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Key Points:6

• This study introduces three innovative models designed to improve the prediction7

of ionospheric conditions, particularly during geomagnetic storms. These include8

the Diffusion model, the SARIMA model, and the Transformer model.9

• The performance of Diffusion model is rigorously compared against the established10

C1PG model to evaluate their effectiveness and accuracy in forecasting geomag-11

netic conditions, with only one-year of training data.12

• The findings suggest a significant step forward in the field of ionospheric forecast-13

ing, showcasing the potential of the generative model as a powerful tool for pre-14

dicting geomagnetic disturbances with only one-year of training data.15
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Abstract16

Total Electron Content (TEC) of the ionosphere under fluctuating geomagnetic condi-17

tions plays a pivotal role in space-based communication and navigation systems. Peri-18

ods of geomagnetic storms have a significant effect on the ionospheric TEC, thereby im-19

pacting the precision of Global Navigation Satellite Systems (GNSS) as well as other com-20

munication systems. This study evaluates the performance of three predictive models:21

Diffusion, Transformer, and Seasonal Autoregressive Integrated Moving Average (SARIMA)22

by forecasting TEC during different geomagnetic storm conditions. Diffusion model pre-23

dicts by simulating the random processes that govern ionospheric variability, and SARIMA24

model relies on statistical principles to emulate seasonality, trend, and autocorrelation25

structure within data. Our study uses TEC and geomagnetic data to differentiate be-26

tween storm and quiet periods, evaluating each model’s predictive accuracy in these dis-27

tinct scenarios. Performance was benchmarked against the Center for Orbit Determi-28

nation in Europe’s (C1PG) 1-day ahead ionospheric forecasts. This study specifically con-29

centrated on the performance of the prediction models within a singular grid cell located30

at the exact geographical coordinates of 114.3° E longitude and 30.5° N latitude. The31

study indicates that all three models exhibit exceptional forecasting abilities during both32

geomagnetic storm and quiet periods. Significantly, Diffusion Model surpasses the oth-33

ers, achieving an outstanding 85.64% of its predictions within the high-correlation in-34

terval ranging from 0.95 to 1.00 during quiet geomagnetic periods, while the C1PG model35

records 51.66%. Otherwise, during strong geomagnetic storm periods, Diffusion model36

operates at a 75.41% accuracy rate, while the C1PG achieves a 71.77% accuracy rate.37

Keywords: TEC Prediction, Geomagnetic Storm, Quiet Conditions, Transformer38

Model, Diffusion Model, SARIMA.39

Plain Language Summary40

Predicting ionospheric conditions during complex geomagnetic storms presents a41

significant challenge due to the environment’s inherent unpredictability. To enhance pre-42

diction accuracy with minimal training data, this study investigates three innovative mod-43

els: the Diffusion model, SARIMA model, and Transformer model, and assesses their ef-44

ficacy in comparison to the established C1PG model. Our comprehensive analysis, cen-45

tered on prediction accuracy, reveals that the Diffusion model notably outshines the oth-46

ers, offering unparalleled performance in accurately forecasting conditions during both47

quiet and strong geomagnetic storm periods. Distinctively, the Diffusion model surpasses48

the other three models, achieving remarkable accuracy in the high-correlation range of49

0.95 to 1.00. This achievement underscores its exceptional ability to provide reliable pre-50

dictions in the face of geomagnetic variability.51

1 Introduction52

Many studies have focused on analyzing trends in the Total Electron Content (TEC)53

of the Earth’s ionosphere, a subject of growing interest due to its implications for space-54

based technologies (Lean et al., 2011; Lastovicka et al., 2017). With the development of55

the rapid technological advancement, the precision and dependability of Global Navi-56

gation Satellite Systems (GNSS) have grown increasingly critical (Ratnam et al., 2018;57

Z. Li et al., 2019). The TEC of the ionosphere, a key parameter influencing radio wave58

propagation, significantly affects the performance of GNSS and other space-based com-59

munication systems (Béniguel, 2002). Condequently, Understanding and predicting TEC60

values is therefore crucial for mitigating the ionospheric impact on these technologies.61

However, the ionosphere’s behavior is complex and influenced by various factors, includ-62

ing geomagnetic activity, which can vary from quiet to intense storm conditions (Reinisch63

& Galkin, 2011). This variability presents a challenge for accurate TEC prediction. The64

ionosphere’s dynamics are complex and subject to a wide range of influences, including65
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geomagnetic activities that range from calm to severe storm conditions. This variabil-66

ity poses a significant challenge in reliably forecasting TEC values, particularly during67

periods of strong geomagnetic storms.68

Improvements in time series forecasting and data analysis techniques have markedly69

increased the accuracy of TEC predictions, capturing both seasonal patterns and trends70

more effectively (Lim & Zohren, 2021). Recent studies, such as (Xia, Liu, et al., 2022)71

have employed Transformer models, which utilize self-attention mechanisms to effectively72

address the challenge of modeling long-term dependencies in global TEC variations. The73

Transformer model, with its advanced attention mechanisms, has shown great promise74

in capturing complex temporal dependencies. More recent transformer models adopt self-75

attention to mitigate the challenges of modeling long-term dependencies.76

Otherwise, LSTM can also serve as an end-to-end model for TEC forecasting. (Xia,77

