn and code for the study analysis and figures793

are hosted at https://gitlab.ethz.ch/oceansoda/gbc-gregor-et-al-high-res-variability794

-fco2 (A DOI will be given to the code repositories once the publication is accepted).795

All data used to create the abovementioned dataset are at least open-access under aca-796

demic license and are listed here. SOCAT v2023 data was downloaded from https://797

socat.info/socat files/v2023/SOCATv2023.tsv.zip (D. C. Bakker et al., 2016; D. C. E. Bakker798

et al., 2023). Sea surface temperature is from https://doi.org/10.48670/moi-00169799

(Good et al., 2020). ERA5 data (wind and sea level pressure) are from https://doi.org/800

10.24381/cds.adbb2d47 (Hersbach et al., 2020, 2023). Salinity from 2010-2020 is from801

https://catalogue.ceda.ac.uk/uuid/fad2e982a59d44788eda09e3c67ed7d5 (Boutin802

et al., 2021). Salinity and mixed layer depth from SODA v3.4.2 were downloaded from803

https://dsrs.atmos.umd.edu/DATA/soda3.4.2/REGRIDED/ocean/ (Carton et al., 2018).804

Salinity after 2021 was downloaded from https://doi.org/10.48670/moi-00051 (Droghei805

et al., 2016). Chlorophyll-a data can be found at https://www.oceancolour.org/ (Sathyendranath806
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et al., 2023). We used the reprocessed sea surface height from https://doi.org/10.48670/807

moi-00148 (see acknowledgements).808
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