References:
[1] Somero, G., Lockwood, B., Tomanek, L., Biochemical Adaptation, Response to Environmental Challenges from Life’s Origins to the Anthropocene . Sinauer Associates, an imprint of Oxford University Press, 2016. Accessed: Aug. 12, 2021. [Online]. Available: //global.oup.com/ukhe/product/biochemical-adaptation-9781605355641
[2] J. Panfili et al. , “Influence of salinity on the life-history traits of the West African black-chinned tilapia (Sarotherodon melanotheron): Comparison between the Gambia and Saloum estuaries,” Aquat. Living Resour. , vol. 17, no. 1, pp. 65–74, Mar. 2004, doi: 10.1051/alr:2004002.
[3] A. K. Whitfield, R. H. Taylor, C. Fox, and D. P. Cyrus, “Fishes and salinities in the St Lucia estuarine system—a review,” Rev Fish Biol Fisheries , vol. 16, no. 1, pp. 1–20, Feb. 2006, doi: 10.1007/s11160-006-0003-x.
[4] M. A. Amoudi, A.-F. M. El‐Sayed, and A. El‐Ghobashy, “Effects of Thermal and Thermo-Haline Shocks on Survival and Osmotic Concentration of the Tilapias Oreochromis mossambicus and Oreochromis aureus × Oreochromis niloticus Hybrids,” Journal of the World Aquaculture Society , vol. 27, no. 4, pp. 456–461, 1996, doi: 10.1111/j.1749-7345.1996.tb00630.x.
[5] A. A. Fuadi, I. R. J. Hasly, L. I. Azkia, and M. Irham, “Response of tilapia (Oreochromis niloticus) behaviour to salinity differences: a laboratory scale study,” IOP Conf. Ser.: Earth Environ. Sci. , vol. 674, no. 1, p. 012060, Feb. 2021, doi: 10.1088/1755-1315/674/1/012060.
[6] G. K. Iwama, A. Takemura, and K. Takano, “Oxygen consumption rates of tilapia in fresh water, sea water, and hypersaline sea water,”Journal of Fish Biology , vol. 51, no. 5, pp. 886–894, 1997, doi: 10.1111/j.1095-8649.1997.tb01528.x.
[7] B. D. Kammerer, J. J. Cech, and D. Kültz, “Rapid changes in plasma cortisol, osmolality, and respiration in response to salinity stress in tilapia (Oreochromis mossambicus),” Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology , vol. 157, no. 3, pp. 260–265, Nov. 2010, doi: 10.1016/j.cbpa.2010.07.009.
[8] E. L. Lewis and R. G. Perkin, “Salinity: Its definition and calculation,” Journal of Geophysical Research: Oceans , vol. 83, no. C1, pp. 466–478, 1978, doi: 10.1029/JC083iC01p00466.
[9] J. Blackburn, “Revised procedure for the 24-hour seawater challenge test to measure seawater adaptability of juvenile,”Canadian Technical Report of Fisheries and Aquatic Sciences , vol. 1515, 1987, Accessed: Aug. 12, 2021. [Online]. Available: https://ci.nii.ac.jp/naid/10005103917/
[10] E. A. F. Christensen, M. Grosell, and J. F. Steffensen, “Maximum salinity tolerance and osmoregulatory capabilities of European perch Perca fluviatilis populations originating from different salinity habitats,” Conservation Physiology , vol. 7, no. 1, p. coz004, Feb. 2019, doi: 10.1093/conphys/coz004.
[11] J. N. Langston, P. J. Schofield, J. E. Hill, and W. F. Loftus, “Salinity Tolerance of the African Jewelfish Hemichromis letourneuxi, a Non-native Cichlid in South Florida (USA),” Copeia , vol. 2010, no. 3, pp. 475–480, Sep. 2010, doi: 10.1643/CP-09-069.
[12] E. Schultz and S. McCormick, “Euryhalinity in an Evolutionary Context,” in Euryhaline Fishes , vol. 32, 2012, pp. 477–533. [Online]. Available: https://opencommons.uconn.edu/eeb_articles/29
[13] W. O. Watanabe, C.-M. Kuo, and M.-C. Huang, “The ontogeny of salinity tolerance in the tilapias Oreochromis aureus, O. niloticus, and an O. mossambicus × O. niloticus hybrid, spawned and reared in freshwater,” Aquaculture , vol. 47, no. 4, pp. 353–367, Aug. 1985, doi: 10.1016/0044-8486(85)90220-0.