Zhang, et al., 2022) introduces an innovative ED-ConvLSTM network designed to ac-78

curately forecast TEC up to 7 days in advance, using data from the International GNSS79

Service (IGS) from 2005 to 2018. The model demonstrates superior performance over80

traditional methods like IRI2016 and the 1-day BUAA model (Wang et al., 2018), es-81

pecially in predicting medium-term TEC variations, although it struggles with localized82

TEC enhancements and responses to geomagnetic storms. Furthermore, Deep learning83

approaches are increasingly prevalent in predicting Total Electron Content, (Fubin et84

al., 2021) introduces a global ionospheric TEC prediction model leveraging deep learn-85

ing techniques, specifically employing an encoder-decoder architecture with a convolution-86

optimized Long Short-Term Memory network (ConvLSTM) for spatial and temporal fore-87

casting of global TEC at a spatial resolution of 5° by 2.5° and hourly temporal accuracy.88

The model achieved a global root mean-square error of less than 1.5 TECU (1 TECU89

equals 1×1016 electrons per square meter) for one-day forecasts under quiet geomag-90

netic conditions, with a prediction error around 2.5 TECU during mild geomagnetic storms.91

Predicting TEC during geomagnetic disturbances remains a critical research challenge92

(Han et al., 2021). (Nath et al., 2023) introduces a hybrid method combining Ensem-93

ble Empirical Mode Decomposition (EEMD) and Long Short-Term Memory (LSTM) deep94

learning for predicting GPS-derived Total Electron Content (TEC) values over various95

GNSS stations in India, showcasing superior performance over standalone LSTM and96

EMD-LSTM models in capturing the dynamic ionospheric behavior influenced by mul-97

tifaceted factors like seasonal, diurnal, and spatial variations, as well as solar geomag-98

netic conditions.99

With the advancement of generative models in time series prediction, a novel the-100

oretical approach to the TEC forecasting challenge has emerged. Diffusion networks ex-101

cel in generative tasks through iterative refinement (Y. Li et al., 2022), while transform-102

ers leverage parallel processing and attention mechanisms to efficiently handle sequen-103

tial data and capture contextual relationships (Vaswani et al., 2017). Similarly, the Dif-104

fusion model offers a novel approach by simulating the stochastic processes underlying105

ionospheric variations. On the other hand, the Seasonal Autoregressive Integrated Mov-106

ing Average (SARIMA) model provides a robust statistical baseline for time series fore-107

casting, including the capability to model seasonal patterns effectively (Nobre et al., 2001).108

(Şentürk, 2020) highlights the superior predictive capabilities of deep learning techniques,109

specifically Long Short-Term Memory networks, over the ARIMA model in forecasting110

Total Electron Content at various latitudes using data from Global Ionosphere Maps.111

This discrepancy is attributed to the ARIMA model’s limitation in simultaneously cap-112

turing seasonal and trend components effectively. (Yuan et al., 2023) develops an inno-113

vative model for accurate 1-day global Total Electron Content (TEC) forecasting by us-114

ing generative data augmentation and an auto-correlation-based transformer model, sig-115

nificantly enhancing forecast accuracy over existing methods.116

This paper aims to explore the capabilities and limitations of these three predic-117

tive models: Transformer, Diffusion, and SARIMA, in forecasting TEC values under dif-118
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ferent geomagnetic conditions. By employing a comparative analysis during periods of119

strong geomagnetic storms and quiet geomagnetic conditions, we seek to identify the most120

effective strategies for TEC prediction. Our study utilizes Global Ionosphere Maps (GIMs)121

provided by the International GNSS Service (IGS) and MIT’s TEC data, transformed122

into a structured grid format for detailed analysis. In doing so, we contribute to the on-123

going efforts to enhance the accuracy of TEC predictions, ultimately aiding in the op-124

timization of GNSS and other affected technologies. The Earth’s ionosphere has a sig-125

nificant impact on the propagation of radio waves, and during geomagnetic storms (Perreault126

& Akasofu, 1978; Lakhina & Tsurutani, 2016). Therefore, accurately predicting iono-127

spheric conditions during geomagnetic storms is crucial for ensuring the reliability of these128

systems. By evaluating model performance in varying geomagnetic scenarios, this research129

not only highlights the potential of advanced predictive models in space weather fore-130

casting but also provides valuable insights for further development of hybrid or new mod-131

eling approaches to tackle the ionosphere’s unpredictability.132

In this paper, we optimized the efficiency and reduced the training time of our pre-133

diction model by utilizing a smaller dataset. Instead of relying on extensive multi-year134

datasets for training, we demonstrated that using only 1-year and 2-year International135

