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Abstract

Model ensemble is widely used in deep learning since it can balance the variance and bias of complex models. The mainstream model ensemble methods can be divided into "implicit" and "explicit". The "implicit" method obtains diﬀerent models by randomly inactivating the internal parameters in the complex structure of the deep learning model, and these models are integrated by sharing parameters. However, these methods lack ﬂexibility because they can only ensemble homogeneous models with the similar structure. While the "explicit" ensemble method can fuse completely diﬀerent heterogeneous model structures, which signiﬁcantly enhances the ﬂexibility of model selection and makes it possible to integrate more models with entirely diﬀerent perspectives. However, the explicit ensemble will face the challenge of averaging the outputs, leading to a chaotic result. To this end, researchers further proposed using knowledge distillation and adversarial learning technologies to perform a nonlinear combination of multiple heterogeneous models to obtain better ensemble performance, however these require signiﬁcant modiﬁcations to the training or testing procedure and are computationally expensive compared to simply averaging. In this paper, based on the linear combination assumption, we propose an interpretable ensemble method for averaging model results which is simple to implement, and conducting experiments on the representation learning tasks of Computer Vision(CV) and Natural Language Processing(NLP). The results show that our method is superior to direct averaging results while retaining the practicality of direct averaging.
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Introduction
The idea of the model ensemble is that more robust and generalized results can be obtained by averaging or voting the results of multiple models[1]. Diﬀerent models can obtain certain parts of the distribution due to diﬀerences in training data, models, and training processes. However, if the distributions learned by diﬀerent models are considered, more comprehensive features can be captured, and a more comprehensive distribution can be obtained.
In traditional machine learning, there are already many ensemble learning methods, such as random forest [2], AdaBoost [3], etc. With the successful application of ensemble learning methods in machine learning, researchers turned to the ensemble method of deep learning [4][5]. Considering that the deep learning model is over-parameterized, the deep learning ﬁeld often suﬀers from overﬁtting problems as the model becomes more complex, leading to a trade-oﬀ between the variance and bias of the model’s prediction results [6]. To this end, ensemble learning can help deep learning models balance bias and variance, achieving better robustness and generalization.
The ensemble methods of deep learning models mainly include "implicit" methods such as Dropout [7], DropConnection [8], Stochastic Depth [9], and Swapout [10]. These methods construct multiple homogeneous models by randomly invalidating the internal connections of the deep learning model and letting these homogeneous models obtain more complementary knowledge of the data through training. Finally, through parameter sharing, the results similar to the average or voting from models are obtained. However, these methods lack ﬂexibility because they can only ensemble homogeneous models with the similar structure. Contrastingly, the "explicit" method has higher ﬂexibility than the "implicit" since not only homogeneous models but also those heterogeneous models with entirely diﬀerent structural designs can be ensembled, makes it possible to integrate more models with entirely diﬀerent perspectives.
The general and practicable method in "explicit" is average homogeneous models’ outputs directly, which will face the following challenge. Taking the representation learning in the CV ﬁeld as an example, if the A model is more sensitive to the cat a picture x, a particular part of the output representation [image: ] has A higher value. While model B is more sensitive to the ﬂowers in picture x, making the same part of the output representation [image: ] have a higher value. Average the [image: ] and [image: ] structures to get the ﬁnal representation [image: ] will get confusing results which cannot distinguish cats from ﬂowers. In NLP, there are similar problems. The same sentence, "a cat in the ﬂowers," may have diﬀerent concerns, such as "cat" and "ﬂowers," for diﬀerent models. If the representations obtained by the two models are simply averaged, features may be confusing, as shown in Figure 1. Forcibly implementing linear combination will result in subpar performance since there is no linear correlation in the results.
In addition, there are also some other "explicit" methods to overcome the challenge above, such as [11], which utilize knowledge distillation technology [12]. Fix some pre-trained teacher models ﬁrst, and ﬁt the output of teacher models by training a small network called the student model through the adversarial learning training method [13], which sets a discriminator to judge the quality of student model learning. The core idea of this method is based on letting the student model learn the diﬀerent knowledge from diﬀerent teacher models and form the ensemble of the teacher models.
In order to solve the problem that the heterogeneous models’ outputs do not satisfy a linear relationship, we design a linear classiﬁcation layer based on the neural network as the backbone. Then train the classiﬁcation layer through a suitable loss function to provide a common linear classiﬁcation space. Furthermore, retrain other neural networks with various structures on the common classiﬁcation layer through ﬁne-tuning technology. This approach helps to unify all neural network outputs into the same linear space. In addition, based on the following assumptions:
Assumption 1. Models [image: ] and [image: ] are to be eﬀectively linearly fused only when [image: ] is satisﬁed. Where [image: ] is the linear projection function, and [image: ] is the backbone network.
We propose an interpretable explicit method for ensembling the pre-trained heterogeneous models. Then demonstrate its priority over direct averaging methods on both CV and NLP tasks, which can illustrate the generality of our method in representation learning. In CV experiments, we train the pre-trained models for classiﬁcation tasks on a speciﬁc data set to achieve the representation of pictures. The quality of these representations can determine the performance of downstream tasks such as segmentation, recognition, query, etc. Since having clear classiﬁcation labels, we adopt supervised training. In addition to the supervised training method of representation learning, unsupervised training is also a very important training method. Compared with supervised learning, unsupervised learning has become a signiﬁcant research ﬁeld since it can eﬀectively reduce the dependence on labeled data. Among them, contrastive learning is an important research direction in unsupervised learning. In NLP experiments, we conduct contrastive learning method to learn the semantic representation of sentences, and its core idea is to draw closer and stay away from distant ones. For example, suppose there is a sentence [image: ]. In that case, the corresponding positive sample is deﬁned as the sentence [image: ], which is close to its semantics, and the negative sample is deﬁned as [image: ], which is far away from its semantics. Each sentence can be input into the encoder to obtain a corresponding ﬁxed-dimensional encoding and satisfy [image: ] in the distance.
Summary of contributions: Our contribution in this paper is two-fold. First, we address the challenge of simply averaging the outputs of deep learning models and propose an interpretable linear combination method that is easy to implement. Our experiments verify the based linear combination assumption and proposed an explanation for our motivation. Second, we conduct experiments in both CV ﬁled with supervised training and NLP ﬁled with unsupervised training, describe how our ensemble approach can fuse heterogeneous models in the "explicit" ensemble situation, and show better performance than average combination as well as any single model. We also further tested in the "implicit" ensemble situation and obtained better performance than average combination and any single model by integrating homogeneous models (from diﬀerent initialization parameters). Furthermore, our method can also be used in conjunction with any of these implicit ensemble techniques like dropout, etc. 
[image: ]
Figure 1 This is a ﬁgure with sub ﬁgures, (A) is one logo, (B) is a diﬀerent logo.
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Machine Learning Ensemble
In the ﬁeld of traditional machine learning, the ensemble methods that are most frequently employed are bagging [3], random forest [2], AdaBoost [14], and gradient boosting [15], etc. The Bagging technique employs sample subsets generated by randomly selecting from the training data set to synchronously train the fundamental models for integration. Similarly, random forest synchronously trains several decision tree models from the sample and the feature dimension. By merging the voting results of many decision trees, it solves the issue that decision trees are prone to over-ﬁtting. AdaBoost focuses on samples that are incorrectly classiﬁed and iteratively modiﬁes sample weights to improve the performance of fundamental models for the integration stage. Gradient Boosting is used to produce sample subsets from random samples, and each learner is built and trained to minimize residuals left over from the one before it. Gradient Boosting can therefore force the forecast to be close to the actual value by reducing the sum of the integrated models’ ﬁnal residuals. Both AdaBoost and Gradient Boosting are trained in a tandem way.
Implicit Deep Learning Ensemble
The ensemble methods in deep learning are divided into two types: "implicit" and "explicit". The typical "implicit" ensemble methods include Swapout [10], Dropout [7], DropConnection [8], Stochastic Depth [9]. Typically, these techniques train many homogeneous modes with shared weights before implicit ensembling them for testing. The Dropout approach builds an ensemble out of a single model by removing random groups of hidden nodes after each mini-batch. Each node is scaled according to how likely it was to survive during training to build an exponentially large number of networks with shared weights, which are subsequently implicitly ensembled during testing since no nodes are dropped. DropConnect uses similar techniques to build ensembles during testing by eliminating connections rather than nodes during training. In a recently proposed method called stochastic depth, layers are dropped at random during training to produce an implicit ensemble of networks with diﬀerent depths during testing. Dropout averages are applied to designs with "missing" units, and stochastic depth averages are applied to structures with "missing" layers. Other eﬀective randomized techniques include dropconnect, which generalizes dropout by terminating connections rather than units. Swapout, a stochastic training technique that generalizes dropout and stochastic depth, it skips layers randomly at a unit level while beneﬁting from each method. Swapout produces diverse network architectures for model averaging.
Explicit Deep Learning Ensemble
