References:
[1] Somero, G., Lockwood, B., Tomanek, L., Biochemical
Adaptation, Response to Environmental Challenges from Life’s Origins to
the Anthropocene . Sinauer Associates, an imprint of Oxford University
Press, 2016. Accessed: Aug. 12, 2021. [Online]. Available:
//global.oup.com/ukhe/product/biochemical-adaptation-9781605355641
[2] J. Panfili et al. , “Influence of salinity on the
life-history traits of the West African black-chinned tilapia
(Sarotherodon melanotheron): Comparison between the Gambia and Saloum
estuaries,” Aquat. Living Resour. , vol. 17, no. 1, pp. 65–74,
Mar. 2004, doi: 10.1051/alr:2004002.
[3] A. K. Whitfield, R. H. Taylor, C. Fox, and D. P. Cyrus, “Fishes
and salinities in the St Lucia estuarine system—a review,” Rev
Fish Biol Fisheries , vol. 16, no. 1, pp. 1–20, Feb. 2006, doi:
10.1007/s11160-006-0003-x.
[4] M. A. Amoudi, A.-F. M. El‐Sayed, and A. El‐Ghobashy, “Effects
of Thermal and Thermo-Haline Shocks on Survival and Osmotic
Concentration of the Tilapias Oreochromis mossambicus and Oreochromis
aureus × Oreochromis niloticus Hybrids,” Journal of the World
Aquaculture Society , vol. 27, no. 4, pp. 456–461, 1996, doi:
10.1111/j.1749-7345.1996.tb00630.x.
[5] A. A. Fuadi, I. R. J. Hasly, L. I. Azkia, and M. Irham,
“Response of tilapia (Oreochromis niloticus) behaviour to salinity
differences: a laboratory scale study,” IOP Conf. Ser.: Earth
Environ. Sci. , vol. 674, no. 1, p. 012060, Feb. 2021, doi:
10.1088/1755-1315/674/1/012060.
[6] G. K. Iwama, A. Takemura, and K. Takano, “Oxygen consumption
rates of tilapia in fresh water, sea water, and hypersaline sea water,”Journal of Fish Biology , vol. 51, no. 5, pp. 886–894, 1997, doi:
10.1111/j.1095-8649.1997.tb01528.x.
[7] B. D. Kammerer, J. J. Cech, and D. Kültz, “Rapid changes in
plasma cortisol, osmolality, and respiration in response to salinity
stress in tilapia (Oreochromis mossambicus),” Comparative
Biochemistry and Physiology Part A: Molecular & Integrative
Physiology , vol. 157, no. 3, pp. 260–265, Nov. 2010, doi:
10.1016/j.cbpa.2010.07.009.
[8] E. L. Lewis and R. G. Perkin, “Salinity: Its definition and
calculation,” Journal of Geophysical Research: Oceans , vol. 83,
no. C1, pp. 466–478, 1978, doi: 10.1029/JC083iC01p00466.
[9] J. Blackburn, “Revised procedure for the 24-hour seawater
challenge test to measure seawater adaptability of juvenile,”Canadian Technical Report of Fisheries and Aquatic Sciences , vol.
1515, 1987, Accessed: Aug. 12, 2021. [Online]. Available:
https://ci.nii.ac.jp/naid/10005103917/
[10] E. A. F. Christensen, M. Grosell, and J. F. Steffensen,
“Maximum salinity tolerance and osmoregulatory capabilities of European
perch Perca fluviatilis populations originating from different salinity
habitats,” Conservation Physiology , vol. 7, no. 1, p. coz004,
Feb. 2019, doi: 10.1093/conphys/coz004.
[11] J. N. Langston, P. J. Schofield, J. E. Hill, and W. F. Loftus,
“Salinity Tolerance of the African Jewelfish Hemichromis letourneuxi, a
Non-native Cichlid in South Florida (USA),” Copeia , vol. 2010,
no. 3, pp. 475–480, Sep. 2010, doi: 10.1643/CP-09-069.
[12] E. Schultz and S. McCormick, “Euryhalinity in an Evolutionary
Context,” in Euryhaline Fishes , vol. 32, 2012, pp. 477–533.