GNSS Service (IGS) Total Electron Content (TEC) datasets can still yield robust pre-136

dictions. Furthermore, acknowledging the significant impact of geomagnetic storms on137

ionospheric TEC, we conducted a comparative analysis of our model’s performance dur-138

ing periods of strong storms versus quiet geomagnetic conditions. We make several key139

contributions to the field of Total Electron Content prediction:140

1. First, we employ a generative probability model for predicting Total Electron Con-141

tent (TEC) data, marking a significant departure from the predominantly CNN-142

based approaches in recent TEC prediction research. This innovative method en-143

riches the landscape of TEC forecasting with a fresh perspective.144

2. Secondly, we also utilize the SARIMA model which is specifically applied for its145

capabilities in understanding both seasonal patterns and trends.146

3. Thirdly, we compared the prediction accuracy of four different models: Diffusion,147

SARIMA, Transformer, and C1PG models. The comprehensive comparisons be-148

tween our models and the existing C1PG model demonstrate superior prediction149

performance, establishing our approach as a leading method in the field.150

4. Lastly, implementing data normalization by using the MinMaxScaler before train-151

ing the diffusion model significantly smooths the path to model convergence.152

2 Methods153

In this paper, we aims to explore the capabilities and limitations of these three pre-154

dictive models: Diffusion, Transformer and SARIMA, in forecasting TEC values under155

different geomagnetic conditions. By employing a comparative analysis during periods156

of strong geomagnetic storms and quiet geomagnetic conditions, we seek to identify the157

most effective strategies for TEC prediction. Our study utilizes Global Ionosphere Maps158

(GIMs) provided by the International GNSS Service (IGS) and MIT’s TEC data, trans-159

formed into a structured grid format for detailed analysis.160

2.1 Generative Time Series Forecasting: Diffusion161

In generative time series forecasting, X = {x1, x2, · · · , xn} is the input TEC time
series and Y = {yn+1, yn+2, · · · , yn+24) is the output target time series, where Y can
be generated from latent variables Z ∈ ΩZ that can be drawn from the Gaussian dis-
tribution Z ∼ p(Z | X). The latent distribution can be further formulated as pϕ(Z |
X) = gϕ(X) where gϕ denotes a nonlinear function. Then, the data density of the tar-
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get series is given by:

pθ(Y ) =

∫
ΩZ

pϕ(Z | X) (Y − fθ(Z)) dZ,

where fθ denotes a parameterized function. The target time series can be obtained di-162

rectly by sampling from pθ(Y ). In Diffusion generative model, time series forecasting is163

to learn the representation Z that captures useful signals of X, and map the low dimen-164

sional X to the latent space with high expressiveness. By taking each input training data165

and to corrupt it using a multi-step noise process to transform it into a sample from a166

Gaussian distribution(Y. Li et al., 2022).167

The diffusion process is gradually adding Gaussian noise to the input data with the168

Markov chain. In Markov chains, the probabilities of transitioning from one state to an-169

other are fixed and can be represented by a matrix known as the transition matrix(Dhariwal170

& Nichol, 2021). The process of adding noise is defined through a sequence of conditional171

distributions, following a Markov chain. The noise addition at each step t is described172

by:173

q(X(t) | X(t−1)) = N
(
X(t);

√
1− βtX

(t−1), βtI
)

(1)

Equation 1 represents a step in the forward diffusion process, specifically the distribu-174

tion of the data at time t given the data at last time t-1. This notation specifies the con-175

ditional distribution of the data at time t given the data at the preceding timestep t-1.176

It’s a probabilistic model of how the data evolves from one step to the next in the dif-177

fusion process. where βt is the variance of the Gaussian noise added at step t, and I is178

the identity matrix. The sequence of β = {β1, · · · , βT | βt ∈ [0, 1)} values is chosen to179

gradually increase the amount of noise over time.180

The process starts with the original data X = X(0) ∼ q
(
X(0)

)
, where q

(
X(0)

)
181

represents the distribution of the original data. Given the original data X(0), the dis-182

tribution of the noised data at any step t can be directly obtained as:183

q(X(t) | X(0)) = N
(
X(t);

√
ᾱtX

(0), (1− ᾱt) I
)

(2)

where ᾱt =
∏t

s=1 (1− βs) represents the cumulative product of noise reduction factors184

up to step t.185

Through a predetermined Markov chain, Gaussian noise is progressively added to186

the data in steps. This is governed by an increasing variance schedule β = {β1, · · · , βT | βt ∈ [0, 1)}187

, which controls the level of noise added at each step. αt and ᾱt are defined to manage188

the cumulative effect of the noise.189

X(t) =
√
ᾱtX

(0) + (1− ᾱt) δX (3)

At each step t, the original data X(0) is transformed into X(t) by adding noise, rep-190

resented as denotes standard Gaussian noise. This step illustrates how original data is191

combined with noise to generate new, diffused data. Here, δX represents standard Gaus-192

sian noise, and this equation shows how the data X(t) is a mixture of the scaled orig-193

inal data and added noise.194

Similarly, for the output series Y , the diffusion process applies, with possibly a dif-195

ferent scale parameter ω to adjust the noise levels:196

Y (t) =
√
α′Y (0) +

√
1− α′

tδY (4)

where α′
t is adjusted by ω for the output series.197

The figure 1 showcases the generative diffusion model’s workflow, with the left side198

representing the training phase, where the model learns from data, and the right side199
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Figure 1. Training and Prediction Pipelines of the Diffusion Model

illustrating the prediction phase, where the model applies what it’s learned to make fore-200

casts.201

The Loss function is componented by 4 parts. The DKL encourages the distribu-202

tion generated by the model to be as close as possible to the true target distribution. L(ζ, t)203

aims to ”clean” the generated target series by aligning them more closely with the un-204

corrupted original data. The Total Correlation loss LTC from the latent variables of VAE205

model. the Mean Square Error (MSE) loss Lmse between Ȳt and Yt. Thus, The Loss func-206

tion for training this generative diffusion prediction model is following:207

L = ψ · DKL

(
q
(
Y (t)