Besides taking an average over multiple instances, [11] propose an explicit ensemble method that uses technology for knowledge distillation. A tiny network called the student model is trained using the adversarial learning training approach, which establishes a discriminator to assess the caliber of student model learning, and then it is ﬁtted to the output of several pre-trained instructor models. The fundamental tenet of this approach is to enable the student model to absorb various skills from various teacher models and create an ensemble of teacher models. Similar studies [16] integrate the "knowledge" of complex ensembles into a single model.
METHOD
Supervised representation learning in CV
Taking representation learning in the CV ﬁeld as an example, we pre-trained all models on the same batch of image training sets through the arcface loss function [17] to obtain the model [image: ] and an optimal model [image: ]. Where [image: ] is the linear layer of arcface and [image: ] is the backbone network. The arcface technology constructs the following cross entropy-based loss function through the output representation vectors of images, and the corresponding one-hot ground truth label:
[image: ]    (1)
Where [image: ] represents the batch-size, [image: ] represents the number of categories, [image: ] is the normalization parameter, [image: ], [image: ], [image: ], [image: ], and [image: ]. Among them, [image: ]is the parameters matrix of [image: ] , [image: ]is the output of backbone network [image: ]. [image: ] represents the [image: ] row of the matrix [image: ], it represents a vector representation of a classiﬁcation center. By normalizing [image: ] and the output vector [image: ], the model can just learn more angular characteristics so that the sample representation can be distributed on the hypersphere. [image: ] represents the cosine value of the angle between the sample vector and the vector corresponding to the class center of [image: ], [image: ] is the radius of the hypersphere, and [image: ] is the penalty item. This loss function allows the learned sample representations to be tightly clustered around the classiﬁcation center and maintain a large inter-class distance.
Unsupervised representation learning in NLP
Our method can also be used in unsupervised tasks, taking representation learning in NLP as an example. We generate balanced negative samples from positive samples based on the contrastive learning method, and use the pre-trained NLP model to learn the similarity of positive and negative samples to enable the model to understand the semantics and make sentences with similar semantics clustered, while sentences with diﬀerent semantics maintain a larger classiﬁcation gap. For various pre-trained NLP models [image: ], we add a linear layer [image: ] as a classiﬁcation linear layer, which is similar to the argface layer in the supervised task of CV above, and uses cross-entropy as the loss function:
[image: ]    (2)
The augmented sample of [image: ] denoted by [image: ]. Takes [image: ]  and [image: ] as the input of backbone network, and [image: ], [image: ] represent the outputs T correspondingly. [image: ] means the similarity between vectors x and y, such as cosine similarity [image: ], [image: ] is the parameters matrix of linear layer [image: ], [image: ]  and [image: ] are the outputs of the backbone network [image: ] and [image: ] multiplied by the parameters [image: ]. Unlike images with a speciﬁc classiﬁcation center, the languages can only be clustered according to similar semantics. And the [image: ] row of W represented by [image: ] which can be shown as a vector representing classiﬁcation centers with diﬀerent semantics.
Linearization and combination
Traditional combination directly performs a simple weighted average of the representation results of diﬀerent models. Since diﬀerent models may capture diﬀerent key features, and diﬀerent core neurons capture these features in the model, the linear relationship between the outputs of these models is not satisﬁed. Linear combination forcibly will lead to chaotic representations, resulting in performance loss.
Since diﬀerent models have a nonlinear relationship, in order to convert this nonlinear into a linear relationship, it is necessary to unify all models into the same vector space of the classiﬁcation center. That is, to ﬁx the linear layer parameters [image: ], where each column is a vector of classiﬁcation centers. Therefore, our method uses the linear layer of the optimal model [image: ] as the common linear layer and replaces the linear layers of other models [image: ]. At the same time, in order to ensure the knowledge learned by the backbone network [image: ] unchanged, it is necessary to ﬁx the parameters of the [image: ] add a new learnable linear layer [image: ] between the [image: ] and the optimal linear layer [image: ] for other models. By ﬁxing [image: ] and [image: ], optimizing the loss function [image: ], and retraining the linear layer [image: ] to obtain a new model [image: ]. The training method is stochastic gradient descent (SGD) [18]. Thus, the output satisﬁes the linearity assumption such that [image: ].
Especially, for the backbone network [image: ] with the same network structure, which is a speciﬁc case of the above case. Since all models have a similar structure, it only needs to ﬁne-tune each model on the common arcface linear layer to obtain a model group that satisﬁes the assumptions [image: ]. Finally, average the model group [image: ] to obtain the ﬁnal combined representation as follow:
[image: ]    (3)    
Our method is presented as the following algorithm:
Input: training dataset and validation dataset 
Output: average output ŷ
1   Initialize Various Backbone Networks 
for  do
2       Training on Dt with SGD, based on Eq(1) as the objective function
3  Select the best performing model based on 
   for  and  do
4      
Add a new learnable linear layer  between  and  
        