[14] B. A. Sardella, “Physiological, biochemical and morphological indicators of osmoregulatory stress in ‘California’ Mozambique tilapia (Oreochromis mossambicus x O. urolepis hornorum) exposed to hypersaline water,” Journal of Experimental Biology , vol. 207, no. 8, pp. 1399–1413, Mar. 2004, doi: 10.1242/jeb.00895.
[15] I. M. Sokolova, M. Frederich, R. Bagwe, G. Lannig, and A. A. Sukhotin, “Energy homeostasis as an integrative tool for assessing limits of environmental stress tolerance in aquatic invertebrates,”Marine Environmental Research , vol. 79, pp. 1–15, Aug. 2012, doi: 10.1016/j.marenvres.2012.04.003.
[16] J. R. Brett, “Some Principles in the Thermal Requirements of Fishes,” The Quarterly Review of Biology , vol. 31, no. 2, pp. 75–87, Jun. 1956, doi: 10.1086/401257.
[17] H.-O. Pörtner, “Oxygen- and capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems,” Journal of Experimental Biology , vol. 213, no. 6, pp. 881–893, Mar. 2010, doi: 10.1242/jeb.037523.
[18] S. Keerthikumar and S. Mathivanan, “Proteotypic Peptides and Their Applications,” Methods Mol. Biol. , vol. 1549, pp. 101–107, 2017, doi: 10.1007/978-1-4939-6740-7_8.
[19] H. A. Ebhardt, A. Root, C. Sander, and R. Aebersold, “Applications of targeted proteomics in systems biology and translational medicine,” Proteomics , vol. 15, no. 18, pp. 3193–3208, 2015, doi: https://doi.org/10.1002/pmic.201500004.
[20] B. Clarke, “Natural Selection and the Evolution of Proteins,”Nature , vol. 232, no. 5311, p. 487, Aug. 1971, doi: 10.1038/232487a0.
[21] L. Mularoni, A. Ledda, M. Toll-Riera, and M. M. Albà, “Natural selection drives the accumulation of amino acid tandem repeats in human proteins,” Genome Res. , vol. 20, no. 6, pp. 745–754, Jun. 2010, doi: 10.1101/gr.101261.109.
[22] D. Kültz, D. Fiol, N. Valkova, S. Gomez-Jimenez, S. Y. Chan, and J. Lee, “Functional genomics and proteomics of the cellular osmotic stress response in ‘non-model’ organisms,” J. Exp. Biol. , vol. 210, no. Pt 9, pp. 1593–1601, May 2007, doi: 10.1242/jeb.000141.
[23] D. Kültz, J. Li, D. Paguio, T. Pham, M. Eidsaa, and E. Almaas, “Population-specific renal proteomes of marine and freshwater three-spined sticklebacks,” Journal of Proteomics , vol. 135, pp. 112–131, Mar. 2016, doi: 10.1016/j.jprot.2015.10.002.
[24] B. A. Sardella and C. J. Brauner, “The Osmo-respiratory Compromise in Fish: The Effects of Physiological State and the Environment,” in Fish Respiration and Environment , CRC Press, 2007, p. chapter 8.
[25] D. F. Fiol, E. Sanmarti, A. H. Lim, and D. Kültz, “A novel GRAIL E3 ubiquitin ligase promotes environmental salinity tolerance in euryhaline tilapia,” Biochimica et Biophysica Acta (BBA) - General Subjects , vol. 1810, no. 4, pp. 439–445, Apr. 2011, doi: 10.1016/j.bbagen.2010.11.005.
[26] D. J. Speare, N. MacNair, and K. L. Hammell, “Demonstration of tank effect on growth indices of juvenile rainbow trout (Oncorhynchus mykiss) during an ad libitum feeding trial,” Am J Vet Res , vol. 56, no. 10, pp. 1372–1379, Oct. 1995.