)
∥pθ

(
Ŷ (t)

))
+ λ · L(ζ, t) + γ · LTC + Lmse

(
Ŷ (t), Y (t)

)
(5)

ψ, λ, · are weight parameters that adjust the importance of this term. DKL means the208

Kullback-Leibler divergence (DKL)(Pérez-Cruz, 2008), which measures the difference be-209

tween the actual target series distribution q
(
Y (t)

)
and the predicted target series dis-210

tribution by the model pθ

(
Ŷ (t)

)
at time t. LTC stands for the Total Correlation loss211

of the latent variables, used for disentangling the latent variables. Minimizing the to-212

tal correlation among latent variables encourages the model to learn more independent213

feature representations, which helps improve the quality and interpretability of the gen-214

eration. Lmse calculates the mean square error (MSE) between the model’s predicted215

series Ȳt and the actual target series Yt.216

2.2 SARIMA217

Seasonal AutoRegressive Integrated Moving Average (SARIMA) is widely used for218

forecasting and understanding seasonal time series data, where observations show reg-219

ular patterns at fixed intervals, such as daily, monthly, or quarterly seasonality (Valipour,220

2015). The SARIMA model combines three core components: AutoRegressive (AR), Dif-221

ferencing, and Moving Average (MA), addressing both seasonal and non-seasonal dynam-222

ics within the dataset. These components work together to adjust the model based on223

past values (AR), the difference between observations (D), and past forecast errors (MA),224

thereby accounting for complexity in both seasonal and non-seasonal fluctuations. The225
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SARIMA model is mathematically represented as follows, where: yt is the time series226

data at time t, B is the lag operator, ϕi and Φi are the coefficients of the non-seasonal227

and seasonal AR terms, θi and Θi are the coefficients of the non-seasonal and seasonal228

MA terms, εt is the error terms at time t, assumed to be white noise.229 (
1−

p∑
i=1

ϕiB
i

)(
1−

P∑
i=1

ΦiB
is

)
(1−B)d (1−Bs)

D
yt =

(
1 +

q∑
i=1

θiB
i

)(
1 +

Q∑
i=1

ΘiB
is

)
εt

(6)

AR Component: The autoregressive non-seasonal component represented by
∑p

i=1 ϕiB
i,230

and seasonal component respresentes by
∑P

i=1 ΦiB
is. AR component captures the re-231

lationship between the current observation and a certain number of lagged observations232

(previous values in the time series). The B term represents the backshift operator is com-233

monly used in time series analysis
(
Biyt = yt−i

)
. It represents the lag operator, which234

shifts the time series backward by a certain number of time period. The parameters p, P235

denote the unseasonal and seasonal autoregressive orders, s is the seasonal period.236

Differencing Component: SARIMA model need the Time series data is stable. Dif-237

ferencing is a method which is used for make a time series more stationary. The param-238

eters d,D indicate the number of non-seasonal and seasonal differences.239

MA Component:
∑q

i=1 θiB
i,
∑Q

i=1 ΘiB
is denote the seasonal moving average part240

and non-seasonal part, which models the relationship between an observation and its sea-241

sonal lagged forecast errors. The parameters q,Q denote the order of the moving aver-242

age part, which captures the relationship between an observation and a specified num-243

ber of lagged forecast errors.244

In summary, SARIMA model parameters include orders for the autoregressive (AR),245

differencing (I), and moving average (MA) components, both on a non-seasonal and sea-246

sonal basis, along with the length of the seasonal cycle. These parameters collectively247

characterize the structure and dynamics of the time series, facilitating its modeling and248

forecasting.249

2.3 Transformer250

Transformer is composed of encoder and decoder and Positional Encoding. The en-251

coder is composed of alternating layers that feature multi-headed self-attention (MSA)252

mechanisms and multilayer perceptron (MLP) blocks. Prior to each block, layer normal-253

ization (LN) is applied, enhancing the model’s efficiency and stability during training.254

Furthermore, residual connections are introduced following each block to facilitate the255

flow of gradients through the network, significantly aiding in the prevention of the van-256

ishing gradient problem often encountered in deep networks. The decoder is composed257

of dimension expansion, three CNN blocks and an up sampling layer. In the CNN bocks,258

batch normalization (BN) is used before every CNN.259

Multi-Headed Self-Attention (MSA) allows the model to jointly attend to informa-260

tion from different representation subspaces at different positions (Vaswani et al., 2017).261

A single attention head inhibits this capability. The basic structure is the same as self-262

attention. However, MSA is divided into multiple heads, and the self-attention calcu-263

lation is performed in parallel. The output vectors from the different heads are then con-264

catenated together, enabling the model to jointly attend to information from different265

representation subspaces at different positions. This allows different heads to learn dif-266

ferent levels of knowledge. This part is used to inject some information about the rel-267

ative or absolute position tokens from the TEC sequence. To this end, add positional268

encodings at the bottoms of the encoder and decoder stacks. The positional encodings269

have the same dimension dmodel as the embeddings so that the two can be summed. here,270

the pos is the position and i is the dimension. That is, each dimension of the positional271
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encoding corresponds to a sinusoid.272