Fixing  and   , fine-tuning  on  with SGD, based on Eq(1) as the objective function
5   return average output based on Eq(2)

EXPERIMENT AND RESULTS
Metrics
We use mP @5 as the metric to measure the quality of image representation.
[image: ]   (4)
where [image: ] is the number of query images. [image: ]  is the number of index images containing an object in common with the query image [image: ]. Note that [image: ]. [image: ] denotes the relevance of prediciton [image: ] for the [image: ] -th query: it is 1 if the [image: ] -th prediction is correct, and 0 otherwise. [19] argue that Spearman correlation, which measures the rankings instead of the actual scores, better suits the need of evaluating sentence embeddings. For all of our NLP experiments, we report Spearman’s rank correlation.
[image: ]    (5)
where [image: ] represents the sorted serial number of [image: ]  in [image: ] space. [image: ] represents the sorted position of [image: ] and [image: ] space. [image: ], [image: ] are two sets of data whose correlation is to be calculated.
Pre-trained Model
In order to test the eﬀectiveness of the proposed method, we will conduct experiments in the ﬁeld of CV and NLP, respectively. Vision Transformer (ViT) [20] is currently the best model for image classiﬁcation, surpassing the best convolutional neural network (CNN). ViT outperforms the best ResNet on all public datasets, provided that ViT is pre-trained on a suﬃciently large dataset. The advantage of ViT is more obvious when pre-training on a larger data set. Therefore, we choose VIT as the backbone of our downstream classiﬁcation task, and the speciﬁc implementation uses the pre-trained model provided by [21].
In Vit, the sampling rate was directly downsampled by 16 times from the beginning, and the following feature maps also maintained the same downsampling rate. However, an improved model Swin Transformer [22] uses a hierarchical construction method (Hierarchical feature maps) similar to the convolutional neural network. For example, in the feature map size, the image is downsampled by four times, eight times, and sixteen times. Such a backbone is helpful for tasks such as target detection and instance segmentation. In addition, the concept of Windows Multi-Head Self-Attention (W-MSA) is used in Swin Transformer. For example, in four times downsampling and eight times downsampling, the feature map is divided into multiple disjoint regions (Window), and Multi-Head Self-Attention is only performed within each window (Window). Compared with directly performing Multi-Head Self-Attention on the entire (Global) feature map in Vit, it reduces the amount of calculation, especially when the shallow feature map is large. Therefore, the swin-transformer is a considerable comparison model, which may capture features from the diﬀerent perspectives from vit and serve as an eﬀective supplement.
We add an arcface layer to the two models 17 as the target space. In order to obtain diﬀerent encoding models, We train vit on 224×224, 280×280, and 290×290 three diﬀerent resolutions, respectively. For the Swin-transformer model, we choose three models of diﬀerent scales with uniform resolution: Swin-tiny, Swin-small, and Swin-base. The classiﬁcation accuracy and mP@5 illustrate the eﬀectiveness of our proposed method. Sentence semantic representation is a critical task in the ﬁeld of NLP. We use the Simcse[23 ]model, which is currently relatively good in unsupervised text semantic representation, to conduct experiments to verify the eﬀectiveness of our proposed method.
The key to using contrastive learning is constructing positive and negative samples or directly obtaining the ﬁnal positive and negative representations. Simcse enters a sentence into the neural network twice, uses the dropout layer in the deep neural network to directly obtain the corresponding positive sample representation, and uses other sentence representations in the same batch as negative samples. In addition to this direct construction of diﬀerent positive and negative sample representations, there are many methods of constructing positive and negative samples, such as synonymous replacement [24], deletion of words, adjustment of the order of words [25], etc. The following uses BERT 26 as an example to illustrate the model architecture. Specifically, a pre-trained model Bert-base-uncased of bert is used as the backbone, and then a linear layer is used as the semantic representation space. Before going to the linear layer, we take the encoding of the [CLS] position to represent the entire sentence.
