References
Jena KK, Jeung JU, Lee JH, Choi HC, Brar DS (2005) High-resolution mapping of a new brown planthopper (BPH) resistance gene,Bph 18(t), and marker-assisted selection for BPH resistance in rice (Oryza sativa L.). Theoretical and Applied Genetics112 : 288-297
Tanaka K, Endo S, Kazano H (2000) Toxicity of insecticides to predators of rice planthoppers:Spiders, the mirid bug and the dryinid wasp.Applied Entomology and Zoology 35 : 177-187
Chen J, Ouyang Y, Wang L, Xie W, Zhang Q (2009) Aspartic proteases gene family in rice: Gene structure and expression, predicted protein features and phylogenetic relation. Gene 442 : 108-118
Mutlu A, Gal S (1999) Plant aspartic proteinases: enzymes on the way to a function. Physiologia Plantarum 105 : 569-576
Takahashi K, Niwa H, Yokota N, Kubota K, Inoue H (2008) Widespread tissue expression of nepenthesin-like aspartic protease genes inArabidopsis thaliana. Plant Physiology and Biochemistry46 : 724-729
Kato Y, Murakami S, Yamamoto Y, Chatani H, Kondo Y, Nakano T, Yokota A, Sato F (2004) The DNA-binding protease, CND41, and the degradation of ribulose-1,5-bisphosphate carboxylase / oxygenase in senescent leaves of tobacco. Planta 220 : 97-104
Niu N , Liang W, Yang X, Jin W, Wilson ZA, Hu J, Zhang D (2013) EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nature Communications4 :1445
Carvalhoa MC, d’Arcy-Lametaa A, Roy-Macauleyb H, Gareila M, Maaroufa HE, Pham-Thia AT, Zuily-Fodil Y (2001) Aspartic protease in leaves of common bean (Phaseolus vulgaris L.) and cowpea (Vigna unguiculataL. Walp): enzymatic activity, gene expressionand relation to drought susceptibility. FEBS letters 492 : 242-246
Guevara MG, Oliva CR, Huarte M, Daleo GR (2002) An Aspartic Protease With Antimicrobial Activity is Induced after Infection and Wounding in Intercellular Fluids of Potato Tubers. European Journal of Plant Pathology 108 : 131-137
Alam MM, Nakamura H, Ichikawa H, Miyao A, Hirochika H, Kobayashi K, Yamaoka N, Nishiguchi M (2014) Response of an aspartic proteasegene OsAP77 to fungal, bacterial and viral infections in rice.Rice 7 : 9
Wang Z, Zhou L, Lan Y, Li X, Wang J, Dong J, Guo W, Jing D, Liu Q, Zhang S, Liu Z, Shi W, Yang W, Yang T, Sun F, Du L, Fu H, Ma Y, Shao Y, Chen L, Li J, Li S, Fan Y, Wang Y, Leung H, Liu B, Zhou Y, Zhao J, Zhou T (2022) An aspartic protease 47 causes quantitative recessive resistance to rice black-streaked dwarf virus disease and southern rice black-streaked dwarf virus disease. New Phytologist 233 : 2520-2533
Kieffer M , Neve J, Kepinski S (2009) Defining auxin response contexts in plant development. Current Opinion in Plant Biology13 : 12-20
Zhao Y (2010) Auxin Biosynthesis and Its Role in Plant Development.Annual Review of Plant Biology 61 : 49-64
Liu X, Zhang H, Zhao Y, Feng Z, Li Q, Yang HQ, Luan S, Li J, He ZH (2013) Auxin controls seed dormancy through stimulation of abscisic acid signaling by inducing ARF-mediated ABI3 activation inArabidopsis . Proceedings of the National Academy of Sciences of the United States of America 110 : 15485-15490
Wang S, Ren X, Huang B, Wang G, Zhou P, An Y (2016) Aluminium-induced reduction of plant growth in alfalfa (Medicago sativa ) is mediated by interrupting auxin transport and accumulation in roots.Scientific Reports 6 : 30079
Li X, Yang DL, Sun L, Li Q, Mao B, He Z (2016) The Systemic Acquired Resistance Regulator OsNPR1 Attenuates Growth by Repressing Auxin Signaling through Promoting IAA-Amido Synthase Expression. Plant Physiology 172 : 546-558
Ding X, Cao Y, Huang L, Zhao J, Xu C, Li X, Wang S (2008) Activation of the Indole-3-Acetic Acid–Amido Synthetase GH3-8 Suppresses Expansin Expression and Promotes Salicylate and Jasmonate-Independent Basal Immunity in Rice. The Plant Cell 20 : 228-240