MSA (Q,K, V ) = Concat ( head 1, . . . , head h)W
O (7)

where head = Attention
(
QWQ

i ,KW
K
i , V WV

i

)
, and the projections are param-273

eter matrices WQ
i ∈ Rdmodel ×dk ,WK

i ∈ Rdmodel ×dk ,WV
i ∈ Rdmodel ×dv ,WO ∈ Rhdv×dmodel ,

274

dmodel = 512, dv, dk = 64, and h = 8.275

Layer Normalization (LN) works by normalizing the inputs across the features for276

a single training example(Xiong et al., 2020; Ba et al., 2016). It addresses the limitations277

of applying batch normalization (BN) to recurrent neural networks (RNNs), which stems278

from BN’s dependence on batch-wise statistics that are not straightforward to compute279

in RNNs due to their sequential nature (Bjorck et al., 2018; Luo et al., 2018). LN cir-280

cumvents this issue by normalizing the inputs across each neuron within a layer based281

on the mean and variance computed from a single training instance, as opposed to an282

entire batch. This normalization strategy ensures that LN can be seamlessly integrated283

into RNNs by calculating normalized statistics at each timestep, thereby harmonizing284

the internal state distributions throughout the network’s depth. Specifically, LN achieves285

this by aggregating the statistics across all hidden neurons within the same layer, en-286

hancing the training stability and speed of neural architectures, especially those prone287

to internal covariate shifts.288

Then, position embeddings are added to the image embeddings to retain positional289

information, which is given as follows, where pos is the position and i is the dimension.290

PE(pos,2i) = sin
(
pos/10, 0002i/dmodel

)
(8)

291

PE(pos,2i+1) = cos
(
pos/10, 0002i/dmodel

)
(9)

3 Forecasting Performance Evaluation and Results Analysis292

3.1 Data Source and Processing293

In this research, the Global Ionosphere Maps (GIMs) provided by the International294

GNSS Service (IGS) were utilized. Each model leveraged a comprehensive dataset span-295

ning one year as the training data. Specifically, the training data was derived from MIT’s296

TEC datasets, which were subsequently transformed into a grid format consisting of meshes297

sized 71 by 73. For the purpose of our TEC prediction analysis, we focused on a single298

grid cell corresponding precisely to the geographical coordinates of 114.3°E longitude and299

30.5°N latitude. This selected grid cell, representative of the target region, measures 5300

degrees in longitude and 2.5 degrees in latitude, mirroring the dimensions of one stan-301

dard grid cell in our dataset.302

Min-Max Normalization, also known as feature scaling, is a technique used to nor-303

malize the range of features in data(Singh & Singh, 2020; Sola & Sevilla, 1997). This method304

scales the range of the feature to be between a specified minimum and maximum value,305

often 0 and 1 . Here’s how it is implemented in data processing. The formula for Min-306

Max Normalization is as follows:307

Xnorm =
X −Xmin

Xmax −Xmin
(10)

Where, Xnorm is the normalized value. X is the original value. Xmin and Xmax are the308

minimum and maximum values of the feature across the dataset, respectively. First, iden-309

tify the minimum and maximum values for each column in the dataset. This step involves310

determining the smallest and largest values that each feature assumes across all data points.311

Next, apply the Min-Max normalization formula to each data point, scaling the feature312
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Table 1. Classification of Geomagnetic Storms Based on Dst Index

Storm Level Dst Index Range

Moderate Storm Dst < −50 nT
Intense Storm −100 nT ≤ Dst < −50 nT
Extreme Storm −200 nT ≤ Dst < −100 nT

values to fall within a specified range, typically between 0 and 1. Finally, repeat these313

steps for all columns in the dataset to ensure that each feature is scaled similarly, pro-314

moting uniformity in data scale across the dataset. This systematic approach facilitates315

model training and contributes to more reliable performance.316

The Dst (Disturbance Storm Time) index is an index of magnetic activity derived.317

Geomagnetic storms are identified by a significant decrease in the Dst index. The clas-318

sification of storms into moderate, intense, or extreme categories is based on how low319

the Dst index drops, as outlined in the Table 3.1. Specifically, a geomagnetic storm is320

generally considered to occur when the Dst index falls below -50 nT.321

We will analyze the prediction accuracy during periods of strong geomagnetic ac-322

tivity and quiet geomagnetic conditions. For instances of strong geomagnetic storms, our323

prediction analysis will focus on the period from 2015 to 2017 and evaluated the predic-324

tion data which is in strong geomagnetic storm periods during 2015-2017. We train our325

models (Diffusion, ARIMA and Transformer) on data from the year before the one we’re326

predicting. So, we use 2014 data to predict 2015, 2015 data for 2016, and 2016 data for327

2017. For each year we’re predicting, we only use data from the immediate previous year328

to train our models. We split this yearly data into two parts: 20% for validation and 80%329

for training. This approach allows us to assess the models’ performance in forecasting330

TEC values under varying geomagnetic influences, with a particular emphasis on their331

accuracy during significant geomagnetic disturbances.332

For the quiet geomagnetic condition, there were only four days in 2019 when the333

