References
Jena KK, Jeung JU, Lee JH, Choi HC, Brar DS (2005) High-resolution
mapping of a new brown planthopper (BPH) resistance gene,Bph 18(t), and marker-assisted selection for BPH resistance in
rice (Oryza sativa L.). Theoretical and Applied Genetics112 : 288-297
Tanaka K, Endo S, Kazano H (2000) Toxicity of insecticides to predators
of rice planthoppers:Spiders, the mirid bug and the dryinid wasp.Applied Entomology and Zoology 35 : 177-187
Chen J, Ouyang Y, Wang L, Xie W, Zhang Q (2009) Aspartic proteases gene
family in rice: Gene structure and expression, predicted protein
features and phylogenetic relation. Gene 442 : 108-118
Mutlu A, Gal S (1999) Plant aspartic proteinases: enzymes on the way to
a function. Physiologia Plantarum 105 : 569-576
Takahashi K, Niwa H, Yokota N, Kubota K, Inoue H (2008) Widespread
tissue expression of nepenthesin-like aspartic protease genes inArabidopsis thaliana. Plant Physiology and Biochemistry46 : 724-729
Kato Y, Murakami S, Yamamoto Y, Chatani H, Kondo Y, Nakano T, Yokota A,
Sato F (2004) The DNA-binding protease, CND41, and the degradation of
ribulose-1,5-bisphosphate carboxylase / oxygenase in senescent leaves of
tobacco. Planta 220 : 97-104
Niu N , Liang W, Yang X, Jin W, Wilson ZA, Hu J, Zhang D (2013) EAT1
promotes tapetal cell death by regulating aspartic proteases during male
reproductive development in rice. Nature Communications4 :1445
Carvalhoa MC, d’Arcy-Lametaa A, Roy-Macauleyb H, Gareila M, Maaroufa HE,
Pham-Thia AT, Zuily-Fodil Y (2001) Aspartic protease in leaves of common
bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculataL. Walp): enzymatic activity, gene expressionand relation to drought
susceptibility. FEBS letters 492 : 242-246
Guevara MG, Oliva CR, Huarte M, Daleo GR (2002) An Aspartic Protease
With Antimicrobial Activity is Induced after Infection and Wounding in
Intercellular Fluids of Potato Tubers. European Journal of Plant
Pathology 108 : 131-137
Alam MM, Nakamura H, Ichikawa H, Miyao A, Hirochika H, Kobayashi K,
Yamaoka N, Nishiguchi M (2014) Response of an aspartic proteasegene OsAP77 to fungal, bacterial and viral infections in rice.Rice 7 : 9
Wang Z, Zhou L, Lan Y, Li X, Wang J, Dong J, Guo W, Jing D, Liu Q, Zhang
S, Liu Z, Shi W, Yang W, Yang T, Sun F, Du L, Fu H, Ma Y, Shao Y, Chen
L, Li J, Li S, Fan Y, Wang Y, Leung H, Liu B, Zhou Y, Zhao J, Zhou T
(2022) An aspartic protease 47 causes quantitative recessive resistance
to rice black-streaked dwarf virus disease and southern rice
black-streaked dwarf virus disease. New Phytologist 233 :
2520-2533
Kieffer M , Neve J, Kepinski S (2009) Defining auxin response contexts
in plant development. Current Opinion in Plant Biology13 : 12-20
Zhao Y (2010) Auxin Biosynthesis and Its Role in Plant Development.Annual Review of Plant Biology 61 : 49-64
Liu X, Zhang H, Zhao Y, Feng Z, Li Q, Yang HQ, Luan S, Li J, He ZH
(2013) Auxin controls seed dormancy through stimulation of abscisic acid
signaling by inducing ARF-mediated ABI3 activation inArabidopsis . Proceedings of the National Academy of
Sciences of the United States of America 110 : 15485-15490
Wang S, Ren X, Huang B, Wang G, Zhou P, An Y (2016) Aluminium-induced
reduction of plant growth in alfalfa (Medicago sativa ) is
mediated by interrupting auxin transport and accumulation in roots.Scientific Reports 6 : 30079
Li X, Yang DL, Sun L, Li Q, Mao B, He Z (2016) The Systemic Acquired
Resistance Regulator OsNPR1 Attenuates Growth by Repressing Auxin
Signaling through Promoting IAA-Amido Synthase Expression. Plant
Physiology 172 : 546-558
Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X, Wang S (2008) Activation of
the Indole-3-Acetic Acid–Amido Synthetase GH3-8 Suppresses Expansin
Expression and Promotes Salicylate and Jasmonate-Independent Basal
Immunity in Rice. The Plant Cell 20 : 228-240
Shen S, Liu Y, Wang F, Yao G, Xie L, Xu B (2019) Graphene Oxide
Regulates Root Development and Influences IAA Concentration in Rice.