[27] Y.-W. Cui, H.-Y. Zhang, J.-R. Ding, and Y.-Z. Peng, “The effects of salinity on nitrification using halophilic nitrifiers in a Sequencing Batch Reactor treating hypersaline wastewater,” Sci Rep , vol. 6, no. 1, p. 24825, Apr. 2016, doi: 10.1038/srep24825.
[28] S. Leary et al. , “AVMA Guidelines for the Euthanasia of Animals: 2020 Edition,” p. 121, 2020.
[29] L. Root, A. Campo, L. MacNiven, P. Con, A. Cnaani, and D. Kültz, “Nonlinear effects of environmental salinity on the gill transcriptome versus proteome of Oreochromis niloticus modulate epithelial cell turnover,” Genomics , vol. 113, no. 5, pp. 3235–3249, Sep. 2021, doi: 10.1016/j.ygeno.2021.07.016.
[30] L. K. Pino, B. C. Searle, J. G. Bollinger, B. Nunn, B. MacLean, and M. J. MacCoss, “The Skyline ecosystem: Informatics for quantitative mass spectrometry proteomics,” Mass Spectrom Rev , vol. 39, no. 3, pp. 229–244, 2017, doi: 10.1002/mas.21540.
[31] J. Li, B. Levitan, S. Gomez-Jimenez, and D. Kültz, “Development of a Gill Assay Library for Ecological Proteomics of Threespine Sticklebacks ( Gasterosteus aculeatus ),” Mol Cell Proteomics , vol. 17, no. 11, pp. 2146–2163, Nov. 2018, doi: 10.1074/mcp.RA118.000973.
[32] S. Abbatiello et al. , “New Guidelines for Publication of Manuscripts Describing Development and Application of Targeted Mass Spectrometry Measurements of Peptides and Proteins.,” Molecular & cellular proteomics : MCP , vol. 16, no. 3, pp. 327–328, Mar. 2017.
[33] M. Choi et al. , “MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments,” Bioinformatics , vol. 30, no. 17, pp. 2524–6, Sep. 2014, doi: 10.1093/bioinformatics/btu305.
[34] Y. Benjamini and Y. Hochberg, “Controlling the false discovery rate: A practical and powerful approach to multiple testing,”Journal of the Royal Statistical Society. Series B (Methodological) , vol. 57, no. 1, pp. 289–300, 1995.
[35] D. Szklarczyk et al. , “STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets,” Nucleic Acids Res , vol. 47, no. D1, pp. D607–D613, Jan. 2019, doi: 10.1093/nar/gky1131.
[36] L. Reiter et al. , “mProphet: automated data processing and statistical validation for large-scale SRM experiments,” Nat Methods , vol. 8, no. 5, pp. 430–5, May 2011, doi: 10.1038/nmeth.1584.
[37] B. E. Davis et al. , “Consequences of temperature and temperature variability on swimming activity, group structure, and predation of endangered delta smelt,” Freshwater Biology , vol. 64, no. 12, pp. 2156–2175, 2019, doi: 10.1111/fwb.13403.
[38] D. Kültz, J. Li, A. Gardell, and R. Sacchi, “Quantitative Molecular Phenotyping of Gill Remodeling in a Cichlid Fish Responding to Salinity Stress,” Molecular & Cellular Proteomics , vol. 12, no. 12, pp. 3962–3975, Dec. 2013, doi: 10.1074/mcp.M113.029827.
[39] L. Root, A. Campo, L. MacNiven, P. Con, A. Cnaani, and D. Kültz, “A data-independent acquisition (DIA) assay library for quantitation of environmental effects on the kidney proteome of Oreochromis niloticus,” Molecular Ecology Resources , vol. 21, no. 7, pp. 2486–2503, Oct. 2021, doi: 10.1111/1755-0998.13445.
[40] Evans, P. M. Piermarini, and K. P. Choe, “The Multifunctional Fish Gill: Dominant Site of Gas Exchange, Osmoregulation, Acid-Base Regulation, and Excretion of Nitrogenous Waste,” Physiological Reviews , vol. 85, no. 1, pp. 97–177, Jan. 2005, doi: 10.1152/physrev.00050.2003.