Dst index exceeded -50 nT, meaning that for most of the year, 2019 had relatively low334

levels of geomagnetic activity and was therefore chosen as a study object for quiet ge-335

omagnetic conditions.336

Figure 2 contains two subfigures depicting the change curve of the loss function for337

the diffusion model and Transformer model as the number of epochs increases during the338

training process. We observed a clear trend of decreasing training loss as the number of339

training epochs increased. The two models converged to a stable loss value, demonstrat-340

ing the success of our training and validation process. In the legends, ’diffusion 1 train’,341

’diffusion 2 train’, ’diffusion 3 train’ refer to the training loss of diffusion models which342

is trained with 2014,2015,2016 data, respectively, while ’diffusion 1 vali’, ’diffusion 2 vali’,343

’diffusion 3 vali’ denote their corresponding validation loss. For quiet geomagnetic con-344

dition, the legends ’diffusion 4 train’ and ’diffusion 4 vali’ are used for recording the train-345

ing loss and validation loss of the model trained by 2017-2018. By implementing the Min-346

Max Normalization technique for data processing, the Diffusion model reaches conver-347

gence within 10 epochs, markedly fewer than the Transformer model, which necessitates348

a larger number of epochs when normalization is not applied.349

We analysis the prediction ability by analyzing the root-mean-square error (RMSE)350

and Daily Pearson correlation coefficient of the predicted values by each model each month351

under these relatively geomagnetic conditions The formula for the Daily Pearson cor-352

relation coefficient cc, which measures the linear relationship between two continuous ob-353
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Diffusion Training LossTransformer Training Loss

Epoch Epoch

Figure 2. Training and Validation Losses of Diffusion Models and Transformer Models

served TEC variables X and forecasting Y , is given by:354

ccxy =
cov(X,Y )

σX · σY
(11)

Here, ccxy denotes the Pearson correlation coefficient between X and Y , cov(X,Y ) rep-355

resents the covariance of X and Y , σX is the standard deviation of variable X, σY is the356

standard deviation of variable Y . The covariance is computed as:357

cov(X,Y ) = E [(X − µX) (Y − µY )] (12)

where, E is the expected value operator, µX is the mean of X, µY is the mean of Y .358

Root-mean-square error is also used to estimate the forecasting performance of the359

model. The lower the RMSE value, the better the model’s accuracy in prediction and360

the formula for calculating RMSE is as follows:361

RMSE =

√√√√ 1

N

N∑
i=1

(TECori − TECpred )
2

(13)

where N is the total number of data samples, TECori and TECpred are the observed362

value and forecasting value, respectively.363

3.2 Prediction Analysis364

This Figure 3 and Figure 4 assemble a set of five subplots for time series predic-365

tion analysis, comparing and evaluating the prediction performance of four different mod-366

els (Diffusion, SARIMA, Transformer and C1PG) against the actual observed values dur-367

ing quiet geomagnetic conditions and strong geomagnetic conditions. For each figure,368

the first subplot displays the predictions made by the Diffusion model (depicted as a red369

line) versus the actual observed values (in blue), both measured in TECU units. The RMSE370

between these predictions and observations is calculated and displayed above the plot371

within an orange bounding box. The subsequent second, third, and fourth subplots are372

dedicated to showcasing the predictions from the SARIMA model, the Transformer model,373

and the C1PG model, respectively. Each model’s predictions are again represented by374

a red line and placed alongside the actual observed values, with the corresponding RMSE375

calculation for each model provided for comparative analysis. The final, fifth subplot di-376

verges to exclusively represent the variations of the Dst index throughout the designated377

prediction period, offering insight into the geomagnetic conditions prevailing at the time.378

Figure 3 presents a comparative visualization of each model’s ability of forecast ac-379

curately in quiet geomagnetic storm periods from March 20 to March 27, 2019, and from380
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Figure 3. Comparative Forecasting Performance of Models During Quiet Geomagnetic Peri-

ods in 2019
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October 21 to October 28, 2019. The Diffusion model leads in performance, demonstrat-381

ing the highest precision with the lowest RMSE of 0.9726 TECU, closely followed by the382

Transformer model at an RMSE of 1.08 TECU.383

Figure 4 illustrates the comparative forecasting performance of four models dur-384

ing periods of intense geomagnetic storms, specifically from September 1st to 7th, 2016,385

and from August 28th to September 5th, 2017. Among the models, the Diffusion model386

stands out for its superior accuracy, achieving the lowest RMSE of 0.9343 TECU. In con-387

trast, the C1PG model exhibits the least accurate forecasts with an RMSE of 2.047 TECU.388

Figure 4. Strong geomagnetic storms

389

Figure 5 present the calculated monthly RMSE values of different models through-390

out the year 2019. This visualization allows for a direct comparison of each model’s per-391

formance in terms of prediction accuracy on a month-by-month basis. This line chart392

visualizes the RMSE values for four different models: Diffusion, C1PG, Transformer, and393

SARIMA, over 2019 year. Each line represents the fluctuation in RMSE values for a spe-394

cific model from January to December. The y-axis indicates the RMSE value, which mea-395
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Figure 5. Comparison of Monthly RMSE Values from different four Models in 2019 during

quiet geomagnetic periods.