[Online]. Available: https://opencommons.uconn.edu/eeb_articles/29
[13] W. O. Watanabe, C.-M. Kuo, and M.-C. Huang, “The ontogeny of
salinity tolerance in the tilapias Oreochromis aureus, O. niloticus, and
an O. mossambicus × O. niloticus hybrid, spawned and reared in
freshwater,” Aquaculture , vol. 47, no. 4, pp. 353–367, Aug.
1985, doi: 10.1016/0044-8486(85)90220-0.
[14] B. A. Sardella, “Physiological, biochemical and morphological
indicators of osmoregulatory stress in ‘California’ Mozambique tilapia
(Oreochromis mossambicus x O. urolepis hornorum) exposed to hypersaline
water,” Journal of Experimental Biology , vol. 207, no. 8, pp.
1399–1413, Mar. 2004, doi: 10.1242/jeb.00895.
[15] I. M. Sokolova, M. Frederich, R. Bagwe, G. Lannig, and A. A.
Sukhotin, “Energy homeostasis as an integrative tool for assessing
limits of environmental stress tolerance in aquatic invertebrates,”Marine Environmental Research , vol. 79, pp. 1–15, Aug. 2012,
doi: 10.1016/j.marenvres.2012.04.003.
[16] J. R. Brett, “Some Principles in the Thermal Requirements of
Fishes,” The Quarterly Review of Biology , vol. 31, no. 2, pp.
75–87, Jun. 1956, doi: 10.1086/401257.
[17] H.-O. Pörtner, “Oxygen- and capacity-limitation of thermal
tolerance: a matrix for integrating climate-related stressor effects in
marine ecosystems,” Journal of Experimental Biology , vol. 213,
no. 6, pp. 881–893, Mar. 2010, doi: 10.1242/jeb.037523.
[18] S. Keerthikumar and S. Mathivanan, “Proteotypic Peptides and
Their Applications,” Methods Mol. Biol. , vol. 1549, pp.
101–107, 2017, doi: 10.1007/978-1-4939-6740-7_8.
[19] H. A. Ebhardt, A. Root, C. Sander, and R. Aebersold,
“Applications of targeted proteomics in systems biology and
translational medicine,” Proteomics , vol. 15, no. 18, pp.
3193–3208, 2015, doi: https://doi.org/10.1002/pmic.201500004.
[20] B. Clarke, “Natural Selection and the Evolution of Proteins,”Nature , vol. 232, no. 5311, p. 487, Aug. 1971, doi:
10.1038/232487a0.
[21] L. Mularoni, A. Ledda, M. Toll-Riera, and M. M. Albà, “Natural
selection drives the accumulation of amino acid tandem repeats in human
proteins,” Genome Res. , vol. 20, no. 6, pp. 745–754, Jun. 2010,
doi: 10.1101/gr.101261.109.
[22] D. Kültz, D. Fiol, N. Valkova, S. Gomez-Jimenez, S. Y. Chan,
and J. Lee, “Functional genomics and proteomics of the cellular osmotic
stress response in ‘non-model’ organisms,” J. Exp. Biol. , vol.
210, no. Pt 9, pp. 1593–1601, May 2007, doi: 10.1242/jeb.000141.
[23] D. Kültz, J. Li, D. Paguio, T. Pham, M. Eidsaa, and E. Almaas,
“Population-specific renal proteomes of marine and freshwater
three-spined sticklebacks,” Journal of Proteomics , vol. 135, pp.
112–131, Mar. 2016, doi: 10.1016/j.jprot.2015.10.002.
[24] B. A. Sardella and C. J. Brauner, “The Osmo-respiratory
Compromise in Fish: The Effects of Physiological State and the
Environment,” in Fish Respiration and Environment , CRC Press,
2007, p. chapter 8.
[25] D. F. Fiol, E. Sanmarti, A. H. Lim, and D. Kültz, “A novel
GRAIL E3 ubiquitin ligase promotes environmental salinity tolerance in
euryhaline tilapia,” Biochimica et Biophysica Acta (BBA) -
General Subjects , vol. 1810, no. 4, pp. 439–445, Apr. 2011, doi:
10.1016/j.bbagen.2010.11.005.
[26] D. J. Speare, N. MacNair, and K. L. Hammell, “Demonstration of
tank effect on growth indices of juvenile rainbow trout (Oncorhynchus
mykiss) during an ad libitum feeding trial,” Am J Vet Res , vol.
56, no. 10, pp. 1372–1379, Oct. 1995.