[41] J. Hiroi, S. D. McCormick, R. Ohtani-Kaneko, and T. Kaneko, “Functional classification of mitochondrion-rich cells in euryhaline Mozambique tilapia (Oreochromis mossambicus) embryos, by means of triple immunofluorescence staining for Na+/K+-ATPase, Na+/K+/2Cl- cotransporter and CFTR anion channel,” Journal of Experimental Biology , vol. 208, no. 11, pp. 2023–2036, Jun. 2005, doi: 10.1242/jeb.01611.
[42] D. Kültz, K. Jürss, and L. Jonas, “Cellular and epithelial adjustments to altered salinity in the gill and opercular epithelium of a cichlid fish (Oreochromis mossambicus),” Cell Tissue Res , vol. 279, no. 1, pp. 65–73, Jan. 1995, doi: 10.1007/BF00300692.
[43] M. Inokuchi, J. Hiroi, S. Watanabe, P.-P. Hwang, and T. Kaneko, “Morphological and functional classification of ion-absorbing mitochondria-rich cells in the gills of Mozambique tilapia,”Journal of Experimental Biology , vol. 212, no. 7, pp. 1003–1010, Apr. 2009, doi: 10.1242/jeb.025957.
[44] G. Bœuf and P. Payan, “How should salinity influence fish growth?,” Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology , vol. 130, no. 4, pp. 411–423, Dec. 2001, doi: 10.1016/S1532-0456(01)00268-X.
[45] C. K. Tipsmark, J. P. Breves, A. P. Seale, D. T. Lerner, T. Hirano, and E. G. Grau, “Switching of Na+, K+-ATPase isoforms by salinity and prolactin in the gill of a cichlid fish,” J Endocrinol , vol. 209, no. 2, pp. 237–244, May 2011, doi: 10.1530/joe-10-0495.
[46] J. G. Richards, J. W. Semple, J. S. Bystriansky, and P. M. Schulte, “Na+/K+-ATPase α-isoform switching in gills of rainbow trout (Oncorhynchus mykiss) during salinity transfer,” Journal of Experimental Biology , vol. 206, no. 24, pp. 4475–4486, Dec. 2003, doi: 10.1242/jeb.00701.
[47] A. M. Gardell, J. Yang, R. Sacchi, N. A. Fangue, B. D. Hammock, and D. Kültz, “Tilapia (Oreochromis mossambicus) brain cells respond to hyperosmotic challenge by inducing myo-inositol biosynthesis,”Journal of Experimental Biology , vol. 216, no. 24, pp. 4615–4625, Dec. 2013, doi: 10.1242/jeb.088906.
[48] A. A. Laskar and H. Younus, “Aldehyde toxicity and metabolism: the role of aldehyde dehydrogenases in detoxification, drug resistance and carcinogenesis,” Drug Metabolism Reviews , vol. 51, no. 1, pp. 42–64, Jan. 2019, doi: 10.1080/03602532.2018.1555587.
[49] L. Zeng et al. , “Nuclear receptors NHR-49 and NHR-79 promote peroxisome proliferation to compensate for aldehyde dehydrogenase deficiency in C. elegans,” PLOS Genetics , vol. 17, no. 7, p. e1009635, Jul. 2021, doi: 10.1371/journal.pgen.1009635.
[50] M. B. Rosen et al. , “Gene Expression Profiling in Wild-Type and PPARα-Null Mice Exposed to Perfluorooctane Sulfonate Reveals PPARα-Independent Effects,” PPAR Res , vol. 2010, p. 794739, 2010, doi: 10.1155/2010/794739.
[51] T. Yamaguchi, M. Gi, M. Fujioka, Y. Tago, A. Kakehashi, and H. Wanibuchi, “A chronic toxicity study of diphenylarsinic acid in the drinking water of C57BL/6J mice for 52 weeks,” J Toxicol Pathol , vol. 32, no. 3, pp. 127–134, 2019, doi: 10.1293/tox.2018-0067.
[52] U. O. Edet and S. P. Antai, “Correlation and Distribution of Xenobiotics Genes and Metabolic Activities with Level of Total Petroleum Hydrocarbon in Soil, Sediment and Estuary Water in the Niger Delta Region of Nigeria,” Asian Journal of Biotechnology and Genetic Engineering , pp. 1–11, Jun. 2018.
