
Confidential manuscript submitted to JGR-Oceans

Statistics of bubble plumes generated by breaking surface waves1

Morteza Derakhti1, Jim Thomson1, Christopher Bassett1, Mika Malila2, and James T.2

Kirby3
3

1Applied Physics Laboratory, University of Washington, Seattle, WA, USA4
2Institute of Marine Sciences, University of North Carolina at Chapel Hill, Morehead City,5

NC, USA6
3Center for Applied Coastal Research, Department of Civil and Environmental Engineer-7

ing, University of Delaware, Newark, DE, USA8

Key Points:9

• Bubble plumes generated during ocean surface wave breaking are observed with echosounders10

on drifting buoys.11

• Bubble plume depths are well correlated with whitecap coverage, wind speed, and spec-12

tral wave steepness.13

• Bubble plumes persist for many wave periods and exceed the persistence of visible sur-14
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Abstract16

We examine the dependence of the penetration depth and fractional surface area (e.g., whitecap17

coverage) of bubble plumes generated by breaking surface waves on various wind and wave pa-18

rameters over a wide range of sea state conditions in the North Pacific Ocean, including storms19

with sustained winds up to 22 ms−1 and significant wave heights up to 10 m. Observations in-20

clude arrays of freely drifting SWIFT buoys together with shipboard wind and optical video sys-21

tems, which enabled concurrent high-resolution measurements of wind, waves, bubble plumes,22

and turbulence. We estimate bubble plume penetration depth from echograms that extend to more23

than 30 m depth in a surface-following reference frame collected by downward-looking echosounders24

integrated onboard the buoys. Our observations indicate that the mean and maximum bubble plume25

penetration depths exceed 10 m and 30 m beneath the surface at high winds, respectively, with26

a plume residence time of many wave periods. Bubble plume depths are well correlated with wind27

speeds, spectral wave steepness, and whitecap coverage. Plume depths scaled by total significant28

wave height are strongly linearly correlated with the inverse of wave age. Plume depths scaled29

by either wind sea or total significant wave height vary non-monotonically with increasing wind30

speeds. Dependencies of the combined observations on various non-dimensional predictors used31

for whitecap coverage estimation are also explored. This study provides first field evidence of a32

direct relation between bubble plume penetration depth and whitecap coverage, suggesting that33

the volume of bubble plumes could be estimated by remote sensing.34

Plain Language Summary35

Quantifying the statistics of bubble plumes generated during ocean surface wave breaking36

is essential to understand the exchange between the ocean and the atmosphere. Bubble plumes37

also cause important variations in underwater acoustics and optics. Recent studies also suggest38

that the statistics of bubble plumes are skillful predictors for total energy loss during wave break-39

ing, which is an essential quantity for accurate wave forecasting. Here we examine the depen-40

dence of bubble plume statistics on various wind and wave parameters over a wide range of sea41

state conditions, including storms. Echosounders integrated onboard drifting buoys are used to42

detect bubbles and estimate their penetration depth below the ocean surface. Visible surface area43

of these bubble plumes is also observed using shipboard optical video systems. We successfully44

provide multiple empirical relationships that predict the observed variability of the penetration45

depth and surface area of bubble plumes as a function of simple wind and wave statistics (avail-46

able from existing forecast models or typical ocean buoys). Our results indicate that the pene-47

tration depth of bubble plumes is correlated with their visible surface area, suggesting that the48

volume of bubble plumes could be estimated by observing the ocean surface from above.49

1 Introduction50

Air-entraining breaking surface waves play a significant role in air-sea exchanges of mass,51

heat, energy, and momentum [Melville, 1996; Sullivan and McWilliams, 2010; Deike, 2022], and52

are also crucial in various technical applications, such as the design of marine structures and un-53

derwater communications. Breaking waves inject a relatively large volume of air into the water54

column as bubbles which then form intermittent bubble clouds at a wide range of spatial scales,55

hereafter referred to as bubble plumes. The entrained bubbles change optical properties of the56

water column [Terrill et al., 2001; Al-Lashi et al., 2016] and generate acoustic noise [Felizardo57

and Melville, 1995; Manasseh et al., 2006], especially during the active breaking period.58

Quantifying the statistics of these bubble plumes (e.g., void fractions, size distributions,59

penetration depth, surface area, and volume of bubble plumes averaged over many waves) is es-60

sential to obtain robust parameterizations of fluxes at the ocean-atmosphere interface and vari-61

ations in underwater acoustics and optics. Recent studies, including the present observations, also62

show that the statistics of bubble plume that represent the overall size of bubble plumes are strongly63

correlated with total wave breaking dissipation [Schwendeman and Thomson, 2015a; Callaghan64

et al., 2016; Callaghan, 2018; Derakhti et al., 2020a]. This suggests that such bubble plume statis-65
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tics are skillful predictors for the corresponding energy and momentum exchange between the66

ocean and atmosphere, especially in high sea states.67

The statistics that represent the overall size of bubble plumes for a given sea state may be68

defined, in a wave-averaged sense, as the long-time (several minutes) average of the surface area69

and the penetration depth of individual bubble clouds. The former may be directly approximated70

from whitecap coverage𝑊 , which represents the average visible surface area of bubble plumes71

and surface foam patches per unit sea surface area. 𝑊 is a reasonably easily measurable quan-72

tity using optical video systems. Estimation of bubble plume depth is, however, challenging and73

rare, especially during active wave breaking period. This study provides concurrent observations74

of𝑊 and bubble plume penetration depth in various sea states.75

Many previous studies have examined the dependence of𝑊 on wind speeds and sea states76

[Monahan and Muircheartaigh, 1980; Callaghan et al., 2008; Kleiss and Melville, 2010; Schwen-77

deman and Thomson, 2015a; Brumer et al., 2017; Malila et al., 2022]. Despite large scatter in78

the data, particularly for wind speeds less than 10 ms−1, these recent field studies have established79

fairly consistent empirical formulations that provide estimates of𝑊 based on given wind and/or80

sea state parameters.81

Fewer previous studies reported mean values of the penetration depth of bubble plumes,82

𝐷𝑏𝑝 , for a range of wind speeds using upward-looking sonars moored to the sea bed or a plat-83

form [Thorpe, 1982, 1986; Dahl and Jessup, 1995; Vagle et al., 2010; Wang et al., 2016; Strand84

et al., 2020]. These observations show that 𝐷𝑏𝑝 increases with increasing wind speed and varies85

from [1−5] m at low winds to [7−25] m during storms. However, the dependence of the statis-86

tics of 𝐷𝑏𝑝 on wind and sea state parameters is not well understood.87

The main objective of this study is to understand and quantify the statistics that character-88

ize the size of the bubble plumes (averaged over many waves, 𝑂 (minutes)) generated by break-89

ing surface waves in the open ocean. Our observations include arrays of freely drifting, surface-90

following SWIFT buoys together with shipboard wind and optical video systems, which enabled91

concurrent high-resolution measurements of wind, waves, whitecap coverage, bubble plumes,92

and turbulence over a wide range of sea state conditions in the North Pacific Ocean, including93

storms with sustained winds up to 22 ms−1 and significant wave heights up to 10 m. We estimate94

bubble plume penetration depth by using echograms that extend to more than 30 m depth in a surface-95

following reference frame using downward-looking echosounders integrated onboard the buoys.96

We focus on examining the dependence of the statistics of the penetration depth of bub-97

ble plumes 𝐷𝑏𝑝 on various wind and wave parameters and the relation between 𝐷𝑏𝑝 statistics98

and𝑊 . Further, we comment on the role of wind history on𝑊 values. In a planned companion99

paper, we also investigate dynamic relationships between these bubble plume statistics and to-100

tal wave breaking dissipation using our synchronized observations of bubble plumes and dissi-101

pation rates.102

The rest of this paper is organized as follows: §2 describes the observed environmental con-103

ditions and our analysis for estimating bubble plume penetration depths. §3 describes the depen-104

dency of the bubble plume statistics on various wind and sea state parameters. Discussion and105

a summary of the main findings are provided in §4 and §5, respectively.106

2 Methods107

2.1 Data108

The present data set includes observations of wind, waves, air and sea temperature, near-109

surface turbulence, time-depth images of acoustic backscatter (referred to as echograms), above-110

and sub-surface optical imagery by freely drifting surface following SWIFT buoys [Thomson, 2012;111

Thomson et al., 2019], as well as concurrent shipboard measurements of wind, temperature, and112

whitecap coverage. The data were collected during an 18-day research cruise in the North Pa-113
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cific Ocean (Figure A.1a) in December 2019. The primary objective of the cruise was to carry114

out concurrent observations of breaking surface gravity waves and the associated bubble plume115

statistics. The secondary objective was the replacement of a long-term moored wave buoy at Ocean116

Station PAPA (50◦ N, 145◦ W), which reports as CDIP 166 and NDBC 46246. Hereafter we re-117

fer to the present data set and cruise with the abbreviation PAPA.118

The PAPA cruise, aboard the R/V Sikuliaq, departed Dutch Harbor, AK, on 5 December119

2019 and ended in Seattle, WA, on 23 December 2019. Arrays of SWIFT buoys were deployed120

from the ship early in the morning and usually recovered later the same day. Most of the ship-121

board and autonomous measurements were carried out during local daylight hours, while the east-122

ward transits were continued overnight. Figure A.1a shows the PAPA cruise track and average123

location of SWIFT buoys during each deployment along the transit. Figures A.1b, A.1c, and A.1d124

show that the PAPA data set includes a wide range of sea state conditions;𝑈10𝑁 (0.8−22 ms−1),125

𝐻𝑠 (2.2 − 10.0 m), 𝑇𝑚 = 𝑓 −1
𝑚 (6.6 − 11.6 s), 𝑇𝑝 (6.5 − 14.6 s), 𝑇𝑎𝑖𝑟 − 𝑇𝑠𝑒𝑎 (−4.4 to 1.2◦ C),126

𝑐𝑚/𝑈10𝑁 (0.6−17.5), 𝑑𝑈10𝑁/𝑑𝑡 (−10.2 to 6.9 ms−1/hr); including a storm in the vicinity of Sta-127

tion PAPA with sustained wind speeds up to 22 ms−1 and significant wave heights up to 10m. We128

note that a significant portion of the data was collected in the presence of persistent rain (though129

rain rates were not measured).130

Raw SWIFT data were collected at sampling rates of 0.5−5 Hz in bursts lasting 512 sec-131

onds at intervals of 12 minutes. Processed SWIFT data, such as wave spectra and bubble plume132

statistics, are produced for each burst for each buoy, and then concurrent bursts are averaged among133

the buoys (typically 4 of them). During the cruise, more than 2000 bursts of data were collected134

by arrays of two to six SWIFT buoys, and 543 processed data points are obtained at intervals of135

12 minutes spread over 14 daylight deployments. Statistics from the shipboard measurements,136

such as wind speeds and whitecap coverage, represent 10-minute average values and are obtained137

at the same time that the processed SWIFT data points are produced.138

Two versions of SWIFT buoys have been concurrently used here, the version 3 buoys have139

uplooking Nortek Aquadopp Doppler sonars [Thomson, 2012], and the version 4 buoys have down-140

looking Nortek Signature1000 Doppler sonars which enable synchronous measurements of acous-141

tic backscatter (i.e., echograms), broadband Doppler velocity profiles, and high-resolution (HR)142

turbulence profiles through the near-surface layer [Thomson et al., 2019]. This new SWIFT ca-143

pability allows us to quantify penetration depths of bubble plumes in a surface-following refer-144

ence frame, with raw data that captures the time evolution within individual waves (i.e., phase-145

resolved).146

The methodologies that we use to process echogram data and obtain bubble plume statis-147

tics are described in detail in this section. The instrumentation and methods that are used to ob-148

tain the rest of the relevant environmental variables and statistics, such as wind speeds, wave spec-149

tra, and whitecap coverage, are described in several previous observational studies [Thomson, 2012;150