sures the models’ prediction errors, with lower values indicating more accurate predic-396

tions. The x-axis represents the months of the year. The Diffusion model consistently397

demonstrates the lowest RMSE values across most months, indicating it generally offers398

the most accurate predictions among the four models. This suggests that the Diffusion399

model is particularly effective in handling the complexity and variability of the data. All400

models exhibit some level of seasonal variability in their prediction accuracy. For instance,401

the RMSE values tend to be lower during the summer months (June, July, August) for402

the Diffusion and C1PG models, suggesting these models perform better in predicting403

during this period. Conversely, the SARIMA model’s accuracy dips significantly in the404

latter half of the year, especially from August to November.The C1PG model shows the405

highest variability in RMSE values, with a significant spike in October. This suggests406

that the model might struggle with certain types of data or events occurring in that month.407

The Transformer and SARIMA models exhibit moderate RMSE values, with the Trans-408

former model showing a slight increase in prediction error towards the end of the year.409

Overall, the line chart effectively communicates the comparative performance of the four410

models over time, highlighting their strengths and weaknesses in forecasting accuracy411

across different times of the year. It provides valuable insights into the models’ behav-412

ior under varying conditions, which can inform decisions on model selection or improve-413

ment strategies.414

Table 2 presents the distribution of the Cross-Correlation Coefficient (CC) range415

for four models (Diffusion, Transformer, C1PG and SARIMA) during both Quiet (Dst¿-416

50nT) and Strong (Dst¡-50nT) geomagnetic storm periods. The CC ranges are divided417

into four categories: CC below 0.6, CC between 0.6 and 0.9, CC between 0.9 and 0.95,418

and CC between 0.95 and 1. The table quantifies the percentage of instances falling into419

each of these ranges for the respective models.420

Table 2. CC Range Distribution for Different Models in Quiet and Strong Periods

Geomagnetic Strom Periods CC Range Diffusion Transformer SARIMA C1PG

Quiet periods

CC < 0.6 0.00% 0.00% 0.00% 0.28%
0.6 ≤ CC < 0.9 1.10% 2.49% 3.59% 14.36%
0.9 ≤ CC < 0.95 13.26% 21.55% 20.99% 33.70%
0.95 ≤ CC ≤ 1 85.64% 75.97% 75.41% 51.66%

Strong periods

CC < 0.6 0.00% 0.81% 1.62% 1.61%
0.6 ≤ CC < 0.9 6.05% 11.70% 11.34% 10.08%
0.9 ≤ CC < 0.95 18.55% 13.31% 19.83% 16.53%
0.95 ≤ CC ≤ 1 75.41% 74.20% 67.21% 71.77%
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From the table, it’s observed that none of the models have instances with a CC lower421

0.6 during magnetically quiet periods, indicating a generally strong performance across422

all models in terms of correlation with the observed data. For quiet periods, the table423

shows that a significant majority of the predictions made by the Diffusion model fall into424

the highest accuracy range (0.95 < CC < 1), with 85.64% of its predictions exhibit-425

ing nearly perfect correlation with the observed data. The Transformer, SARIMA, and426

C1PG models also show a strong preference for the higher accuracy ranges, but with a427

lesser proportion of their predictions achieving the highest CC range compared to the428

Diffusion model. During strong geomagnetic periods, the proportion of predictions falling429

into the highest CC range slightly decreases for all models, indicating a generally lower430

prediction accuracy under these more challenging conditions. However, a substantial ma-431

jority of predictions from each model still achieve a CC of 0.95 or higher, demonstrat-432

ing their robustness. The Diffusion model continues to lead in prediction accuracy, with433

75.41% of its predictions in the highest CC range, although the differences in performance434

among the models are somewhat reduced compared to the quiet period scenario. The435

majority of instances for all four models fall within the highest CC range of 0.95 to 1,436

with the Diffusion model showing the highest percentage at 85.64% during magnetically437

quiet periods and 75.41% during magnetically strong periods, followed by the Transformer438

model at 75.97% and 74.20%, and the SARIMA model at 75.41% and 67.21%. This demon-439

strates that while all models perform well, the Diffusion model tends to have a slightly440

higher proportion of instances with very strong to almost perfect correlation with the441

observed data during magnetically strong periods. For the range of 0.6 to 0.9, the Dif-442

fusion model shows the lowest percentage of instances at 1.10%, followed by the Trans-443

former model at 2.49%, and the SARIMA model has the highest at 3.59%. This suggests444

that the SARIMA model has slightly more instances with moderate correlation compared445

to the other models. In the CC range of 0.9 to 0.95 during magnetically quiet periods,446

the Diffusion model has 18.55% of its instances, which is less than the Transformer model447

at 21.55% and the SARIMA model at 20.99%. This indicates that both the Transformer448

and SARIMA models have a higher proportion of their correlations in the high range,449

but not the highest, compared to the Diffusion model. Overall, the table highlights the450

strong performance of these models in correlating with observed data during periods of451

magnetic quiet, with diffusion model exhibiting best.452

In order to analysis the prediction ability of models in strong geomagnetic storm453

periods, we identified the days between 2015 to 2017 when the Dst index fell below -50nT,454

and calculate the Daily Pearson Correlation Coefficient of prediction data and Obser-455

vation data. In Figure 6, we calculated the daily Pearson CC of the strong geomagnetic456

storm periods happened during 2015-2017 year and presents a scatter plot. Figure 7 presents457