[27] Y.-W. Cui, H.-Y. Zhang, J.-R. Ding, and Y.-Z. Peng, “The
effects of salinity on nitrification using halophilic nitrifiers in a
Sequencing Batch Reactor treating hypersaline wastewater,” Sci
Rep , vol. 6, no. 1, p. 24825, Apr. 2016, doi: 10.1038/srep24825.
[28] S. Leary et al. , “AVMA Guidelines for the Euthanasia of
Animals: 2020 Edition,” p. 121, 2020.
[29] L. Root, A. Campo, L. MacNiven, P. Con, A. Cnaani, and D.
Kültz, “Nonlinear effects of environmental salinity on the gill
transcriptome versus proteome of Oreochromis niloticus modulate
epithelial cell turnover,” Genomics , vol. 113, no. 5, pp.
3235–3249, Sep. 2021, doi: 10.1016/j.ygeno.2021.07.016.
[30] L. K. Pino, B. C. Searle, J. G. Bollinger, B. Nunn, B. MacLean,
and M. J. MacCoss, “The Skyline ecosystem: Informatics for quantitative
mass spectrometry proteomics,” Mass Spectrom Rev , vol. 39, no.
3, pp. 229–244, 2017, doi: 10.1002/mas.21540.
[31] J. Li, B. Levitan, S. Gomez-Jimenez, and D. Kültz,
“Development of a Gill Assay Library for Ecological Proteomics of
Threespine Sticklebacks ( Gasterosteus aculeatus ),” Mol
Cell Proteomics , vol. 17, no. 11, pp. 2146–2163, Nov. 2018, doi:
10.1074/mcp.RA118.000973.
[32] S. Abbatiello et al. , “New Guidelines for Publication
of Manuscripts Describing Development and Application of Targeted Mass
Spectrometry Measurements of Peptides and Proteins.,” Molecular
& cellular proteomics : MCP , vol. 16, no. 3, pp. 327–328, Mar. 2017.
[33] M. Choi et al. , “MSstats: an R package for statistical
analysis of quantitative mass spectrometry-based proteomic
experiments,” Bioinformatics , vol. 30, no. 17, pp. 2524–6, Sep.
2014, doi: 10.1093/bioinformatics/btu305.
[34] Y. Benjamini and Y. Hochberg, “Controlling the false discovery
rate: A practical and powerful approach to multiple testing,”Journal of the Royal Statistical Society. Series B
(Methodological) , vol. 57, no. 1, pp. 289–300, 1995.
[35] D. Szklarczyk et al. , “STRING v11: protein–protein
association networks with increased coverage, supporting functional
discovery in genome-wide experimental datasets,” Nucleic Acids
Res , vol. 47, no. D1, pp. D607–D613, Jan. 2019, doi:
10.1093/nar/gky1131.
[36] L. Reiter et al. , “mProphet: automated data processing
and statistical validation for large-scale SRM experiments,” Nat
Methods , vol. 8, no. 5, pp. 430–5, May 2011, doi: 10.1038/nmeth.1584.
[37] B. E. Davis et al. , “Consequences of temperature and
temperature variability on swimming activity, group structure, and
predation of endangered delta smelt,” Freshwater Biology , vol.
64, no. 12, pp. 2156–2175, 2019, doi: 10.1111/fwb.13403.
[38] D. Kültz, J. Li, A. Gardell, and R. Sacchi, “Quantitative
Molecular Phenotyping of Gill Remodeling in a Cichlid Fish Responding to
Salinity Stress,” Molecular & Cellular Proteomics , vol. 12, no.
12, pp. 3962–3975, Dec. 2013, doi: 10.1074/mcp.M113.029827.
[39] L. Root, A. Campo, L. MacNiven, P. Con, A. Cnaani, and D.
Kültz, “A data-independent acquisition (DIA) assay library for
quantitation of environmental effects on the kidney proteome of
Oreochromis niloticus,” Molecular Ecology Resources , vol. 21,
no. 7, pp. 2486–2503, Oct. 2021, doi: 10.1111/1755-0998.13445.
[40] Evans, P. M. Piermarini, and K. P. Choe, “The Multifunctional
Fish Gill: Dominant Site of Gas Exchange, Osmoregulation, Acid-Base
Regulation, and Excretion of Nitrogenous Waste,” Physiological
Reviews , vol. 85, no. 1, pp. 97–177, Jan. 2005, doi:
10.1152/physrev.00050.2003.