Schwendeman and Thomson, 2015a; Thomson et al., 2016, 2018], and will be briefly summarized151

here for convenience.152

2.2 Wind Statistics153

We calculate the neutral 10-m wind speed𝑈10𝑁 (Figure A.1b) following Hsu [2003] from154

wind speed measurements at 10 Hz, corrected for ship motion and airflow distortion, by three ship-155

board sonic anemometers (Metek Omni-3) at approximately 16.5 m height above the sea surface.156

The mean𝑈10𝑁 values are obtained over 10-minute bursts of raw data. We note that the atmo-157

spheric stability (𝑇𝑎𝑖𝑟−𝑇𝑠𝑒𝑎) effect is often neglected in the estimation of the 10-m wind speed,158

or𝑈10𝑁 is simply approximated using the mean wind profile power law given by𝑈𝑃𝐿
10 = 𝑈𝑧 (10/𝑧)1/7.159

Figure A.1b shows the observed range of the shipboard measurements of𝑈𝑃𝐿
10 = 𝑈16.5 (10/16.5)1/7

160

(solid line) and the estimated𝑈10𝑁 values (circles) for the times that the processed SWIFT data161

are produced.162
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During the PAPA cruise, the atmospheric stability was negative most of the time (𝑇𝑎𝑖𝑟−163

𝑇𝑠𝑒𝑎 ranged between -4.4 ◦C and 1.2 ◦C as shown in Figure A.1d) indicating unstable atmospheric164

boundary layer conditions. Figure A.2a shows that𝑈10𝑁 values are greater than𝑈𝑃𝐿
10 in unsta-165

ble atmospheric conditions by between 2% and 30%, where the differences decrease with increas-166

ing wind speed or 𝑇𝑎𝑖𝑟−𝑇𝑠𝑒𝑎 values. Figure A.2a also shows that the differences between𝑈10𝑁167

and𝑈𝑃𝐿
10 values are within 2% for stable atmospheric conditions (i.e., 𝑇𝑎𝑖𝑟 − 𝑇𝑠𝑒𝑎 > 0).168

The friction velocity 𝑢∗ of the airflow is readily estimated from a modified logarithmic mean169

wind profile [Hsu, 2003], which accounts for atmospheric stability effects. The air-side friction170

velocity is also independently estimated using the inertial dissipation method and assuming neu-171

tral atmospheric stability as described in Thomson et al. [2018]; Yelland et al. [1994]. However,172

robust estimates of 𝑢∗ are only achieved for a fraction of the time due to the strict requirements173

that the ship’s heading is within 60 degrees of the wind and that the turbulent wind spectra match174

an expected frequency−5/3 shape. Figure A.2b shows the two estimates of 𝑢∗ against𝑈10𝑁 dur-175

ing the PAPA cruise. The mean 𝑢∗ values are obtained over 10-minute bursts. The correspond-176

ing data from Schwendeman and Thomson [2015a], in which 𝑢∗ values were estimated using the177

inertial dissipation method, are also compiled in Figure A.2b. Here we use the 𝑢∗ values obtained178

from a modified logarithmic mean wind profile [Hsu, 2003] for all relevant analyses.179

2.3 Wave Statistics180

Wave spectral information, including the wave power spectral density 𝐸 ( 𝑓 ) (m2s) and frequency-181

dependent directional spread Δ𝜃 ( 𝑓 ), are obtained by combining GPS and IMU measurements182

( collected by the SWIFT buoys) over the frequency range (0.01−0.49) Hz with a 0.012 Hz res-183

olution as described in Schwendeman and Thomson [2015a]; Thomson et al. [2018]. As detailed184

below, several bulk and spectral wave parameters are then calculated using 𝐸 ( 𝑓 ) and Δ𝜃 ( 𝑓 ).185

Figure A.2c shows examples of the observed 𝐸 ( 𝑓 ), colored by𝑈10𝑁 , for𝑈10𝑁 > 10 ms−1.186

The two vertical dotted lines in Figure A.2c show the equilibrium range
√

2 𝑓𝑚 to
√

5 𝑓𝑚, defined187

by Schwendeman and Thomson [2015a], over which the spectra approximately decay as 𝑓 −4 con-188

sistent with the observations of Schwendeman and Thomson [2015a]. Here, 𝑓𝑚 is the spectrally-189

weighted mean frequency given by190

𝑓𝑚 =

∫
𝑓 𝐸 ( 𝑓 )𝑑𝑓∫
𝐸 ( 𝑓 )𝑑𝑓

. (1)

Figure A.2d shows the observed range of two commonly used alternatives for a characteristic wave191

period 𝑇 , the peak wave period 𝑇𝑝 = 𝑓 −1
𝑝 and the mean wave period 𝑇𝑚 = 𝑓 −1

𝑚 (Eq. 1), as a192

function of𝑈10𝑁 . Figure A.2d also shows the wind sea mean wave period 𝑇𝑤𝑠
𝑚 = ( 𝑓 𝑤𝑠

𝑚 )−1, where193

𝑓 𝑤𝑠
𝑚 calculated as given by Eq. 1 but over the wind sea portion of the observed wave spectra 𝐸𝑤𝑠 ( 𝑓 ).194

Here 𝐸𝑤𝑠 ( 𝑓 ) is estimated using a 1D wave spectral partitioning technique following Portilla et al.195

[2009]. The solid lines in Figure A.2d represent the 𝑇𝑚 and 𝑇𝑝 values predicted by the Pierson-196

Moskowitz spectrum, a representative spectrum of fully developed wind-driven seas.197

Figure A.2e shows the observed range of several characteristic wave heights as a function198

of𝑈10𝑁 , with 𝐻𝑠 = 4(
∫
𝐸 ( 𝑓 )𝑑𝑓 )1/2 the total significant wave height, 𝐻𝑝 = 4(

∫ 1.3 𝑓𝑝

0.7 𝑓𝑝
𝐸 ( 𝑓 )𝑑𝑓 )1/2

199

a peak wave height (after Banner et al. [2000]), and 𝐻𝑤𝑠
𝑠 = 4(

∫
𝐸𝑤𝑠 ( 𝑓 )𝑑𝑓 )1/2 the wind sea200

significant wave height. Two estimates of the significant wave height of fully developed seas 𝐻𝑠,fd201

(solid lines) given by Carter [1982] and Chen et al. [2002] are also plotted in Figure A.2e. Re-202

sults shown in Figures A.2d and A.2e indicate that significant swell is present at moderate and203

calm winds in the PAPA data.204

Several estimates of the corresponding wave age are presented in Figure A.2f, where 𝑐𝑝205

and 𝑐𝑚 are the wave phase speeds corresponding to 𝑓𝑝 and 𝑓𝑚, respectively. These results show206

that a significant portion of the PAPA data at high winds (𝑈10𝑁 ≥ 15ms−1) are characterized207

as developing seas (𝑐𝑝/𝑢∗ < 30 or 𝑐𝑝/𝑈10𝑁 < 1.2), and that equilibrium seas (𝑐𝑝/𝑢∗ ≈ 30208

or 𝑐𝑝/𝑈10𝑁 ≈ 1.2) are mostly observed at moderate winds.209
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It is generally accepted that the wave steepness (or slope), defined as 𝑆 = 𝐻𝑘/2 with 𝐻210

and 𝑘 are a characteristic wave height and wavenumber, is the most relevant local geometric wave211

parameter to characterize surface gravity wave breaking and related processes in deep water [Per-212

lin et al., 2013]. Several formulations have been proposed to quantify a representative wave steep-213

ness in a wave-averaged sense which are either defined based on wave spectral information [Ban-214

ner et al., 2002] or bulk wave parameters [Banner et al., 2000].215

A measure of mean square slope (𝑚𝑠𝑠) over a frequency range 𝑓1 ≤ 𝑓 ≤ 𝑓2, as proposed216

by Banner et al. [2002], is calculated as217

𝑚𝑠𝑠 =

∫ 𝑓2

𝑓1

𝑘2𝐸 ( 𝑓 )𝑑𝑓 =
∫ 𝑓2

𝑓1

(2𝜋 𝑓 )4

𝑔2 𝐸 ( 𝑓 )𝑑𝑓 , (2)

and is shown to be a skillful spectral steepness parameter for predicting wave breaking statistics218

in the open ocean [Schwendeman and Thomson, 2015a; Brumer et al., 2017]. Many field obser-219

vations of the speed of visible breaking wave crests [Phillips et al., 2001; Melville and Matusov,220

2002; Gemmrich et al., 2008; Thomson and Jessup, 2009; Kleiss and Melville, 2010; Sutherland221

and Melville, 2013; Schwendeman et al., 2014] have shown that most of surface gravity wave break-222

ing occurs at frequencies noticeably greater than the frequency at the peak of 𝐸 ( 𝑓 ), 𝑓𝑝 , with most223

frequent breaking occurring at ≈ 2 𝑓𝑝 . We note that 𝑓𝑚/ 𝑓𝑝 varies between 0.9 and 1.6 in the PAPA224

data (Figure A.2d) where most of the 𝑓𝑚/ 𝑓𝑝 values are within a range (1.1−1.4), and that the225

Pierson-Moskowitz spectrum gives 𝑓𝑚/ 𝑓𝑝 ≈ 1.30. Following Schwendeman and Thomson [2015a],226

here we take an equilibrium range 𝑚𝑠𝑠 calculated over a frequency range
√

2 𝑓𝑚 ≤ 𝑓 ≤
√

5 𝑓𝑚227

(2𝑘𝑚 ≤ 𝑘 ≤ 5𝑘𝑚, 𝑐𝑚/
√

5 ≤ 𝑐 ≤ 𝑐𝑚/
√

2), which is related to an average spectral steepness of228

a significant portion of visible breaking waves, especially in developed and equilibrium sea states.229

Figures A.2g and A.2h show the variation of the equilibrium range 𝑚𝑠𝑠 and 𝑚𝑠𝑠/Δ 𝑓 (Δ 𝑓 =230

(
√

5−
√

2) 𝑓𝑚) against𝑈10𝑁 , all colored by wind accelerations 𝑑𝑈10𝑁/𝑑𝑡 defined as the rate of231

change of𝑈10𝑁 over 1.5 hr, in the PAPA data together with the corresponding data from Schwen-232

deman and Thomson [2015a]. Figures A.2g and A.2h also show the corresponding values that233

are obtained from the Pierson-Moskowitz spectrum, which is a representative spectrum of a fully234

developed sea under constant wind (𝑑𝑈10𝑁/𝑑𝑡 = 0), given by [𝑚𝑠𝑠]𝑃𝑀 ≈ 0.436𝛼 (𝛼 = 8.1 ×235

10−3) and [𝑚𝑠𝑠/Δ 𝑓 ]𝑃𝑀 ≈ 𝜋𝛼𝑔−1𝑈10𝑁 . Figures A.2g also shows that the observed equilibrium236

range 𝑚𝑠𝑠 in equilibrium, developing, and old seas are, on average, consistent with, greater, and237

smaller than those predicted by the Pierson-Moskowitz spectrum, respectively. Further, our ob-238

servations corroborate the analytical relations obtained from the Pierson-Moskowitz spectrum,239

i.e., equilibrium range 𝑚𝑠𝑠 is independent of wind speeds and 𝑚𝑠𝑠/Δ 𝑓 ∝ 𝑈10𝑁 in fully devel-240

oped seas with constant winds. Further, Figure A.2i shows the corresponding wind sea 𝑚𝑠𝑠𝑤𝑠/Δ 𝑓241

values where 𝑚𝑠𝑠𝑤𝑠 is calculated as given by Eq. 2 but using 𝐸𝑤𝑠 ( 𝑓 ) over a frequency range
√