[53] D. Kültz and H. Onken, “Long-term acclimation of the teleost Oreochromis mossambicus to various salinities: two different strategies in mastering hypertonic stress,” Marine Biology , vol. 117, no. 3, pp. 527–533, Nov. 1993, doi: 10.1007/BF00349328.
[54] S. Fridman, K. J. Rana, and J. E. Bron, “Morphological and ultrastructural characterization of ionoregulatory cells in the teleost oreochromis niloticus following salinity challenge combining complementary confocal scanning laser microscopy and transmission electron microscopy using a novel prefixation immunogold labeling technique,” Microscopy Research and Technique , vol. 76, no. 10, pp. 1016–1024, 2013, doi: https://doi.org/10.1002/jemt.22262.
[55] T. H. Lee, P. P. Hwang, Y. E. Shieh, and C. H. Lin, “The relationship between ‘deep-hole’ mitochondria-rich cells and salinity adaptation in the euryhaline teleost, Oreochromis mossambicus,”Fish Physiology and Biochemistry , vol. 23, no. 2, pp. 133–140, Aug. 2000, doi: 10.1023/A:1007818631917.
[56] M. Inokuchi and T. Kaneko, “Recruitment and degeneration of mitochondrion-rich cells in the gills of Mozambique tilapia Oreochromis mossambicus during adaptation to a hyperosmotic environment,”Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology , vol. 162, no. 3, pp. 245–251, Jul. 2012, doi: 10.1016/j.cbpa.2012.03.018.
[57] Karnaky, “Structure and Function of the Chloride Cell of Fundulus heteroclitus and Other Teleosts1,” American Zoologist , vol. 26, no. 1, pp. 209–224, Feb. 1986, doi: 10.1093/icb/26.1.209.
[58] K. J. Karnaky Jr, S. A. Ernst, and C. W. Philpott, “Teleost chloride cell. I. Response of pupfish Cyprinodon variegatus gill Na,K-ATPase and chloride cell fine structure to various high salinity environments.,” Journal of Cell Biology , vol. 70, no. 1, pp. 144–156, Jul. 1976, doi: 10.1083/jcb.70.1.144.
[59] P. Elumalai et al. , “The Role of Lectins in Finfish: A Review,” Reviews in Fisheries Science & Aquaculture , vol. 27, no. 2, pp. 152–169, Apr. 2019, doi: 10.1080/23308249.2018.1520191.
[60] S. Hirose, T. Kaneko, N. Naito, and Y. Takei, “Molecular biology of major components of chloride cells,” Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology , vol. 136, no. 4, pp. 593–620, Dec. 2003, doi: 10.1016/S1096-4959(03)00287-2.
[61] J. C. Tsai and P. P. Hwang, “Effects of wheat germ agglutinin and colchicine on microtubules of the mitochondria-rich cells and Ca2+ uptake in tilapia (Oreochromis mossambicus) larvae.,” Journal of Experimental Biology , vol. 201, no. 15, pp. 2263–2271, Aug. 1998, doi: 10.1242/jeb.201.15.2263.
[62] J. C. Tsai and P. P. Hwang, “The wheat germ agglutinin binding sites and development of the mitochondria-rich cells in gills of tilapia (Oreochromis mossambicus),” Fish Physiology and Biochemistry , vol. 19, no. 1, pp. 95–102, Jul. 1998, doi: 10.1023/A:1007766531264.
[63] G. G. Goss, S. Adamia, and F. Galvez, “Peanut lectin binds to a subpopulation of mitochondria-rich cells in the rainbow trout gill epithelium,” American Journal of Physiology-Regulatory, Integrative and Comparative Physiology , vol. 281, no. 5, pp. R1718–R1725, Nov. 2001, doi: 10.1152/ajpregu.2001.281.5.R1718.
[64] N. V. Grishin, “Estimation of the number of amino acid substitutions per site when the substitution rate varies among sites,”J Mol Evol , vol. 41, no. 5, pp. 675–679, Nov. 1995, doi: 10.1007/BF00175826.