[41] J. Hiroi, S. D. McCormick, R. Ohtani-Kaneko, and T. Kaneko,
“Functional classification of mitochondrion-rich cells in euryhaline
Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple
immunofluorescence staining for Na+/K+-ATPase, Na+/K+/2Cl- cotransporter
and CFTR anion channel,” Journal of Experimental Biology , vol.
208, no. 11, pp. 2023–2036, Jun. 2005, doi: 10.1242/jeb.01611.
[42] D. Kültz, K. Jürss, and L. Jonas, “Cellular and epithelial
adjustments to altered salinity in the gill and opercular epithelium of
a cichlid fish (Oreochromis mossambicus),” Cell Tissue Res , vol.
279, no. 1, pp. 65–73, Jan. 1995, doi: 10.1007/BF00300692.
[43] M. Inokuchi, J. Hiroi, S. Watanabe, P.-P. Hwang, and T. Kaneko,
“Morphological and functional classification of ion-absorbing
mitochondria-rich cells in the gills of Mozambique tilapia,”Journal of Experimental Biology , vol. 212, no. 7, pp. 1003–1010,
Apr. 2009, doi: 10.1242/jeb.025957.
[44] G. Bœuf and P. Payan, “How should salinity influence fish
growth?,” Comparative Biochemistry and Physiology Part C:
Toxicology & Pharmacology , vol. 130, no. 4, pp. 411–423, Dec. 2001,
doi: 10.1016/S1532-0456(01)00268-X.
[45] C. K. Tipsmark, J. P. Breves, A. P. Seale, D. T. Lerner, T.
Hirano, and E. G. Grau, “Switching of Na+, K+-ATPase isoforms by
salinity and prolactin in the gill of a cichlid fish,” J
Endocrinol , vol. 209, no. 2, pp. 237–244, May 2011, doi:
10.1530/joe-10-0495.
[46] J. G. Richards, J. W. Semple, J. S. Bystriansky, and P. M.
Schulte, “Na+/K+-ATPase α-isoform switching in gills of rainbow trout
(Oncorhynchus mykiss) during salinity transfer,” Journal of
Experimental Biology , vol. 206, no. 24, pp. 4475–4486, Dec. 2003, doi:
10.1242/jeb.00701.
[47] A. M. Gardell, J. Yang, R. Sacchi, N. A. Fangue, B. D. Hammock,
and D. Kültz, “Tilapia (Oreochromis mossambicus) brain cells respond to
hyperosmotic challenge by inducing myo-inositol biosynthesis,”Journal of Experimental Biology , vol. 216, no. 24, pp.
4615–4625, Dec. 2013, doi: 10.1242/jeb.088906.
[48] A. A. Laskar and H. Younus, “Aldehyde toxicity and metabolism:
the role of aldehyde dehydrogenases in detoxification, drug resistance
and carcinogenesis,” Drug Metabolism Reviews , vol. 51, no. 1,
pp. 42–64, Jan. 2019, doi: 10.1080/03602532.2018.1555587.
[49] L. Zeng et al. , “Nuclear receptors NHR-49 and NHR-79
promote peroxisome proliferation to compensate for aldehyde
dehydrogenase deficiency in C. elegans,” PLOS Genetics , vol. 17,
no. 7, p. e1009635, Jul. 2021, doi: 10.1371/journal.pgen.1009635.
[50] M. B. Rosen et al. , “Gene Expression Profiling in
Wild-Type and PPARα-Null Mice Exposed to Perfluorooctane Sulfonate
Reveals PPARα-Independent Effects,” PPAR Res , vol. 2010, p.
794739, 2010, doi: 10.1155/2010/794739.
[51] T. Yamaguchi, M. Gi, M. Fujioka, Y. Tago, A. Kakehashi, and H.
Wanibuchi, “A chronic toxicity study of diphenylarsinic acid in the
drinking water of C57BL/6J mice for 52 weeks,” J Toxicol Pathol ,
vol. 32, no. 3, pp. 127–134, 2019, doi: 10.1293/tox.2018-0067.
[52] U. O. Edet and S. P. Antai, “Correlation and Distribution of
Xenobiotics Genes and Metabolic Activities with Level of Total Petroleum
Hydrocarbon in Soil, Sediment and Estuary Water in the Niger Delta
Region of Nigeria,” Asian Journal of Biotechnology and Genetic
Engineering , pp. 1–11, Jun. 2018.