2 𝑓𝑚 ≤242

𝑓 ≤
√

5 𝑓𝑚.243

Schwendeman and Thomson [2015a] and Brumer et al. [2017] used a normalized 𝑚𝑠𝑠 pa-244

rameter, 𝑚𝑠𝑠/Δ 𝑓Δ𝜃, where Δ𝜃 is the average of Δ𝜃 ( 𝑓 ) over
√

2 𝑓𝑚 ≤ 𝑓 ≤
√

5 𝑓𝑚 and reported245

a decrease of data scatter in their plots of whitecap coverage against 𝑚𝑠𝑠/Δ 𝑓Δ𝜃 compared to 𝑚𝑠𝑠.246

At any given wind speed, the 𝑚𝑠𝑠/Δ 𝑓Δ𝜃 values in the present data are, on average, greater than247

those in Schwendeman and Thomson [2015a] despite consistent 𝑚𝑠𝑠 and mss/Δ 𝑓 values in both248

data sets. We note that 𝑚𝑠𝑠/Δ 𝑓Δ𝜃 can not be defined in a long-crested wavefield or from a 1D249

wave spectrum. We further note that Δ𝜃 is sensitive to the type of buoy and method of process-250

ing [Donelan et al., 2015], such that values may not be directly comparable between data sets.251

Here we avoid the directional normalization and choose the equilibrium range 𝑚𝑠𝑠/Δ 𝑓 as a rep-252

resentative measure of spectral steepness of dominant breaking waves.253

The observed range of several bulk steepness parameters, including the significant spec-254

tral peak steepness 𝐻𝑝𝑘 𝑝/2 (after by Banner et al. [2000]) and the significant wave steepness 𝐻𝑠𝑘 𝑝/2,255

against 𝑚𝑠𝑠/Δ 𝑓 are shown in Figures A.2j and A.2k. Here the peak 𝑘 𝑝 and mean 𝑘𝑚 wave num-256

bers are obtained from the linear gravity wave dispersion relation given by 𝑘 = (2𝜋)2𝑔−1𝑇−2.257

Consistent with the literature, we consider these bulk steepness parameters here.258
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Finally, several dimensionless bulk parameters with general forms of259

𝑅𝐻 = 𝑢∗𝐻/𝜈𝑤 , (3)

and260

𝑅𝐵 = 𝑢2
∗/(2𝜋𝑇−1𝜈𝑤), (4)

where 𝜈𝑤 ≈ 1.4×10−6 m2s−1 is the kinematic viscosity of seawater for 𝑇𝑤 ≈ 9C◦, are consid-261

ered. These parameters represent combined effects of wind forcing and wave field and are shown262

to have skills in predicting oceanic whitecap coverage [Zhao and Toba, 2001; Scanlon and Ward,263

2016; Brumer et al., 2017]. Figure A.2l shows the variation of 𝑅𝐻𝑒𝑞
= 𝑢∗𝐻𝑒𝑞/𝜈𝑤 and 𝑅𝑚

𝐵
=264

𝑢2
∗/(2𝜋𝑇−1

𝑚 𝜈𝑤) parameters as a function of the equilibrium range 𝑚𝑠𝑠/Δ 𝑓 in the PAPA data. Here265

𝐻𝑒𝑞 = 4[
∫ √

5 𝑓𝑚√
2 𝑓𝑚

𝐸 ( 𝑓 )𝑑𝑓 ]1/2 and 𝑇𝑚 = 𝑓 −1
𝑚 are taken as a characteristic wave height 𝐻 and266

period 𝑇 , respectively.267

2.4 Whitecap Processing268

The whitecap coverage data set in this study is the same as the North Pacific whitecap cov-269

erage data set described in the recent study by Malila et al. [2022]. This section provides a sum-270

mary of the acquisition and processing of the data set, much of which is equal or similar in terms271

of hardware and software to the study by Schwendeman and Thomson [2015a].272

Visual images of the sea surface were collected from shipboard video camera systems on273

the port and starboard sides of the vessel. The cameras, of model PointGrey Flea2 equipped with274

2.8 mm focal-length lenses, recorded at 5–7.5 frames per second during daylight hours. A total275

of 60 hours of image data were collected while the ship was stationary, mostly coincident with276

the SWIFT buoy deployments and recoveries. The video acquisitions varied in length between277

5 and 60 minutes, but the final mean whitecap coverage𝑊 values were obtained over 10–20-minutes278

bursts. Each𝑊 value represents a 10-minute average of consecutive frames.279

The image processing of the grayscale video frames for whitecap coverage estimation fol-280

lowed the approach of Schwendeman and Thomson [2015a], in which the ship motion due to waves281

(i.e., pitch and roll) was corrected for using a slightly modified version of the horizon tracking282

algorithm of Schwendeman and Thomson [2015b]. The stabilized images were subsequently geo-283

rectified and gridded to regular grids with 0.8 m grid resolution. The whitecap-related foam was284

isolated from the stabilized, geo-rectified, and gridded frames using the pixel intensity thresh-285

olding algorithm of Kleiss and Melville [2011]. The frame-wise fractional whitecap coverage was286

then computed as the ratio of pixels detected as belonging to whitecaps (given a value of one)287

to the total number of pixels in the frame. A subset of the original and thresholded frames in each288

burst was visually quality controlled for satisfactory image exposure and lens contamination (e.g.,289

raindrops or sea spray). Only image sequences with consistent lighting conditions and minimal290

lens contamination were used in the final data set.291

2.5 Echogram Processing292

Acoustic backscattering data were obtained using the echosounding capabilities of the downward-293

looking beam of the Nortek Signature1000 acoustic Doppler current profiler (ADCP) mounted294

on the version 4 SWIFT buoys. During the PAPA cruise manufacturer firmware version 2205 was295

used. Sampling frequencies and pulse repetition rates for the echosounder were 1 MHz and one296

second, respectively. A transmit pulse duration of 500 𝜇s was used. The vertical sampling res-297

olution provided by the instrument is 1 cm and is presented to depths from 0.3 m ≤ 𝑧𝑤 ≤ 30.3m,298

where 𝑧𝑤 is positive downward and 𝑧𝑤 = 0 represents the instantaneous free surface level af-299

ter accounting for the depth of the unit on the SWIFTs. The echosounder mode was operated in300

512-s bursts gathered in the surface-following reference frame, from which echograms are pre-301

sented. Based on the size of the transducer and the operational frequency, we estimate that the302

echosounders’ acoustic near-field based on the definition provided in Medwin and Clay [1998]303

is less than 1 m. To limit the potential impacts of the acoustic near-field, we present data only from304

ranges greater than 1 m from the transducer face (i.e., depth range from 1.3 m ≤ 𝑧𝑤 ≤ 30.3m).305
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As detailed below, penetration depths of bubble plumes are estimated from the volume backscat-306

tering strength. The volume backscattering strength 𝑆𝑣 [dB re 1m−1] is the logarithmic form of307

the backscattering cross section per unit volume 𝑀𝑣 as is given by [Vagle et al., 2012]. When the308

signal is dominated by the presence of bubbles, as is the focus on this manuscript, this is described309

by310

𝑆𝑣 =10 log10 𝑀𝑣 = 10 log10

∫ ∞

0
𝜎𝑠 (𝑎𝑏)𝑁 (𝑎𝑏)𝑑𝑎𝑏

=10 log10 (10
𝑃𝑟
10 − 10

𝑁𝑡
10 ) + 20 log10 𝑟 + 2𝛼𝑟 + 𝐺𝑐𝑎𝑙 − 10 log10 (

𝑐𝜏

2
) − 𝜙,

(5)

where 𝜎𝑠 (𝑎𝑏) = 4𝜋𝑎2
𝑏
/([( 𝑓𝑅/ 𝑓 )2 − 1]2 + 𝛿2) [m2] is the scattering cross section for a bubble311

with radius 𝑎𝑏 [m] and 𝑁 (𝑎𝑏) is the bubble size distribution. The right-hand side of the equa-312

tion is an implementation of the sonar equation where 𝑃𝑟 is the received signal including noise,313

𝑁𝑡 is the noise threshold, 𝑟 is the range from the transducer, 𝛼 is the attenuation coefficient, 𝑐 is314

the speed of sound in the water, 𝜏 is the transmit pulse duration, 𝜙 is the equivalent beam angle,315

and 𝐺𝑐𝑎𝑙 is a gain factor for a configured transmit power level for the transducer (see Appendix316

A). 𝐺𝑐𝑎𝑙 was determined by using standard calibration techniques for echosounders [Demer et al.,317

2015]. We note that we identified issues with the saturation of the signals associated with sys-318

tem gains during calibration. This results in saturated signals at short ranges when measured backscat-319

tering intensity is high, thereby truncating the dynamic range of the system at the upper end. A320

longer discussion of this is also included in Appendix A.321

To estimate the average noise level of the transducer, we calculate burst-averaged 𝑃𝑟 val-322

ues at large ranges at low sea states at which the measured signal, not compensated for range and323

attenuation, does not vary with depth. At these ranges, we assume that due to transmission losses324

and the weak scattering in the water column the system is simply measuring its own electrical325

noise and that increases in 𝑆𝑣 are driven primarily by the addition of the time-varying gain com-326

ponents in Eq. 5. This approach is consistent with those often applied in fisheries acoustics ap-327

plications (e.g., De Robertis and Higginbottom [2007]. Here we found the average noise level328

of approximately 22 [dB] and set 𝑁𝑡 = 26 [dB], i.e., only echogram data values with 𝑃𝑟 > 𝑁𝑡329

are considered for the bubble statistics analysis. We note that subsequent firmware revisions and330

different internal or internal processing parameters are expected to result in different noise thresh-331

olds and calibration gains.332

To estimate the local penetration depth of entrained bubbles, we first need to identify a thresh-333

old 𝑆𝑡ℎ𝑣 below which the backscatter signal indicates the absence of signals associated with en-334

trained bubbles exceeding the background conditions. These background conditions may be driven335

by populations of tiny residual bubbles, biological backscattering, or microstructure in the up-336

per water column. Note that the mixed layer depth was always greater than 40 m in areas sam-337

pled during the PAPA cruise; thus, acoustic scattering from stratification can be neglected.338

The local penetration depth of entrained bubbles is then defined relative to the instantaneous339

free surface level (𝑧𝑤 = 0) at the vertical level 𝑍𝑏, in the surface-following reference frame, at340

which 𝑆𝑣 > 𝑆𝑡ℎ𝑣 for 𝑧𝑤 ≤ 𝑍𝑏; otherwise 𝑍𝑏 = NaN (Not-a-Number). We note that this thresh-341

olding technique to estimate bubble penetration depth is analogous to the pixel intensity thresh-342

olding commonly used for whitecap coverage estimations (see §2.4). Similar thresholding tech-343

niques have been used by previous studies [Thorpe, 1986; Dahl and Jessup, 1995; Trevorrow,344

2003; Vagle et al., 2010; Wang et al., 2016] with empirical 𝑆𝑡ℎ𝑣 values ranging from -70 dB re 1/m345

to -50 dB re 1/m using sonars with operating frequencies ranging between ≈ 20kHz and ≈ 200kHz.346

Hereafter we refer to this bubble detection method as BDM1.347

We identified the time between 18:00 and 19:00 UTC Dec 16 as a period with relatively348

calm sea surface conditions and minimal whitecapping during which no visible bubbles and sur-349

face foam were observed in the above-surface, and sub-surface images collected by the cameras350

integrated on SWIFT buoys along with the images from the shipboard cameras. Further, Figure A.1b351

shows that the wind speeds just before the SWIFTs deployment on Dec 16 were less than 3 ms−1
352

for several hours. Figure A.1b also shows that although wind speed was increasing during the353
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rest of the day in the presence of steady rain, it remained below 5 ms−1 between 18:00 and 19:00354