The prediction results of the above model on the STSB [27] evaluation set under diﬀerent random number seeds are used as the criteria for selecting the semantic representation space. Then retrain for models other than the selected semantic space, add a linear layer between the backbone and the semantic representation space, and train the backbone and the added linear layer in the case of a ﬁxed semantic representation space.
Roberta [28] and Bert are much diﬀerent in the training process. The static mask method used in Bert is to copy multiple copies of the sentence and randomly cover some tokens in the input sentence. The purpose is to predict the covered words based on their context and ﬁnally obtain a representation that can fuse the context information, but there will still be a large number of repeated masked samples in one epoch. To this end, Roberta adopts a dynamic mask mechanism so that the masked part of each sample is diﬀerent. In addition, Roberta simpliﬁes the training process and greatly increases the batch size of the training dataset. This will allow Roberta to get a wider range and diﬀerent understanding even if they have the same model structure. Therefore, the change in the pre-training process will have a similar eﬀect to changing the model structure.
We also conduct the contrast experiment by replacing the backbone in the above NLP with Roberta and replacing the data augmentation method by randomly deleting some words [25] in the sentence.
Datasets
The model with VIT as the backbone in computer vision is trained on the Products-10k [29], Shopee, MET 30, GPR 31, GLDv2 32, and evaluated on the model’s performance on H&M. However, the backbone model composed of a Swin-transformer is only trained on the Products-10k. For the NLP models, we trained on Wiki and demonstrate the semantic representation capabilities of the NLP model on datasets of 7 text semantic similarity tasks, namely STS12[33], STS13[34], STS14[35], STS15[36], STS16[37], STS Benchmark [27] and SICK-Relatedness [38]. The above seven text semantic similarity datasets contain two sentences in rows and a score indicating the similarity of the sentences. We use the output of the [CLS] position in Bert to encode the sentence. The cosine value between the two sentence representations is calculated as the semantic similarity between the two sentences. After calculating the similarity scores of the two sentences, calculate the Spearman coeﬃcient between the actual score and the predicted score as a criterion for judging the quality of the model.
Results
The VIT model is used as the backbone in the image representation of computer vision. Then the model’s performance obtained by integrating training at diﬀerent resolutions is veriﬁed on the H&M dataset. The evaluated data set in Products-10k is used to conduct experiments to test whether our method can improve the model’s performance with swin-transformer as the backbone. Under Bert (Roberta) as the backbone, the models obtained by diﬀerent data augmentation methods are veriﬁed on seven text semantic datasets in the natural language text semantic expression ﬁeld.
The experimental results Table 1 in CV show that the expressiveness of the models obtained at diﬀerent resolutions is very similar. Compared with the original model, the model obtained after training in the best expression space will be improved to varying degrees. The model’s advantages at each resolution will be more prominent. Ultimately it also leads to better results in model ensembles that is, an improvement of more than 1.6 percentage points(0.4510→0.4675). The experimental results using the Swin-transformer model as the backbone show that the model corrected by our method not only gives a better picture representation(0.6496→0.6720, 0.6578→0.6839) but also has a higher classification accuracy(Acc@1: 85.05→88.10, Acc@5:95.82→97.28) in the target space of each sub-model.
Table 1 The results(mP@5) of the model with vit as the backbone at different resolutions.
	