[53] D. Kültz and H. Onken, “Long-term acclimation of the teleost
Oreochromis mossambicus to various salinities: two different strategies
in mastering hypertonic stress,” Marine Biology , vol. 117, no.
3, pp. 527–533, Nov. 1993, doi: 10.1007/BF00349328.
[54] S. Fridman, K. J. Rana, and J. E. Bron, “Morphological and
ultrastructural characterization of ionoregulatory cells in the teleost
oreochromis niloticus following salinity challenge combining
complementary confocal scanning laser microscopy and transmission
electron microscopy using a novel prefixation immunogold labeling
technique,” Microscopy Research and Technique , vol. 76, no. 10,
pp. 1016–1024, 2013, doi: https://doi.org/10.1002/jemt.22262.
[55] T. H. Lee, P. P. Hwang, Y. E. Shieh, and C. H. Lin, “The
relationship between ‘deep-hole’ mitochondria-rich cells and salinity
adaptation in the euryhaline teleost, Oreochromis mossambicus,”Fish Physiology and Biochemistry , vol. 23, no. 2, pp. 133–140,
Aug. 2000, doi: 10.1023/A:1007818631917.
[56] M. Inokuchi and T. Kaneko, “Recruitment and degeneration of
mitochondrion-rich cells in the gills of Mozambique tilapia Oreochromis
mossambicus during adaptation to a hyperosmotic environment,”Comparative Biochemistry and Physiology Part A: Molecular &
Integrative Physiology , vol. 162, no. 3, pp. 245–251, Jul. 2012, doi:
10.1016/j.cbpa.2012.03.018.
[57] Karnaky, “Structure and Function of the Chloride Cell of
Fundulus heteroclitus and Other Teleosts1,” American Zoologist ,
vol. 26, no. 1, pp. 209–224, Feb. 1986, doi: 10.1093/icb/26.1.209.
[58] K. J. Karnaky Jr, S. A. Ernst, and C. W. Philpott, “Teleost
chloride cell. I. Response of pupfish Cyprinodon variegatus gill
Na,K-ATPase and chloride cell fine structure to various high salinity
environments.,” Journal of Cell Biology , vol. 70, no. 1, pp.
144–156, Jul. 1976, doi: 10.1083/jcb.70.1.144.
[59] P. Elumalai et al. , “The Role of Lectins in Finfish: A
Review,” Reviews in Fisheries Science & Aquaculture , vol. 27,
no. 2, pp. 152–169, Apr. 2019, doi: 10.1080/23308249.2018.1520191.
[60] S. Hirose, T. Kaneko, N. Naito, and Y. Takei, “Molecular
biology of major components of chloride cells,” Comparative
Biochemistry and Physiology Part B: Biochemistry and Molecular Biology ,
vol. 136, no. 4, pp. 593–620, Dec. 2003, doi:
10.1016/S1096-4959(03)00287-2.
[61] J. C. Tsai and P. P. Hwang, “Effects of wheat germ agglutinin
and colchicine on microtubules of the mitochondria-rich cells and Ca2+
uptake in tilapia (Oreochromis mossambicus) larvae.,” Journal of
Experimental Biology , vol. 201, no. 15, pp. 2263–2271, Aug. 1998, doi:
10.1242/jeb.201.15.2263.
[62] J. C. Tsai and P. P. Hwang, “The wheat germ agglutinin binding
sites and development of the mitochondria-rich cells in gills of tilapia
(Oreochromis mossambicus),” Fish Physiology and Biochemistry ,
vol. 19, no. 1, pp. 95–102, Jul. 1998, doi: 10.1023/A:1007766531264.
[63] G. G. Goss, S. Adamia, and F. Galvez, “Peanut lectin binds to
a subpopulation of mitochondria-rich cells in the rainbow trout gill
epithelium,” American Journal of Physiology-Regulatory,
Integrative and Comparative Physiology , vol. 281, no. 5, pp.
R1718–R1725, Nov. 2001, doi: 10.1152/ajpregu.2001.281.5.R1718.
[64] N. V. Grishin, “Estimation of the number of amino acid
substitutions per site when the substitution rate varies among sites,”J Mol Evol , vol. 41, no. 5, pp. 675–679, Nov. 1995, doi:
10.1007/BF00175826.