UTC. These observations suggest this is a suitable period for establishing baseline levels for near-355

surface backscattering with negligible contributions of bubbles injected by active breaking at the356

surface.357

The baseline can be established by using statistical averages of the 𝑆𝑣 from this relatively358

calm period with low levels of observed volume backscattering. Figure A.3a shows an example359

echogram, above-surface image, and vertical profiles of burst-averaged and top 10%-averaged360

of 𝑆𝑣 values just after the low backscattering conditions on Dec 16 described above. The echogram361

data during low-backscattering conditions reveals that significant portions of the corresponding362

𝑆𝑣 values vary between -90 dB re 1/m and -75 dB re 1/m with the burst-averaged values, 𝑆𝑣 , less363

than -80 dB re 1/m. We also found that 𝑆𝑣 < −80 dB re 1/m holds for the rest of calm sea state364

conditions (𝑈10𝑁 < 3 ms−1, 𝑑𝑈10𝑁/𝑑𝑡 < 1 ms−1) within the PAPA data. We take 𝑆𝑡ℎ𝑣 = −70365

dB re 1/m (as in Vagle et al. [2010]) to distinguish between regions with and without the pres-366

ence of recently entrained bubbles in the water column.367

Even very low bubble void fractions, 𝑂 (10−7) or less, can result in 𝑆𝑣 values greater than368

𝑆𝑡ℎ𝑣 due to the relatively strong acoustic backscattering response of bubbles [Dahl and Jessup,369

1995], even when they are sampled well above resonance. For reference, at 1 MHz bubble radii370

from approximately 3 𝜇m to 7 𝜇m would be resonant in the upper water column [Medwin and371

Clay, 1998; Vagle and Farmer, 1998]. We assume that these smaller bubbles dissolve rapidly (<372

10 seconds), even when the upper water column is supersaturated, as suggested by Blanchard and373

Woodcock [1957]. Thus, the measured backscattering reflects backscattering from an unknown374

and evolving population of bubbles that are dissolving and slowly transported by their own buoy-375

ancy and/or local currents and turbulence.376

We define another estimate of the local penetration depth of entrained bubbles as the depth377

𝑧𝑏 (≤ 𝑍𝑏) at which 𝑆𝑣 > 𝑆𝑡ℎ𝑣 for 𝑧𝑤 ≤ 𝑧𝑏 and 𝑆𝑣 > 𝑆𝑡ℎ𝑣 +20 dB for 𝑧𝑏/2 ≤ 𝑧𝑤 ≤ 𝑧𝑏; otherwise378

𝑧𝑏 = NaN. That is, the penetration depth is defined by the depth at which the volume backscat-379

tering signal continuously exceeds the defined threshold at the surface, and 𝑆𝑣 values deeper in380

the water column exceed background thresholds by at least 20 dB. Hereafter we refer to this bub-381

ble detection method as BDM2.382

Figure A.3 shows examples of echogram data and the corresponding 𝑍𝑏 (obtained from BDM1,383

dotted-dashed lines) and 𝑧𝑏 (obtained from BDM2, solid lines) values during a developing sea384

on Dec 16 just after the relatively bubble-free condition described above (panels 𝑎 and 𝑏) and dur-385

ing a storm with sustained wind speeds of greater than 18 ms−1 on Dec 11 (panels 𝑐 and 𝑑). Fig-386

ure A.3 also shows examples of subsurface optical images, collected at times when 𝑆𝑣 < 𝑆𝑡ℎ𝑣387

for 1.3 m ≤ 𝑧𝑤 (panel 𝑒), portions of 𝑆𝑣 values are greater than 𝑆𝑡ℎ𝑣 but remain below 𝑆𝑡ℎ𝑣 +20388

dB (panels 𝑓 and 𝑔), and a portion of 𝑆𝑣 values is greater than 𝑆𝑣 > 𝑆𝑡ℎ𝑣 + 20 (panels ℎ, 𝑖 and389

𝑗). These images qualitatively demonstrate that the entrained surface bubbles at times at which390

both BDM1 and BDM2 are satisfied, i.e., 𝑍𝑏 ≠ NaN and 𝑧𝑏 ≠ NaN, have significantly more sub-391

surface visible optical signature than those at times at which 𝑍𝑏 ≠ NaN but 𝑧𝑏 = NaN. Com-392

paring all available concurrent subsurface images and echogram data, we conclude that a sim-393

ilar trend exists across all the PAPA data.394

Although we cannot ultimately constrain the differences in void fractions or bubble pop-395

ulations using our sampling method, we can confidently state that our second bubble detection396

criterion (BDM2) laid out above identifies periods where void fractions increase by a minimum397

of two orders of magnitude compared to the first bubble detection criterion (BDM1). Under the398

simplest conditions where bubble size distribution remains constant, a 20 dB increase in backscat-399

tering would correspond to an increase in the void fraction of two orders of magnitude. This is400

driven by a linear relationship between backscattering and the number of scatterers so long as401

the distribution has not changed or has not been attenuated by high bubble volumes. (Eq. 5). Fur-402

thermore, the high bubble void fractions following breaking waves may result in significant ex-403

cess attenuation of the signals, which is not accounted for in our analysis here [Vagle and Farmer,404

1998; Deane et al., 2016; Bassett and Lavery, 2021]. Such observations have been reported at405
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lower frequencies, where extinction cross sections for resonant bubbles are much larger, but we406

expect that the high void fractions following a breaking event will also have a temporary impact407

on measured acoustic backscatter. The result of this is that increases in volume backscattering408

following localized breaking events likely understate the increase in scattering that would oth-409

erwise be observed from the bubble populations, given the transducer’s location near the surface.410

Overall, 𝑧𝑏 values represent the local penetration depths of entrained bubbles that have sig-411

nificantly more void fraction and visible optical signature than those that reach 𝑍𝑏. This is con-412

sistent with a broad range of prior observations measuring bubbles in the upper ocean, which show413

significant decreases in bubble densities with depth [Vagle and Farmer, 1998; Medwin, 1977].414

3 Results415

In this section, we present the observations of the residence time (§3.1) and the penetra-416

tion depth (§3.2) of bubble plumes and whitecap coverage (§3.3) as a function of various wind417

and sea state parameters defined in §2. Estimations of the volume of bubble plumes from the mea-418

sured whitecap coverage and plume penetration depths are discussed in the next section.419

3.1 Bubble Plume Residence Time420

Figure A.4a shows a schematic of a SWIFT track drifting across an intermittent field of sat-421

urated (with visible optical surface signature) and diffused (without visible optical surface sig-422

nature) bubble clouds during a 512-s burst of data along which echogram data are collected in423

a surface following reference frame. The buoy has a ”wind slip” velocity relative to the surface424

water𝑈𝑠𝑙𝑖 𝑝 ≈ 0.01𝑈10𝑁 that is caused by wind drag on the portion of the buoy above the sur-425

face [Iyer et al., 2022]. Note that the example SWIFT track shown here is calculated with respect426

to the earth frame, so the example includes both the true surface current and the wind slip of the427

buoy (which combine together to make the observed drift velocity of the buoy, typically𝑈𝑑𝑟𝑖 𝑓 𝑡 ≈428

0.04𝑈10𝑁 ). Thus apparent residence time of detectable bubble clouds in echogram data could429

be shorter than their true residence time due to the relative drift of the buoys.430

As illustrated in Figure A.4a, the apparent residence time of each bubble cloud in echogram431

data is directly related to the way the buoy crosses the bubble cloud with respect to its main axis.432

To minimize this potential sampling bias, here we define the residence time of bubble plumes as433

an average of the highest one-third of the apparent residence time of bubble clouds detected in434

all concurrent bursts of the echogram data.435

Figure A.4b shows the variation of the bubble plume residence times 𝑇𝑏𝑝 and 𝑇𝑏𝑝,𝑣 scaled436

by the wind sea mean wave period 𝑇𝑤𝑠
𝑚 (defined in §2.3) for wind speeds greater than 6 ms−1.437

Hereafter the statistics of bubble plumes obtained from the bubble detection methods BDM1 and438

BDM2 (described in §2.5) are denoted by ()𝑏𝑝 and ()𝑏𝑝,𝑣 , respectively. Results indicate that the439

bubble plumes, especially those detected by BDM1, persist in the water column much longer than440

the corresponding dominant active breaking period, which is expected to be a fraction of 𝑇𝑤𝑠
𝑚 .441

Figure A.5 shows the sub-surface visible signature of an example evolving bubble plume442

at several instances during (panels (𝑎1) to (𝑎3)) and after (panels (𝑎4) to (𝑎8)) active breaking443

collected by a GoPro camera on a SWIFT buoy looking from behind (upwave) the breaking event444

in an old sea with moderate wind speeds of𝑈10𝑁 ≈ 11 ms−1 and 𝑇𝑤𝑠
𝑚 ≈ 6s. Figure A.6 also445

shows example sub-surface images of two evolving bubble plumes during (panels (𝑎 − 𝑐) and446

(𝑒− 𝑓 )) and after (panels 𝑑 and 𝑔−ℎ) active breaking during a storm with sustained wind speeds447

of𝑈10𝑁 > 18 ms−1 and 𝑇𝑤𝑠
𝑚 ≈ 10s. These images qualitatively show that void fractions in448

the bubble plumes rapidly decrease after the active breaking period and that residual void frac-449

tions persist for many wave periods. These observations are consistent with previous experimen-450

tal [Lamarre and Melville, 1991; Blenkinsopp and Chaplin, 2007; Anguelova and Huq, 2012] and451

numerical [Derakhti and Kirby, 2014, 2016; Derakhti et al., 2018, 2020a,b] studies of laboratory-452

scale breaking waves showing that average void fractions within bubble clouds vary from 𝑂 (10%)453
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to 𝑂 (1%) during active breaking, and then, drop rapidly by several orders of magnitude within454

a few wave periods.455

As discussed in detail in §2.5, plume regions with tiny bubble void fractions, e.g., the dif-456

fused bubble clouds shown in panels (𝑎7) and (𝑎8) of Figure A.5, are still detectable in our sam-457

pling method. Assuming that the scattering is dominated by bubbles with radii less than 100 𝜇𝑚,458

the low bubble rise velocities (i.e., a few cms−1 or less) would yield bubble residence times of459

𝑂 (minutes) which is consistent with the apparent residence time of the bubble plumes detected460

by BDM1 (Figure A.4b), here 𝑇𝑏𝑝 ≈ 100s and ≈ 200s for sea states similar to Figure A.5 and461

Figure A.6, respectively. Thus the statistics of the bubble plumes detected by BDM1, referred462

to by subscript 𝑏𝑝, correspond to bubble plumes ranging from saturated plumes during active463

breaking to highly diffused plumes that may remain in the water column long after active break-464

ing (e.g., panel (𝑎8) of Figure A.5). These observations also confirm that the bubble plumes de-465

tected by BDM2 in a given sea state represent plumes that have much shorter residence times and466

much more visible optical signature than those detected by BDM1 but noticeably exceed the per-467

sistence of visible surface foam formed during breaking, here 𝑇𝑏𝑝,𝑣 ≈ 12s and ≈ 40s for sea468

states similar to Figure A.5 and Figure A.6, respectively.469

3.2 Bubble Plume Penetration Depth470

Example sub-surface images of the bubble plume shown in Figure A.5 illustrate that the471

average plume penetration depth (and volume) rapidly increases during the initial phase of the472

bubble plume evolution (e.g., panels (𝑎1) to (𝑎5), over several seconds). As shown in panels (𝑎6)473

to (𝑎8), the overall size of the plume keeps increasing for several wave periods but at rates much474

lower than during active breaking. This is consistent with the evolution of bubble plumes, tur-475

bulent kinetic energy (TKE), and dye patches in previous numerical and experimental studies of476

laboratory-scale isolated breaking focused waves [Rapp and Melville, 1990; Melville et al., 2002;477