	224x224
	280x280
	290x290
	mean

	traditional
	0.4651
	[bookmark: OLE_LINK4]0.4635
	0.4389
	0.4510

	our
	0.4649
	0.4747
	0.4600
	0.4675



Table 2 The results on classification accuracy and mP@5 come from the model with the model in the Swin-Transformer model family as the backbone.
	
	
	tiny
	small
	base
	mean

	traditional
	Acc@1
	85.05
	86.79
	90.14
	-

	
	Acc@5
	95.82
	96.86
	98.18
	-

	
	mP@5
	0.6496
	0.6578
	0.6800
	0.6697

	our
	Acc@1
	88.10
	88.25
	90.14
	-

	
	Acc@5
	97.28
	97.94
	98.18
	-

	
	mP@5
	0.6720
	0.6839
	0.6800
	0.6821



By integrating the models under three kinds of random numbers, we can obtain the performance results of the models on seven text semantic similarity calculation datasets. As seen from Table 3, for the models with Bert as the backbone, the proposed method can obtain better results (avg: 77.71) than those (avg: 76.88) calculated by the direct integration model. Furthermore, compared with the traditional integration method in a single data, the proposed method can improve by 1.3 points on STSB; at the same time, it can increase up to 3.48 points on STS15 than the corresponding best model. We found that the proposed method cannot constantly improve the semantic representation ability for the models with Roberta as the backbone. However, when the proposed method does not improve the semantic representation of the text, the traditional method will not improve; when the traditional method cannot improve or even decline (76.57 [image: ] 76.50), ours may still have some eﬀect (76.57 [image: ] 76.91).
[bookmark: OLE_LINK2]Table 3 Performance of proposed model ensemble strategies on textual semantic similarity.The first line is the best score under three random numbers;the second line is the integration score of the three models;the third line is the score obtained after retraining according to our method.
	
	[bookmark: OLE_LINK1]STS12
	STS13
	STS14
	STS15
	STS16
	STSB
	SICK
	avg

	
	duplication

	best
	69.59
	81.55
	74.25
	79.34
	78.72
	77.94
	70.52
	75.99

	Bert
	69.72
	82.79
	75.18
	81.74
	79.36
	78.44
	70.96
	76.88

	our
	70.75
	83.41
	75.96
	82.82
	79.10
	79.74
	72.22
	77.71

	best
	68.89
	81.27
	73.23
	81.84
	81.09
	80.29
	69.40
	76.57

	Roberta
	68.85
	81.25
	73.16
	81.93
	80.84
	80.29
	69.12
	76.50

	our
	69.29
	81.66
	73.81
	81.69
	81.45
	81.34
	69.11
	76.91

	
	delete word

	best
	68.22
	82.78
	73.65
	81.16
	77.27
	76.36
	70.96
	75.77

	Bert
	69.23
	82.71
	75.21
	82.19
	78.74
	78.60
	71.97
	76.95

	our
	69.82
	82.82
	75.03
	82.87
	79.58
	79.51
	72.59
	77.46

	best
	66.31
	81.32
	71.07
	80.89
	80.09
	79.21
	69.75
	75.52

	Roberta
	66.57
	80.96
	71.46
	80.86
	80.14
	79.09
	70.02
	75.59

	our
	65.95
	80.66
	71.89
	80.94
	79.74
	79.26
	70.18
	75.52



[bookmark: OLE_LINK3]Table 4 The average score and variance of the models under different random numbers and backbones on seven text semantic similarity representations.
	