the calculated Daily CC values of different four models throughout the year 2019. This458

visualization allows for a direct comparison of each model’s performance in terms of pre-459

diction accuracy on a month-by-month basis.460

4 Conclusions461

In conclusion, this study presents a significant advancement in the domain of iono-462

spheric forecasting by introducing and evaluating three innovative models: the Diffusion463

model, the SARIMA model, and the Transformer model. Focused on enhancing the ac-464

curacy of predictions during geomagnetic storms, these models offer a fresh perspective465

on forecasting ionospheric conditions. The comparative analysis between the performance466

of generative Diffusion model and the established C1PG model, utilizing just one year467

of training data, underscores the efficacy and potential of the Diffusion model in the realm468

of geomagnetic forecasting. This feature is especially valuable in situations where exten-469

sive historical data are limited or hard to acquire, such as the infrequent occurrences of470

geomagnetic storms. Unlike Transformer and LSTM models, which typically need large471

datasets for effective training and accuracy, our research underscores the impressive po-472
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Figure 6. Daily Pearson Correlation Coefficients for strong geomagnetic storm periods, 2015-

2017
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Figure 7. Daily CC values for four predictive models in 2019.
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tential of generative modeling techniques, notably the Diffusion model, for forecasting473

ionospheric disturbances with limited data. Otherwise, SARIMA model is distinguished474

by its straightforward training process and strong operability, requiring minimal com-475

putational resources. Remarkably, it achieves performance comparable to the Transformer476

and surpasses the C1PG model, demonstrating a 75.66% accuracy in quiet periods, sig-477

nificantly higher than the 51.66% accuracy achieved by C1PG.478

Specifically, the use of the Diffusion model has demonstrated how generative prob-479

ability models can significantly improve forecasting outcomes, even with limited train-480

ing data. Furthermore, the incorporation of data normalization techniques and the strate-481

gic application of the SARIMA model for capturing seasonal patterns and trends have482

collectively contributed to the robustness and efficacy of the proposed forecasting frame-483

work. Our study highlights the impressive potential of generative models, especially the484

Diffusion model, in accurately forecasting ionospheric disturbances. This advancement485

represents a significant step in the field of ionospheric prediction with only 1-year train-486

ing data.487

5 Open Research488

The global ionosphere maps (GIMs) TEC data sets from global navigation The datasets489

utilized in this manuscript, specifically the Global Ionosphere Maps (GIMs) Total Elec-490

tron Content (TEC) data, were sourced from global navigation satellite systems (GNSS).491

These data are publicly available on the website http://pub.ionosphere.cn/products/492

daily/. Additionally, the Disturbance Storm Time (Dst) index data, crucial for our anal-493

ysis, can be accessed via https://omniweb.gsfc.nasa.gov/form/dx1.html. The C1PG494

prediction data, referenced in our study and initially proposed by (Schaer & helvétique495

des sciences naturelles. Commission géodésique, 1999), originates from a global TEC pre-496

diction model developed by the Center for Orbit Determination in Europe (CODE). This497

data can be found at https://cddis.nasa.gov/archive/gnss/products/ionex/.498
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Şentürk, E. (2020). Ionospheric tec prediction performance of arima and lstm meth-553

ods in different space weather conditions. Intercontinental Geoinformation554

Days, 1 , 32–35.555

Singh, D., & Singh, B. (2020). Investigating the impact of data normalization on556

classification performance. Applied Soft Computing , 97 , 105524.557

Sola, J., & Sevilla, J. (1997). Importance of input data normalization for the appli-558

cation of neural networks to complex industrial problems. IEEE Transactions559

on nuclear science, 44 (3), 1464–1468.560

Valipour, M. (2015). Long-term runoff study using sarima and arima models in the561

united states. Meteorological Applications, 22 (3), 592–598.562

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . .563

Polosukhin, I. (2017). Attention is all you need. Advances in neural informa-564

tion processing systems, 30 .565

Wang, C., Xin, S., Liu, X., Shi, C., & Fan, L. (2018). Prediction of global iono-566

spheric vtec maps using an adaptive autoregressive model. Earth, Planets and567

Space, 70 , 1–14.568

Xia, G., Liu, M., Zhang, F., & Zhou, C. (2022). Caitst: Conv-attentional image569

time sequence transformer for ionospheric tec maps forecast. Remote Sensing ,570

14 (17), 4223.571

Xia, G., Zhang, F., Wang, C., & Zhou, C. (2022). Ed-convlstm: A novel global iono-572

spheric total electron content medium-term forecast model. Space Weather ,573

20 (8), e2021SW002959.574

Xiong, R., Yang, Y., He, D., Zheng, K., Zheng, S., Xing, C., . . . Liu, T. (2020). On575

layer normalization in the transformer architecture. In International conference576

on machine learning (pp. 10524–10533).577

–17–



manuscript submitted to Enter journal name here

Yuan, Y., Xia, G., Zhang, X., & Zhou, C. (2023). Synthesis-style auto-correlation-578

based transformer: A learner on ionospheric tec series forecasting. Space579

Weather , 21 (10), e2023SW003472.580

–18–



figure1.



VAE
VAE

Z

X Y

X Y

Diffusion

Prediction Training 

Z

LTC
           

Ŷ
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