Derakhti and Kirby, 2014; Derakhti et al., 2018, 2020a]. Large-scale coherent structures gen-478

erated by wave breaking crests are among potential drivers of such slow but persistent transport479

of bubbles long after active breaking [Melville et al., 2002; Derakhti and Kirby, 2014; Derakhti480

et al., 2016].481

We define the mean, 𝐷𝑏𝑝 and 𝐷𝑏𝑝,𝑣 , and significant bubble plume depths, 𝐷1/3
𝑏𝑝

and 𝐷1/3
𝑏𝑝,𝑣

,482

as483

𝐷𝑏𝑝 =

∑𝑁𝑍𝑏

𝑖=1 𝑍 𝑖
𝑏

𝑁𝑍𝑏

, 𝐷𝑏𝑝,𝑣 =

∑𝑁𝑧𝑏

𝑖=1 𝑧 𝑖
𝑏

𝑁𝑧𝑏

, (6)

and484

𝐷
1/3
𝑏𝑝

=

∑𝑁𝑍𝑏

𝑖=2𝑁𝑍𝑏
/3 𝑍 𝑖

𝑏

𝑁𝑍𝑏
/3

, 𝐷
1/3
𝑏𝑝,𝑣

=

∑𝑁𝑧𝑏

𝑖=2𝑁𝑧𝑏
/3 𝑧 𝑖

𝑏

𝑁𝑧𝑏/3
, (7)

where 1.3m ≤ 𝑍 𝑖
𝑏
≤ 𝑍 𝑖+1

𝑏
≤ 30.3m, 1.3m ≤ 𝑧𝑖

𝑏
≤ 𝑧𝑖+1

𝑏
≤ 30.3m (see Figure A.3), and 𝑁𝑍𝑏

485

and 𝑁𝑧𝑏 are the total numbers of the estimated 𝑍𝑏 (obtained from BDM1) and 𝑧𝑏 (obtained from486

BDM2) values over available concurrent (1 to 4) bursts (each burst includes more than 8 min-487

utes of data) of echogram data, respectively. The representative mean and significant bubble plume488

depths are obtained at 12-minute intervals at which the wind and wave statistics are available.489

Figure A.7 shows the variation of the mean (Eq. 6) and significant (Eq. 7) bubble plume490

depths as a function of wind speed𝑈10𝑁 and equilibrium range 𝑚𝑠𝑠/Δ 𝑓 (Eq. 2) and the corre-491

sponding best fits. All the plume depth measures are well correlated with wind speed and 𝑚𝑠𝑠/Δ 𝑓492

with data scatter smaller than existing whitecap coverage data sets (including the PAPA data set493

shown in Figure A.11 below). Because time-dependent bubble depths less than 1.3 m are unavail-494

able here, the resultant plume depth statistics are expected to be biased high in low winds. Here-495

after the data points with𝑈10𝑁 < 6 ms−1 are not considered in obtaining the relevant fits and496

their statistics. (This is also a typical minimum wind speed for visible whitecaps to occur.)497

Of the bubble depths defined here (by Eqs. 6 and 7 above), 𝐷𝑏𝑝 is defined similar to pre-498

vious studies [Vagle et al., 2010; Wang et al., 2016; Strand et al., 2020]. Our observations, shown499
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in Figure A.7a, indicate that the mean bubble plume depth 𝐷𝑏𝑝 could be up to 14 m at𝑈10𝑁 ≈500

20 ms−1. This is in good agreement with the observations of Vagle et al. [2010] and Strand et al.501

[2020].502

The black solid line in Figure A.7a represents the best fit to the binned 𝐷𝑏𝑝 values with503

a power law form given by504

𝐷𝑏𝑝 = 0.092 [𝑈10𝑁 ]1.58 (8)
with 𝑟2 = 0.90 defined as in Eq. 12 below. As shown in Figure A.7a, the linear fit by Vagle et al.505

[2010] also well describes the observed variability of 𝐷𝑏𝑝 for moderate winds. For high winds,506

however, the relationship between 𝐷𝑏𝑝 and wind speed becomes nonlinear, and the 𝐷𝑏𝑝 values507

are, on average, greater than those reported by Vagle et al. [2010]. Underprediction of 𝐷𝑏𝑝 at508

high winds in Vagle et al. [2010] could be simply due to the linear extrapolation of 𝑆𝑣 at depths509

greater than 8m (see their Figure 3). Wang et al. [2016] also found a nonlinear relationship be-510

tween mean bubble depth and wind speed at high winds. However, their mean bubble depths are511

significantly (factor of 1.5-2) higher than the present (and other) observations. We note that the512

averaging time used to obtain 𝐷𝑏𝑝 at high winds is 8 or 16 minutes (depending on available con-513

current bursts) which is comparable to that in Wang et al. [2016].514

At any given wind speed, individual breaking events could generate bubble clouds with pen-515

etration depths much higher than 𝐷𝑏𝑝 . For example, Figure A.3c documents an example indi-516

vidual bubble cloud with a penetration depth of ≈ 30 m which is approximately three times greater517

than the corresponding average bubble plume depth (e.g., Eq. 8). Figure A.8 shows that the Rayleigh518

distribution could reasonably describe the observed probability distribution function (PDF) of519

the 𝐷𝑏𝑝 values at various wind speeds, especially for 𝐷𝑏𝑝 > 𝐷𝑏𝑝 . Assuming the Rayleigh dis-520

tribution for 𝐷𝑏𝑝 , we obtain the significant bubble depth as 𝐷1/3
𝑏𝑝

≈ 1.6𝐷𝑏𝑝 which is consis-521

tent with our observations especially for𝑈10𝑁 > 10 ms−1. The best fit to the observed binned522

𝐷
1/3
𝑏𝑝

values with a power law form (black solid line in Figure A.7c) is obtained as523

𝐷
1/3
𝑏𝑝

= 0.13[𝑈10𝑁 ]1.63, (9)

with 𝑟2 = 0.92. Assuming the Rayleigh distribution for 𝐷𝑏𝑝 , the maximum bubble depth is fur-524

ther approximated as525

𝐷𝑚𝑎𝑥
𝑏𝑝 ≈ 2𝐷1/3

𝑏𝑝
≈ 3.2𝐷𝑏𝑝 . (10)

As explained in detail in §2.5 and consistent with observations shown in §3.1, at a given526

sea state condition 𝐷𝑏𝑝,𝑣 represents penetration depth of bubbles that have, on average, at least527

two orders of magnitude more void fraction and significantly more visible optical signature than528

those reach to 𝐷𝑏𝑝 . Figure A.8 shows that the population of the bubble plume depth 𝐷𝑏𝑝,𝑣 val-529

ues around their mean is considerably elevated compared to that in 𝐷𝑏𝑝 and that the observed530

PDF of 𝐷𝑏𝑝,𝑣 is better described by the Gamma distribution. Furthermore, our observations show531

that 𝐷1/3
𝑏𝑝,𝑣

/𝐷𝑏𝑝,𝑣 varies, on average, from 1.2 at low winds to 1.5 at high winds, and that, in con-532

trast to 𝐷1/3
𝑏𝑝

, 𝐷1/3
𝑏𝑝,𝑣

has an approximately linear relationship with wind speed. As shown in Fig-533

ure A.7 the ratio 𝐷1/3
𝑏𝑝,𝑣

/𝐷1/3
𝑏𝑝

decreases with increasing wind speeds, varies from ≈ 1 at low winds534

to ≈ 0.6 at high winds.535

We examine the predictive skill of several wind and wave parameters, commonly used for536

parameterizations of whitecap coverage, for bubble plume depths 𝐷1/3
𝑏𝑝

and 𝐷1/3
𝑏𝑝,𝑣

. We quantify537

the skill of each predictor X (e.g.,𝑈10𝑁 , 𝑢∗,mss/Δ 𝑓 , 𝑆, 𝑅, . . . , all defined in §2) by calculating538

the best fit with a power law form 𝑎X𝑛 to the binned 𝐷1/3
𝑏𝑝

and 𝐷1/3
𝑏𝑝,𝑣

values, using the least squares539

method and then comparing the corresponding fit statistics obtained over all individual data points540

with𝑈10𝑁 ≥ 6 ms−1. Bins containing fewer than four bursts of data are not considered for data541

fitting. Here we consider the root-mean-square error (RMSE) and the coefficient of determina-542

tion 𝑟2, which represent the overall quality of the fits, given by543

RMSE =

√︄
Σ𝑖=𝑁
𝑖=1 𝐷

2
𝑟𝑒𝑠,𝑖

𝑁
, (11)
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and544

𝑟2 = 1 −
Σ𝑖=𝑁
𝑖=1 𝐷

2
𝑟𝑒𝑠,𝑖

Σ𝑖=𝑁
𝑖=1 (𝐷𝑖 − 𝐷𝑖)2

, (12)

where 𝐷𝑟𝑒𝑠,𝑖 = 𝐷𝑖 − [𝑎 (X𝑖)𝑛], 𝐷𝑖 is either 𝐷1/3
𝑏𝑝

or 𝐷1/3
𝑏𝑝,𝑣

, 𝑁 is the number of observations,545

and the overbar indicates an average over all the considered data points. Here RMSE, defined in546

linear space, indicates an average deviation from the fit, and 𝑟2 indicates the proportion of the547

observed variability of the bubble plume depths that is predictable from the X parameter. The548

perfect fit corresponds to 𝑅𝑀𝑆𝐸 ∼ 0 and 𝑟2 ∼ 1.549

Table 1 summarizes the coefficients (𝑎 and 𝑛) and statistics (RMSE, 𝑟2) of the best fits, 𝑎X𝑛,550

to the PAPA data for several predictive parameters X. Of all the parameters considered here,𝑈10𝑁551

has the highest skill in predicting the observed variability of both 𝐷1/3
𝑏𝑝

and 𝐷1/3
𝑏𝑝,𝑣

. Results sum-552

marized in Table 1 also document that the equilibrium range 𝑚𝑠𝑠/Δ 𝑓 and 𝐻𝑠𝐾𝑚/2 show the high-553

est skill among the spectral and bulk wave steepness predictors, respectively. For each type of554

the predictors considered here, those that contain either the peak wave height, peak wave num-555

ber, or peak wave period show the least skill. These results also hold for the mean bubble plume556

depths statistics 𝐷𝑏𝑝 and 𝐷𝑏𝑝,𝑣 .557

Next, we examine how the bubble plume penetration depths, defined in Eqs. 6 and 7 above558

and shown in Figure A.7, scaled by significant wave height 𝐻𝑠 and mean wavelength 𝐿𝑚 = 2𝜋/𝑘𝑚559

vary in various sea states. Our observations indicate that 𝐷1/3
𝑏𝑝

(note that 𝐷𝑏𝑝 ≈ 0.6𝐷1/3
𝑏𝑝

) varies560

from 0.4𝐻𝑠 to 4.8𝐻𝑠 and from 0.01𝐿𝑚 to 0.20𝐿𝑚 for wind speeds greater than 6 ms−1 (Figure A.9).561

This is in good agreement with the observed range of scaled mean bubble depths reported in pre-562

vious field observations [Thorpe, 1986; Wang et al., 2016; Strand et al., 2020].563

Bulk wave statistics 𝐻𝑠 and 𝐿𝑚 (or 𝐻𝑝 and 𝐿𝑝) could be completely uncorrelated with the564

scales of the corresponding wind sea (and dominant breaking waves) in the presence of propor-565

tionally significant swell, e.g., in low and moderate winds (𝑈10𝑁 < 15ms−1) in the PAPA data566

set as shown in Figures A.2d and A.2e. Thus we also consider the wind sea significant wave height567