	duplication
	var
	delete word
	var

	best
	75.46
	75.62
	75.99
	0.049
	75.77
	75.28
	75.25
	0.057

	Roberta
	76.57
	76.23
	76.42
	0.019
	75.39
	75.52
	75.38
	0.004



Analysis
This section will analyze why the proposed method does not work well on the model with Roberta as the backbone. First, we give the average scores under several random numbers and diﬀerent data augmentation methods. According to the data in the Table 4, their prediction results are very diﬀerent in the model with Bert as the backbone (variance 0.057). The models under diﬀerent random numbers learn semantics from diﬀerent angles. However, the variance of the predicted results in the model with Roberta as the backbone is about one-twelfth of the variance of the model with Bert as the backbone. This situation causes the features learned by the model under each random number to tend to be consistent, losing the meaning of ensemble learning. In addition, we tried multiple models to ﬁnd the appropriate number of model combinations Fig.2. Under the balance of eﬃciency and income, we selected three models for model integration.
Table 5 Scores of text semantic similarity for models mixed with different amounts of Bert and Robert. B:Abbreviation of Bert;R:Abbreviation of Roberta. B2R1:Two Berts and one Bobert
	
	STS12
	STS13
	STS14
	STS15
	STS16
	STSB
	SICK
	avg

	baseline
	70.23
	83.50
	75.64
	83.56
	81.68
	81.65
	70.13
	78.06

	B2R1
	69.85
	83.34
	76.07
	83.08
	81.35
	81.18
	73.39
	78.32

	baseline
	69.22
	82.45
	74.06
	82.22
	81.08
	80.89
	68.99
	76.99

	B1R2
	70.07
	82.45
	74.64
	82.44
	81.92
	81.63
	70.11
	77.61



In order to verify that our method is also eﬀective in the case of diﬀerent model combinations, we assign the number of Bert and Roberta in the ensemble model when the sum is three. Experimental results Table 5 show that our method can be further improved based on the original integration, which shows that our method is also applicable in heterogeneous environments.
[image: ]
Figure 2 The inﬂuence of the number of models on the integration results. M k represents the result of integrating k models.
CONCLUSION
We provide an interpretable and easy-to-implement linearly combination method for deep learning models. Intuitively, based on the assumption of linear combination, our method sets a standard linear classiﬁcation layer and ﬁne-tunes diﬀerent models to learn representations on the same classiﬁcation center, thus obtaining the linear representation results of various models. Finally, more robust performance is achieved by combining the results on average. We have veriﬁed the representation learning tasks in two diﬀerent ﬁelds of CV and NLP. In the case of "explicit" ensemble, our method can be used to combine a wide variety of architectures, such as vit in the CV ﬁeld, bert and roberta in the ﬁeld of NLP. This method is simpler and easier to implement compared with those that distill diﬀerent models into a simple model. Moreover, it avoids feature confusion caused by direct averaging with interpretability. We also simulate our approach to the case of an "implicit" ensemble by ensemble models with an identical structure but diﬀerent parameter initializations. We obtain a better result than the average combination or any single model. Furthermore, our method can also be used in conjunction with any of these implicit ensembling techniques since all models including vit, bert and roberta used dropout technology during training in our experiments. There are several avenues for future work, we focus on combining the output results of three independently trained models, dealing with more model output linear combination problems might promote ensemble diversity and improve performance even further. In addition, compared with the average combining the outputs of diﬀerent models, performance can be further enhanced by optimizing the ensemble weights, as in stacking [39] or adaptive mixture of models [40] .
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