Journal of Plant Growth Regulation 38 : 241-248
Zhang Q, Li T, Gao M, Ye M, Lin M, Wu D, Guo J, Guan W, Wang J, Yang K,
Zhu L, Cheng Y, Du B, He G (2022) Transcriptome and Metabolome Profiling
Reveal the Resistance Mechanisms of Rice against Brown Planthopper.International Journal of Molecular Sciences 23 : 4083
Figueiredo L, B. Santos R, Figueiredo A (2021) Defense and Offense
Strategies: The Role of Aspartic Proteases in Plant–Pathogen
Interactions. Biology 10 : 75
Chen HJ, Huang YH, Huang GJ, Huang SS, Chow TJ, Lin YH (2015) Sweet
potato SPAP1 is a typical aspartic protease and participates in
ethephon-mediated leaf senescence. Journal of Plant Physiology180 : 1-17
Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet
O, Jones JDG (2006) A Plant miRNA Contributes to Antibacterial
Resistance by Repressing Auxin Signaling. Science 312 :
436-439
Domingo C, Andrés F, Tharreau D, Iglesias DJ, Talón M (2009)
Constitutive expression of OsGH3.1 reduces auxin content and
enhances defense response and resistance to a fungal pathogen in rice.Molecular Plant-Microbe Interactions 22 : 201-210
Zhang SW, Li CH, Cao J, Zhang TC, Zhang SQ, Xia YF, Sun DY, Sun Y (2009)
Altered Architecture and Enhanced Drought Tolerance in Rice via the
Down-Regulation of Indole-3-Acetic Acid by TLD1/OsGH3.13 Activation.Plant Physiology 151 : 1889-1901
Fu J, Liu H, Li Y, Yu H, Li X, Xiao J, Wang S (2010) Manipulating
Broad-Spectrum Disease Resistance by Suppressing Pathogen-Induced Auxin
Accumulation in Rice. Plant Physiology 155 : 589-602
Du H, Wu N, Fu J, Wang S, Li X, Xiao J, Xiong L (2012) A GH3 family
member, OsGH3-2, modulates auxin and abscisic acid levels and
differentially affects drought and cold tolerance in rice. Journal
of Experimental Botany 63 : 6467-6480
Zhao D, Wang Y, Feng C, Wei Y, Peng X, Guo X, Guo X, Zhai Z, Li J, Shen
X, Li T (2020) Overexpression of MsGH3.5 inhibits shoot and root
development through the auxin and cytokinin pathways in apple plants.The Plant Journal 103 : 166-183
Shi S, Wang H, Nie L, Tan D, Zhou C, Zhang Q, Li Y, Du B, Guo J, Huang
J, Wu D, Zheng X, Guan W, Shan J, Zhu L, Chen R, Xue L, Walling LL, He G
(2021) Bph30 confers resistance to brown planthopper by
fortifying sclerenchyma in rice leaf sheaths. Molecular Plant14 : 1714-1732
Zhong R, Lee C, Zhou J, McCarthy RL, Ye ZH (2008) A battery of
transcription factors involved in the regulation of secondary cell wall
biosynthesis in Arabidopsis. Plant Cell 20 :2763–2782
Wang Y S, Gao L P, Shan Y, Liu Y J, Tian Y W, Xia T. (2012) Influence of
shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O.
Kuntze). Scientia Horticulturae 141 : 7–16.
Tao Y, Kai F, Meng X, Jaime B, Timothy J. T, Gerald A. T, Wellington M,
Chen J G (2021) Phylogenetic Occurrence of the Phenylpropanoid Pathway
and Lignin Biosynthesis in Plants. Frontiers in Plant Science12: 704697
Lee K H, Du Q, Zhuo C, Qi L J, Wang H J (2019) LBD29-Involved Auxin
Signaling Represses NAC Master Regulators and Fiber Wall Biosynthesis.
Plant Physiology 181: 595-608
Li Y, Zheng YP, Zhou XH, Yang XM, He XR, Feng Q, Zhu Y, Li GB, Wang H,
Zhao JH, Hu XH, Pu M, Zhou SX, Ji YP, Zhao ZX, Zhang JW, Huang YY, Fan
J, Zhang LL, Wang WM (2021) Rice miR1432 Fine-Tunes the Balance of Yield
and Blast Disease Resistance via Different Modules. Rice14 : 87
Deng Y, Zhai K, Xie Z, Yang D, Zhu X, Liu J, Wang X, Qin P, Yang Y,
Zhang G, Li Q, Zhang J, Wu S, Milazzo J, Mao B, Wang E, Xie H, Tharreau
D, He Z (2017) Science 355 : 962-965
Li Z, Xue Y, Zhou H, Li Y, Usman B, Jiao X, Wang X, Liu F, Qin B, Li R,
Qiu Y (2019) High-resolution mapping and breeding application of a novel
brown planthopper resistance gene derived from wild rice (Oryza.
rufipogon Griff). Rice 12 : 41
Yang M, Lin J, Cheng L, Zhou H, Chen S, Liu F, Li R, Qiu Y (2020)
Identification of a novel planthopper resistance gene from wild rice
(Oryza rufipogon Griff). The Crop Journal 8 :
1057-1070
Lin J, Wang X, Li Y, Bi F, Cheng L, Huang F, Li R, Qiu Y (2019) Fine
mapping, candidate genes analysis, and characterization of a brown
planthopper (Nilaparvata lugens Stål) resistance gene in the rice
variety ARC5984. Euphytica 216 : 13
Cheng L, Zhu Y, Li J, Jiang Z, Shu W, Qiu Y (2021) Mapping and breeding
application of the brown planthopper (Nilaparvata
lugens )-resistance genes derived from a durable resistant PTB33 rice
variety (Oryza sativa ) Plant Breeding 140 :
981-989
Yang L, Ding J, Zhang C, Jia J, Weng H, Liu W, Zhang D (2004) Estimating
the copy number of transgenes in transformed rice by real-time
quantitative PCR. Plant Cell Reports 23 : 759-763
Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D,
Wang J, Wang H (2011) A highly efficient rice green tissue protoplast
system for transient gene expression and studying
light/chloroplast-related processes. Plant Methods 7 : 30
Liu C, Du B, Hao F, Lei H, Wan Q, He G, Wang Y, Tang H (2017) Dynamic
metabolic responses of brown planthoppers towards susceptible and
resistant rice plants. Plant Biotechnology Journal 15 :
1346-1357
Zhang D, Shi J, Yang X (2016) Role of Lipid Metabolism in Plant Pollen
Exine Development. Subcellular Biochemistry 86: 315-337