𝐻𝑤𝑠
𝑠 and mean wavelength 𝐿𝑤𝑠

𝑚 as scaling parameters here. Our data show that 𝐷1/3
𝑏𝑝

varies from568

1.4𝐻𝑤𝑠
𝑠 to 9.2𝐻𝑤𝑠

𝑠 and from 0.06𝐿𝑤𝑠
𝑚 to 0.33𝐿𝑤𝑠

𝑚 for wind speeds greater than 6 ms−1 (Figure A.9).569

Further, the corresponding binned data indicate that 𝐷1/3
𝑏𝑝

≈ [2.4−4.4]𝐻𝑤𝑠
𝑠 , and ≈ [0.11−570

0.2]𝐿𝑤𝑠
𝑚 (with 𝐷𝑏𝑝 ≈ [1.6−2.8]𝐻𝑤𝑠

𝑠 , and ≈ [0.07−0.13]𝐿𝑤𝑠
𝑚 ). The observed range of these571

scaled bubble plume depths is comparable with the scaled penetration depth of TKE and dye patches572

reported in previous numerical and experimental studies of isolated breaking focused waves [Rapp573

and Melville, 1990; Melville et al., 2002; Derakhti and Kirby, 2014; Derakhti et al., 2018, 2020a]574

while the length scales of these laboratory-scale breaking waves are one to two orders of mag-575

nitude smaller than those in the PAPA data sets.576

Figures A.9 and A.10 show the dependency of some of the scaled plume depths on wind577

speed and wave age. We note that other scaled plume depths considered here show, on average,578

a similar trend with increasing wind speeds and wave age. Our observations indicate that all the579

scaled bubble plume penetration depths considered here vary non-monotonically with increas-580

ing wind speeds. However, they are all, on average, decreasing functions of wave age in devel-581

oping seas (i.e., 𝑐𝑝/𝑈10𝑁 < 1.2). In other words, during the early stages of a young sea, i.e.,582

𝑐𝑝/𝑈10𝑁 ≪ 1.2, bubble plume penetration depth scaled by either significant wave height or583

mean wavelength is, on average, much (two times or more) larger than those in equilibrium sea584

states, i.e., 𝑐𝑝/𝑈10𝑁 ≈ 1.2. Previous field observations revealed that the former is dominated585

by plunging breaking waves Thorpe [1992], while the dominant breaker type in the latter is ex-586

pected to be spilling breaking. Previous numerical and experimental studies of laboratory-scale587

breaking waves indicate that bubbles (and breaking-generated turbulence) penetrate, on average,588

deeper in the water column beneath a plunger than a spilling breaker with the same length scale,589

especially during active breaking [Rapp and Melville, 1990; Melville et al., 2002; Derakhti and590

Kirby, 2014; Derakhti et al., 2018, 2020a,b]. Thus the observed dependency of scaled bubble591

–13–



Confidential manuscript submitted to JGR-Oceans

Table 1: Parameterizations of significant bubble plume depths 𝐷1/3
𝑏𝑝

and 𝐷1/3
𝑏𝑝,𝑣

represented by the
best fits with a power law form 𝑎X𝑛 as a function of several wind and wave parameters X to the
binned PAPA data for𝑈10𝑁 ≥ 6 ms−1. The statistics of each fit are also calculated. The fits and
their statistics are computed in linear space.

Results of the best fit Statistics of the best fit
Plume Depth Predictor 𝑎X𝑛 𝑈10𝑁 ≥ 6 ms−1

X 𝑎 𝑛 RMSE 𝑟2

𝐷
1/3
𝑏𝑝

𝑈10𝑁 1.27 × 10−1 1.63 1.326 0.921

𝐷
1/3
𝑏𝑝

𝑢∗ 1.49 × 101 1.14 1.417 0.910

𝐷
1/3
𝑏𝑝

𝑅𝐵,𝑚 =
𝑢2
∗

𝜈𝑤𝜔𝑚
1.07 × 10−2 0.52 1.502 0.899

𝐷
1/3
𝑏𝑝

𝑅𝐵,𝑝 =
𝑢2
∗

𝜈𝑤𝜔𝑝
1.12 × 10−2 0.51 1.653 0.877

𝐷
1/3
𝑏𝑝

𝑅𝐻𝑒𝑞
=

𝑢∗𝐻𝑒𝑞

𝜈𝑤
2.56 × 10−3 0.61 1.894 0.839

𝐷
1/3
𝑏𝑝

𝑅𝐻𝑠
=

𝑢∗𝐻𝑠

𝜈𝑤
1.36 × 10−3 0.60 1.986 0.823

𝐷
1/3
𝑏𝑝

𝑅𝐻𝑝
=

𝑢∗𝐻𝑝

𝜈𝑤
2.05 × 10−3 0.59 2.139 0.794

𝐷
1/3
𝑏𝑝

mss 1.86 × 104 1.34 2.893 0.619

𝐷
1/3
𝑏𝑝

mss/Δ 𝑓 7.60 × 102 1.32 2.419 0.734

𝐷
1/3
𝑏𝑝

mss/Δ 𝑓Δ𝜃 3.35 × 102 1.37 2.911 0.614

𝐷
1/3
𝑏𝑝

𝐻𝑝𝑘 𝑝/2 9.06 × 101 0.88 4.055 0.251

𝐷
1/3
𝑏𝑝

𝐻𝑠𝑘 𝑝/2 6.33 × 101 0.83 4.027 0.262

𝐷
1/3
𝑏𝑝

𝐻𝑒𝑞𝑘𝑚/2 1.34 × 104 2.23 3.017 0.586

𝐷
1/3
𝑏𝑝

𝐻𝑝𝑘𝑚/2 2.20 × 103 2.31 3.211 0.531

𝐷
1/3
𝑏𝑝

𝐻𝑠𝑘𝑚/2 1.29 × 103 2.34 2.888 0.620

𝐷
1/3
𝑏𝑝,𝑣

𝑈10𝑁 3.78 × 10−1 1.10 1.112 0.822

𝐷
1/3
𝑏𝑝,𝑣

𝑢∗ 9.55 × 100 0.83 1.110 0.822

𝐷
1/3
𝑏𝑝,𝑣

𝑅𝐵,𝑚 =
𝑢2
∗

𝜈𝑤𝜔𝑚
5.09 × 10−2 0.38 1.139 0.813

𝐷
1/3
𝑏𝑝,𝑣

𝑅𝐵,𝑝 =
𝑢2
∗

𝜈𝑤𝜔𝑝
4.88 × 10−2 0.37 1.197 0.794

𝐷
1/3
𝑏𝑝,𝑣

𝑅𝐻𝑒𝑞
=

𝑢∗𝐻𝑒𝑞

𝜈𝑤
1.58 × 10−2 0.45 1.290 0.760

𝐷
1/3
𝑏𝑝,𝑣

𝑅𝐻𝑠
=

𝑢∗𝐻𝑠

𝜈𝑤
9.56 × 10−3 0.45 1.318 0.750

𝐷
1/3
𝑏𝑝,𝑣

𝑅𝐻𝑝
=

𝑢∗𝐻𝑝

𝜈𝑤
1.43 × 10−2 0.43 1.383 0.725

𝐷
1/3
𝑏𝑝,𝑣

mss 1.43 × 103 0.94 1.917 0.466

𝐷
1/3
𝑏𝑝,𝑣

mss/Δ 𝑓 1.55 × 102 0.94 1.589 0.634

𝐷
1/3
𝑏𝑝,𝑣

mss/Δ 𝑓Δ𝜃 8.62 × 101 0.96 1.839 0.509

𝐷
1/3
𝑏𝑝,𝑣

𝐻𝑝𝑘 𝑝/2 2.63 × 101 0.50 2.334 0.209

𝐷
1/3
𝑏𝑝,𝑣

𝐻𝑠𝑘 𝑝/2 2.11 × 101 0.46 2.341 0.205

𝐷
1/3
𝑏𝑝,𝑣

𝐻𝑒𝑞𝑘𝑚/2 1.25 × 103 1.59 1.974 0.434

𝐷
1/3
𝑏𝑝,𝑣

𝐻𝑝𝑘𝑚/2 2.09 × 102 1.44 2.000 0.419

𝐷
1/3
𝑏𝑝,𝑣

𝐻𝑠𝑘𝑚/2 2.15 × 102 1.63 1.858 0.499
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plume penetration depths with wave age in developing seas (i.e., 𝑐𝑝/𝑈10𝑁 ≈ 1.2), shown in Fig-592

ure A.10, is linked to the change in the dominant breaker type.593

Further, our results show that the bubble plume penetration depths scaled by either 𝐻𝑠 or594

𝐿𝑚 decrease monotonically with increasing wave age over the observed range of sea states in the595

PAPA data set from developing to old seas. In particular, the data indicate that 𝐷1/3
𝑏𝑝

/𝐻𝑠 has a596

linear relationship with the inverse of wave age, given by597

𝐷
1/3
𝑏𝑝

𝐻𝑠

= 2.42[
𝑐𝑝

𝑈10𝑁
]−0.96, (13)

with relatively small data scatter and 𝑟2 = 0.77 (solid line in Figure A.10a). Assuming an ap-598

proximately linear relationship between𝑈10𝑁 and air friction velocity (Figure A.2b), the results599

shown in Figures A.10a and A.10b and Eq. 13 are consistent with the corresponding results re-600

ported in Wang et al. [2016].601

3.3 Whitecap Coverage and Its Relation with Bubble Plume Depths602

Existing parameterizations of oceanic whitecap coverage𝑊 have a general threshold power603

law form of𝑊 = 𝑎 (X−𝑏)𝑛, where X is a selected predictive parameter (e.g.,𝑈10𝑁 , 𝑢∗,mss/Δ 𝑓 , 𝑆, 𝑅, . . . ,604

all defined in §2) and 𝑎, 𝑏 and 𝑛 are empirical coefficients obtained from the best fit to a consid-605

ered data set by minimizing the sum of the squares of the log residuals𝑊𝑟𝑒𝑠 = log10𝑊−log10 [𝑎 (X−606

𝑏)𝑛] to give equal weight to𝑊 data across several orders of magnitude. It is generally accepted607

that several environmental conditions, including surfactants, salinity, wind fetch and duration,608

wind history, surface shear, and rain, are responsible for data scatter in whitecap variability against609

a typical predictive parameter X. However, these secondary effects on the corresponding mean610

𝑊 values are thought to be relatively small. Thus, we obtain the corresponding best fits over the611

binned data as in §3.2 and similar to Scanlon and Ward [2016] and Brumer et al. [2017]. Bins612

containing fewer than four bursts of data are not considered for data fitting as in §3.2.613

Figures A.11a and A.11b show the variation of𝑊 against wind speed and air friction ve-614

locity in the PAPA data and in the data set of Schwendeman and Thomson [2015a] as well as the615

best fits to the binned PAPA data and several relevant least squares threshold power law fits from616

the recent literature [Sugihara et al., 2007; Callaghan et al., 2008; Schwendeman and Thomson,617

2015a; Scanlon and Ward, 2016; Brumer et al., 2017]. Consistent with the recent literature, the618

observed𝑊 (𝑈10𝑁 ) values are considerably smaller than those reported in pioneering𝑊 stud-619

ies [e.g., Monahan and Muircheartaigh, 1980] using a manual𝑊 extraction method [Monahan,620

1969]. Further, the observed range of𝑊 (𝑈10𝑁 ) and𝑊 (𝑢∗) values and their associated data scat-621

ter are consistent with the recent studies in which their experimental methods are comparable to622

those used here (see §2.4).623

Figure A.11a shows that the observed𝑊 (𝑈10𝑁 ) values and their corresponding best fits624

at high winds are considerably comparable with those in the other data sets, especially those that625

include𝑊 observations at𝑈10𝑁 > 16 ms−1; the solid line section of each fit shown in Figure A.11626

represents the range of data to which the best fit is obtained. The fits, however, tend to diverge627

for𝑈10𝑁 < 10 ms−1. We note that the shape of a threshold power law fit at low and moderate628

winds and, in particular, the coefficient 𝑏 (which incorporates the threshold behavior of the fit)629

are sensitive to the data at the lower range of X values. Thus, any systematic bias at the selected630

wind parameter at low wind speeds will be translated into the resulting best fit. Wind speeds in631

several previous studies were not corrected for atmospheric stability, e.g., Sugihara et al. [2007]632

and Schwendeman and Thomson [2015a], or𝑈𝑃𝐿
10 was simply used as a proxy for𝑈10𝑁 , e.g., Callaghan633

et al. [2008]. As discussed in §2.2, although these simplifications have a relatively small effect634

on estimated wind speeds at high winds, they can lead to considerable errors in estimated wind635

parameters at low winds.636

Our observations shown in Figures A.11a and A.11b demonstrate that the observed𝑊 (𝑈10𝑁 )637

and𝑊 (𝑢∗) values at rapidly decreasing (𝑑𝑈10𝑁/𝑑𝑡 ≪ 0), low winds (𝑈10𝑁 < 4 ms−1 or 𝑢∗ <638
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0.2 ms−1) vary between 10−4 and 2×10−3 while the best wind-speed-only or 𝑢∗-only fits obtained639

from the remaining of the data points predict no whitecapping (𝑊 = 0) at those wind condi-640

tions. This suggests that strong wind history could also result in a systematic bias in𝑊 (𝑈10𝑁 )641

and𝑊 (𝑢∗) data at low winds, and thus, may be responsible for a portion of an apparent diver-642

gence in existing wind-speed-only and 𝑢∗-only fits at low and moderate winds.643

Figures A.11a and A.11b also show that at the same wind forcing, either represented by644

𝑈10𝑁 or 𝑢∗, a large portion of𝑊 values in the PAPA data at increasing (𝑑𝑈10𝑁/𝑑𝑡 > 0) and de-645

creasing (𝑑𝑈10𝑁/𝑑𝑡 < 0) wind speeds tend to be smaller and greater than the corresponding646

mean𝑊 values provided by the corresponding best fits, respectively. This trend is consistent with647

the observations of Callaghan et al. [2008] for wind speeds above approximately 9 ms−1. How-648

ever, in contrast to Callaghan et al. [2008], our observations clearly show that the same trend ex-649

ists for moderate and low winds if the magnitude of 𝑑𝑈10𝑁/𝑑𝑡 is sufficiently large.650

Next, we examine the predictive skill of several wind and wave parameters for the observed651

range of𝑊 values in the PAPA data similar to the method described in §3.2 but in log10 space;652

i.e., we evaluate the overall quality of the fits using Eqs. 11 and 12 with𝑊𝑟𝑒𝑠,𝑖 = log10𝑊𝑖 −653

log10 [𝑎 (X𝑖−𝑏)𝑛]. Here RMSE indicates an average order of magnitude deviation from the fit,654

and 𝑟2 indicates the proportion of the observed log10𝑊 variability that is predictable from the655

X parameter. Negative 𝑟2 indicates that the fit performs worse than a horizontal line at the mean656

of the data. As in §3.2, all the fits are obtained from the binned data for𝑈10𝑁 ≥ 6 ms−1. The657

fit statistics are obtained using the individual 10-minute average data points,𝑊𝑖 (𝑖 = 1, . . . , 𝑁),658

with three conditions: all data (𝑁 = 165),𝑈10𝑁 ≥ 6 ms−1 (𝑁 = 144), and |𝑑𝑈10𝑁/𝑑𝑡 | < 2659

ms−1hr−1 (𝑁 = 126).660

Table 2: Parameterizations of whitecap coverage represented by the best fits with a threshold power
law form𝑊 = 𝑎 (X − 𝑏)𝑛 as a function of several wind and wave parameters X to the binned PAPA
data for𝑈10𝑁 ≥ 6 ms−1. The statistics of each fit are also calculated for three conditions. The fits
and their statistics are computed in log space.

Results of the best fit Statistics of the best fit with conditions:
Predictor 𝑊 = 𝑎 (X − 𝑏)𝑛 𝑈10𝑁 ≥ 6 ms−1 | 𝑑𝑈10𝑁

𝑑𝑡
| < 2 ms−1

hr all data
X 𝑎 𝑏 𝑛 RMSE 𝑟2 RMSE 𝑟2 RMSE 𝑟2

𝑈10𝑁 2.06 × 10−5 3.89 2.65 0.412 0.70 0.471 0.60 0.752 0.05
𝑢∗ 3.63 × 10−2 0.18 2.00 0.394 0.72 0.476 0.59 0.698 0.18

𝑅𝐵,𝑚 =
𝑢2
∗

𝜈𝑤𝜔𝑚
3.87 × 10−9 5.81 × 104 1.14 0.400 0.72 0.646 0.25 0.935 −0.47

𝑅𝐵,𝑝 =
𝑢2
∗

𝜈𝑤𝜔𝑝
3.86 × 10−9 7.01 × 104 1.12 0.424 0.68 0.657 0.22 0.916 −0.41

𝑅𝐻𝑒𝑞
=

𝑢∗𝐻𝑒𝑞

𝜈𝑤
3.02 × 10−10 1.50 × 105 1.31 0.428 0.68 0.415 0.69 0.645 0.30

𝑅𝐻𝑠
=

𝑢∗𝐻𝑠

𝜈𝑤
2.45 × 10−10 5.07 × 105 1.23 0.456 0.63 0.434 0.66 0.692 0.20

𝑅𝐻𝑝
=

𝑢∗𝐻𝑝

𝜈𝑤
1.64 × 10−9 4.05 × 105 1.12 0.590 0.38 0.589 0.37 0.801 −0.08

mss 6.50 × 106 − 3.60 0.565 0.43 0.557 0.44 0.572 0.44
mss/Δ 𝑓 1.61 × 102 6.23 × 10−3 2.79 0.487 0.58 0.482 0.58 0.512 0.55

mss/Δ 𝑓Δ𝜃 4.79 1.72 × 10−2 2.16 0.537 0.49 0.534 0.49 0.557 0.47
𝐻𝑝𝑘 𝑝/2 4.85 − 2.33 0.737 0.03 0.520 0.06 0.778 −0.04
𝐻𝑠𝑘 𝑝/2 2.06 × 10−1 3.86 × 10−2 0.99 0.766 −0.05 0.795 −0.14 0.837 −0.20
𝐻𝑒𝑞𝑘𝑚/2 1.89 × 107 − 6.58 0.564 0.43 0.550 0.46 0.576 0.43
𝐻𝑝𝑘𝑚/2 3.80 × 102 3.12 × 10−2 3.87 0.547 0.46 0.550 0.46 0.552 0.48
𝐻𝑠𝑘𝑚/2 5.53 × 102 4.56 × 10−2 4.27 0.507 0.54 0.502 0.54 0.503 0.56
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Table 2 summarizes the coefficients (𝑎, 𝑏, and 𝑛) and statistics of the best fits,𝑊 = 𝑎 (X−661

𝑏)𝑛, for several predictive parameters X to the PAPA data. Of all the considered predictors for662

𝑊 at moderate and high winds, 𝑢∗ gives the best fit (𝑟2 = 0.72, RMSE = 0.394), which is only663

slightly better than the𝑈10𝑁 fit (𝑟2 = 0.70, RMSE = 0.412). Our results show that the quality664

of the fits obtained from various forms of the predictors 𝑅𝐻 (Eq. 3) and 𝑅𝐵 (Eq. 4), which com-665

bine 𝑢∗ and a characteristic scale of the wave field, are similar or less than the 𝑢∗-only fit. These666

parameterizations cannot reasonably predict𝑊 at rapidly varying wind speeds (i.e., large wind667

accelerations).668

Our observations shown in Figure A.2 indicate that either the normalized or unnormalized669

equilibrium range 𝑚𝑠𝑠 values at increasing winds are smaller than those in decreasing winds at670

a given wind speed. This suggests that these spectral parameters might reflect both wind forc-671

ing and wind history effects. Consistently, the results summarized in Table 2 document that the672

parameterizations based on the equilibrium range 𝑚𝑠𝑠 have similar skill across all sea state con-673

ditions, including those with large wind accelerations. The results indicate that the equilibrium674

range 𝑚𝑠𝑠/Δ 𝑓 (Figure A.11c) better predicts the observed𝑊 variability compared to the other675

spectral predictors considered here. Of the bulk steepness predictors, 𝐻𝑠𝑘𝑚/2 has the highest676

skill. Overall, for each type of the predictors considered here, those that contain either the peak677

wave height, peak wave number, or peak wave period show the least skill (Figure A.11d).678

Figure A.11 shows that the observed𝑊 (𝑈10𝑁 ),𝑊 (𝑢∗), and𝑊 (𝑚𝑠𝑠/Δ 𝑓 ) values in the PAPA679

data at moderate winds (e.g., 8 ms−1 ≤ 𝑈10𝑁 ≤ 16 ms−1) are generally smaller than in the Schwen-680

deman and Thomson [2015a] data set. We note that a significant portion of the data at these wind681

speeds was collected in the presence of rain (Figure A.1b). This observation may suggest that682

whitecap activity is suppressed in the presence of rain. Detailed quantification of rain effects on683

𝑊 requires rain rates (not measured here) and remains unknown.684

Finally, Figure A.12 shows that the mean and significant bubble plume penetration depths685

are, on average, correlated and have a nonlinear relation with whitecap coverage given by686

𝐷𝑏𝑝 = 29.5 𝑊 0.33 , 𝐷
1/3
𝑏𝑝

= 52.8 𝑊 0.36, (14)

with 𝑟2 = 0.60 (the fit in Figure A.12a) and 𝑟2 = 0.62 (the fit in Figure A.12c), and687

𝐷𝑏𝑝,𝑣 = 12.6 𝑊 0.19 , 𝐷
1/3
𝑏𝑝,𝑣

= 21.9 𝑊 0.24, (15)

with 𝑟2 = 0.33 (the fit in Figure A.12b) and 𝑟2 = 0.43 (the fit in Figure A.12d). Here both fits688

are obtained using the binned data as a function of𝑈10𝑁 ; as before, the data with𝑈10𝑁 < 6ms−1
689

are not considered for data fitting. As explained in detail in §2.5 and consistent with the obser-690

vations shown in §3.1 and §3.2, 𝐷𝑏𝑝,𝑣 represents penetration depth of bubbles that have, on av-691

erage, at least two orders of magnitude more void fraction and significantly more visible optical692

signature than those reach to 𝐷𝑏𝑝 for a given sea state condition.693

Assuming a wave field with narrow-banded breaking waves,𝑊 increases approximately694

linearly with increasing rates of breaking waves while the statistics of bubble plume depths are695

not sensitive to breaking rates, and thus they would not be correlated with𝑊 . However, wave break-696

ing typically occurs at a range of scales, and increasing𝑊 results from increasing both the rate697

and scale of breaking waves. This may partially explain the observed relationship between bub-698

ble plume depths and𝑊 shown in Figure A.12, that is, the plume depths increase, on average,699

with increasing𝑊 but at a much lower rate, i.e., the exponents in Eqs. 14 and 15 are positive but700

much less than 1.701

4 Discussion: Bubble Plumes Volumes702

Here we define the volume of bubble plumes as a measure of their overall size rather than703

the total volume of bubbles they contain, with the bubble plumes that are identified as regions704

in which volume backscattering strength (somewhat related to bubble void fractions, see §2.5)705
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is above a threshold value. That said, the volume of bubble plumes per unit sea surface area is706

given by707

V𝑏𝑝 = A𝑏𝑝𝐷𝑏𝑝 , and V𝑏𝑝,𝑣 = A𝑏𝑝,𝑣𝐷𝑏𝑝,𝑣 , (16)

where A is the fractional surface area of bubble plumes, 𝐷 is the mean penetration depth of bub-708

bles within the plumes, and the subscripts 𝑏𝑝 and 𝑏𝑝, 𝑣 denote the statistics corresponding the709

bubble plumes obtained from our bubble detection methods BDM1 and BDM2 (described in §2.5),710

respectively. As discussed in detail in §2.5, 𝐷𝑏𝑝,𝑣 represents mean penetration depth of bubbles711

where the volume backscattering is at least 20 dB higher at 𝐷𝑏𝑝 for a given sea state condition712

and note this is expected to reflect comparable increasing in void fraction. Our observations and713

several simple parameterizations of the mean plume depths 𝐷𝑏𝑝 and 𝐷𝑏𝑝,𝑣 are presented in §3.714

We note that A represents the fractional surface area, with or without visible surface sig-715

nature, of bubble plumes that significantly exceed the persistence of visible surface foam gen-716

erated during active breaking as discussed in §3.1. Thus both A𝑏𝑝 and A𝑏𝑝,𝑣 are expected to717

be noticeably greater than the measured whitecap coverage𝑊 . However, A𝑏𝑝 and A𝑏𝑝,𝑣 can718

not be directly quantified from our sampling method. In the following, we introduce a proxy for719

A and comment on its relation to𝑊 .720

We define 𝑃 as a time fraction of echogram data over concurrent bursts during which bub-721

ble plumes are detected. Assuming the buoys had an approximately constant ”wind slip” veloc-722

ity𝑈𝑠𝑙𝑖 𝑝 during each burst, 𝐴 = 𝑃2 then provides a proxy for A if the drifting distance of the723

buoy relative to the surface water ≈ 𝑈𝑠𝑙𝑖 𝑝𝑇𝑏𝑢𝑟𝑠𝑡 is much greater than the average horizontal length724

of the bubble clouds ≈ 𝑈𝑠𝑙𝑖 𝑝𝑇𝑎𝑏 or𝑈𝑠𝑙𝑖 𝑝𝑇𝑎𝑏,𝑣 (see §3.1). Further, at least a few bubble clouds725

should be available in a burst to consider that A ≈ 𝐴.726

Figure A.13a shows the 𝐴𝑏𝑝 and 𝐴𝑏𝑝,𝑣 values as a function of𝑈10𝑁 where the size of the727

symbols is a function of the number of the bubble clouds detected in a burst, averaged over con-728

current bursts, 𝑁 , with 0.67 ≤ 𝑁𝑏𝑝 ≤ 26 and 0.5 ≤ 𝑁𝑏𝑝,𝑣 ≤ 24. Note that 𝑃, and thus 𝐴 =729

𝑃2, values that approach one indicate that either the main portion of the surface layer is covered730

by bubble plumes or the net drifting distance of the buoy (relative to the surface water) is smaller731

than the horizontal length of the sampled bubble cloud. As shown in Figure A.4b and A.13a, the732

latter may explain 𝐴𝑏𝑝 ∼ 1 at moderate winds where 𝑁 < 2 and 𝑇𝑎𝑏 values are on the order733

of several hundreds of seconds (comparable to 𝑇𝑏𝑢𝑟𝑠𝑡 = 512s). Despite the uncertainties in the734

interpretation of 𝐴, the observations shown in Figure A.13a suggest that 𝐴𝑏𝑝 is several times greater735

than 𝐴𝑏𝑝,𝑣 , which is qualitatively consistent with the continuous increase of the overall size of736

the bubble plume shown in Figure A.5 and the corresponding residence time results shown in Fig-737

ure A.4b.738

Figure A.13b shows that both 𝐴𝑏𝑝 and 𝐴𝑏𝑝,𝑣 are, on average, increase as a function of𝑊739

as740

𝐴𝑏𝑝 = 2.5𝑊 0.33 ≤ 1, and 𝐴𝑏𝑝,𝑣 = 8.4𝑊 0.97 ≤ 1. (17)

Note that the data points with 𝑁 < 3 are neglected in Figure A.13b. Our observations show that741

𝐴𝑏𝑝 , which is comparable to a fractional surface area defined in Thorpe [1986], is at least an or-742

der of magnitude larger than𝑊 . This is consistent with the semi-empirical plume area analysis743

of Thorpe [1986].744

Finally by substituting Eqs. 14, 15, and 17 into Eq. 16, we obtain745

V𝑏𝑝 = A𝑏𝑝𝐷𝑏𝑝 ≈ 74𝑊 0.66 ≤ 29.5𝑊 0.33 [m3/m2], (18)

and746

V𝑏𝑝,𝑣 = A𝑏𝑝,𝑣𝐷𝑏𝑝,𝑣 ≈ 106𝑊 1.16 ≤ 12.6𝑊 0.19 [m3/m2], (19)

assuming that the best fits to the binned data shown in Figure A.13b (Eq. 17) provide a proxy for747

A𝑏𝑝 and A𝑏𝑝,𝑣 .748

We emphasize that uncertainty in our estimates of the fractional surface area of bubble plumes749

(and thus plume volumes) increases with decreasing𝑊 , especially at low𝑊 values (e.g.,𝑊 <750
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10−3) because of increasing effect of sparse sampling of intermittent breaking crests on the re-751

sulting statistics [Derakhti et al., 2020a].752

5 Summary753

The observational results presented here quantify the statistics of penetration depth and frac-754

tional surface area of bubble plumes generated by breaking surface waves as a function of var-755

ious wind and sea state parameters over a wide range of sea state conditions. Bubble plume data756

include concurrent high-resolution (with a 12 min temporal resolution) plume depth statistics and757

whitecap coverage. The former is obtained from the echogram data with 1 cm vertical resolu-758

tion, collected by downward-looking echosounders mounted on arrays of freely drifting SWIFT759

buoys. The latter is obtained from visual images, collected by shipboard cameras operated near760

the buoys.761

Our observations indicate that the statistics of bubble plume penetration depths are well-762

correlated with wind speed, spectral wave steepness, and whitecap coverage. Results show that763

the mean plume depths exceed 10 m beneath the surface at high winds, with individual bubble764

clouds reach to depths of more than 30 m. Mean plume depths vary, on average, from 1.6 to 2.8765

times wind sea significant wave height 𝐻𝑤𝑠
𝑠 . Plume depths scaled by either 𝐻𝑤𝑠

𝑠 or total signif-766

icant wave height 𝐻𝑠 vary non-monotonically with increasing wind speeds. Plume depths scaled767

by 𝐻𝑠 are strongly linearly correlated with the inverse of wave age from developing to old seas.768

All scaled plume depths considered here are decreasing functions of wave age in developing seas.769

We successfully provide multiple parameterizations that predict the observed variability of the770

penetration depth and surface area of bubble plumes as a function of simple wind and wave statis-771

tics available from existing forecast models or typical ocean buoys.772

This study is the first to provide a direct relation between bubble plume penetration depth773

and whitecap coverage, indicating that the penetration depth of bubble plumes is correlated with774

their visible surface area. This result is significant as it advocates the possibility of estimating775

the volume of bubble plumes by remote sensing. This also significantly expands the applicabil-776

ity of the recent theoretical framework introduced by Callaghan [2018] on predicting total wave777

breaking dissipation as a function of bubble plume penetration depth and whitecap coverage. In778

a companion paper, we examine dynamic relationships between the bubble plume statistics pre-779

sented here and total wave breaking dissipation using our synchronized observations of bubble780

plumes and dissipation rates.781

Finally, the parameterizations of bubble plume penetration depth provided in this study may782

also be used for estimating effective vertical transport of other particles, with a rising velocity783

on the order of few cms−1 or less, by breaking surface waves. It is possible that the drifting SWIFT784

buoys used in this study aggregate in convergence zones with enhanced downwelling velocities,785

such that there would be a sampling bias in the interpretation of vertical transport [Zippel et al.,786

2020]. However, no obvious convergence zones, windrows, or other organized surface fronts were787

observed during the PAPA data collection. Furthermore, the wind slip (1% of wind speed) of the788

buoys tends to cause a quasi-uniform sampling along a drift track even in the presence of surface789

features.790
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A: Echosounder calibration800

The echosounder was calibrated using standard sphere calibration techniques Demer et al.801

[2015]. In this approach, a sphere of a known material is suspended below the beam of an echosounder.802

Since the sphere’s properties are known, an analytical solution for the acoustic target strength can803

be calculated. The difference between the measured intensity of the scattering and the known scat-804

tering from the sphere at the transmit frequency is the total gain for the system. In post-cruise805

testing, a 38.1 mm diameter tungsten-carbide sphere with 6% cobalt binder was suspended 8 m806

below the transducers by a bridle connected to the hull of the SWIFTs. The units were then de-807

ployed for 30-60 minutes on Lake Washington (Washington, USA), during which the attitude of808

the SWIFTS caused the suspended sphere to pass through the beam of the echosounder. The top809

1% of targets at the sphere range, which are assumed to be those associated with the sphere be-810

ing on-axis within the beam where the combined transmit-receive beampattern is highest, were811

then selected. The gain is then determined by solving for 𝐺𝑐𝑎𝑙 in the target strength equation us-812

ing the known analytical solution for the target strength of the sphere.813

In practice, a sphere is sized such that its scattering response contains no significant nulls814

within the bandwidth [Demer et al., 2015; Stanton and Chu, 2008; Lavery et al., 2017]. How-815

ever, this is not feasible at 1 MHz since a tiny < 1𝑐𝑚 sphere would be required. Furthermore,816

for such a small sphere, the strands securing the sphere would contribute significantly to scatter-817

ing, bias the results [Renfree et al., 2020]. Thus, we chose to use a larger sphere whose response818

is quite complex over the relevant frequency range. The pulse-compressed signal has sufficient819

bandwidth to clearly resolve the echo from the front interface and subsequent contributions from820

circumference waves. We, therefore, assumed that the peak of the pulse compressed signal rep-821

resents the partial wave scattering cross-section of the sphere [Stanton and Chu, 2008]. This as-822

sumption is necessary given that a frequency-dependent calibration cannot be performed given823

the only output data product is a scattering intensity measurement representing the average within824

the range bin output by the ADCP.825

At the time of this experiment, the firmware resulted in scattering that saturated the receiver826

in the high gain setting and saturated the receiver when using the calibration sphere at a range827

of ∼8 m. There is, therefore, some uncertainty in the calibration gains and the field observations.828

We cannot conclusively state the magnitude of this uncertainty, but it is believed to be on the or-829

der of a few dB or less from the calibration gain. The justification for this statement is that the830

elastic response of the sphere is well resolved with the intensity (impulse response squared) of831

the signal from the first Rayleigh wave, approximately 9 dB smaller than the echo from the front832

interface of the sphere when the calibrations were performed at the lower gain setting. This is833

consistent with expectations based on the impulse response of a 38.1 mm tungsten carbine sphere834

[Demer et al., 2015] and the arrival of the signal associated with the first Rayleigh wave. In the835

saturated data, the difference in intensity between the first Rayleigh wave and the saturated echo836

from the front interface was approximately 3 dB. Given the impulse response of the 38.1 mm sphere,837

this suggests that about 6 dB of scattering from the sphere had been clipped. When used in the838

high power setting, gains were applied assuming the clipped value was 6 dB. The practical ef-839

fect of this uncertainty is to put consistent error bars on the volume scattering coefficients mea-840

sured in the data. That is, all data are shifted similarly, making the absolute intensity of the backscat-841

tering more uncertain without impacting the relevant ranges between the thresholds.842

The fact that scattering from the tungsten carbide sphere saturated at 8 m indicates the high843

gain setting almost certainly caused widespread saturation of signals in the upper portion (∼ 10844

m) of the water column when high densities of bubbles were present. A consequence of this is845

that the full dynamic range of volume backscattering is not resolved. Despite these challenges846

and uncertainties, we consider it preferable to present backscattering intensities in this approach847
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to backscattering intensities expressed in decibels with reference value ground in physical mea-848

surements.849
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