Shen S, Liu Y, Wang F, Yao G, Xie L, Xu B (2019) Graphene Oxide Regulates Root Development and Influences IAA Concentration in Rice. Journal of Plant Growth Regulation 38 : 241-248
Zhang Q, Li T, Gao M, Ye M, Lin M, Wu D, Guo J, Guan W, Wang J, Yang K, Zhu L, Cheng Y, Du B, He G (2022) Transcriptome and Metabolome Profiling Reveal the Resistance Mechanisms of Rice against Brown Planthopper.International Journal of Molecular Sciences 23 : 4083
Figueiredo L, B. Santos R, Figueiredo A (2021) Defense and Offense Strategies: The Role of Aspartic Proteases in Plant–Pathogen Interactions. Biology 10 : 75
Chen HJ, Huang YH, Huang GJ, Huang SS, Chow TJ, Lin YH (2015) Sweet potato SPAP1 is a typical aspartic protease and participates in ethephon-mediated leaf senescence. Journal of Plant Physiology180 : 1-17
Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JDG (2006) A Plant miRNA Contributes to Antibacterial Resistance by Repressing Auxin Signaling. Science 312 : 436-439
Domingo C, Andrés F, Tharreau D, Iglesias DJ, Talón M (2009) Constitutive expression of OsGH3.1 reduces auxin content and enhances defense response and resistance to a fungal pathogen in rice.Molecular Plant-Microbe Interactions 22 : 201-210
Zhang SW, Li CH, Cao J, Zhang TC, Zhang SQ, Xia YF, Sun DY, Sun Y (2009) Altered Architecture and Enhanced Drought Tolerance in Rice via the Down-Regulation of Indole-3-Acetic Acid by TLD1/OsGH3.13 Activation.Plant Physiology 151 : 1889-1901
Fu J, Liu H, Li Y, Yu H, Li X, Xiao J, Wang S (2010) Manipulating Broad-Spectrum Disease Resistance by Suppressing Pathogen-Induced Auxin Accumulation in Rice. Plant Physiology 155 : 589-602
Du H, Wu N, Fu J, Wang S, Li X, Xiao J, Xiong L (2012) A GH3 family member, OsGH3-2, modulates auxin and abscisic acid levels and differentially affects drought and cold tolerance in rice. Journal of Experimental Botany 63 : 6467-6480
Zhao D, Wang Y, Feng C, Wei Y, Peng X, Guo X, Guo X, Zhai Z, Li J, Shen X, Li T (2020) Overexpression of MsGH3.5 inhibits shoot and root development through the auxin and cytokinin pathways in apple plants.The Plant Journal 103 : 166-183
Shi S, Wang H, Nie L, Tan D, Zhou C, Zhang Q, Li Y, Du B, Guo J, Huang J, Wu D, Zheng X, Guan W, Shan J, Zhu L, Chen R, Xue L, Walling LL, He G (2021) Bph30 confers resistance to brown planthopper by fortifying sclerenchyma in rice leaf sheaths. Molecular Plant14 : 1714-1732
Zhong R, Lee C, Zhou J, McCarthy RL, Ye ZH (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant Cell 20 :2763–2782
Wang Y S, Gao L P, Shan Y, Liu Y J, Tian Y W, Xia T. (2012) Influence of shade on flavonoid biosynthesis in tea (Camellia sinensis (L.) O. Kuntze). Scientia Horticulturae 141 : 7–16.
Tao Y, Kai F, Meng X, Jaime B, Timothy J. T, Gerald A. T, Wellington M, Chen J G (2021) Phylogenetic Occurrence of the Phenylpropanoid Pathway and Lignin Biosynthesis in Plants. Frontiers in Plant Science12: 704697
Lee K H, Du Q, Zhuo C, Qi L J, Wang H J (2019) LBD29-Involved Auxin Signaling Represses NAC Master Regulators and Fiber Wall Biosynthesis. Plant Physiology 181: 595-608
Li Y, Zheng YP, Zhou XH, Yang XM, He XR, Feng Q, Zhu Y, Li GB, Wang H, Zhao JH, Hu XH, Pu M, Zhou SX, Ji YP, Zhao ZX, Zhang JW, Huang YY, Fan J, Zhang LL, Wang WM (2021) Rice miR1432 Fine-Tunes the Balance of Yield and Blast Disease Resistance via Different Modules. Rice14 : 87
Deng Y, Zhai K, Xie Z, Yang D, Zhu X, Liu J, Wang X, Qin P, Yang Y, Zhang G, Li Q, Zhang J, Wu S, Milazzo J, Mao B, Wang E, Xie H, Tharreau D, He Z (2017) Science 355 : 962-965
Li Z, Xue Y, Zhou H, Li Y, Usman B, Jiao X, Wang X, Liu F, Qin B, Li R, Qiu Y (2019) High-resolution mapping and breeding application of a novel brown planthopper resistance gene derived from wild rice (Oryza. rufipogon Griff). Rice 12 : 41
Yang M, Lin J, Cheng L, Zhou H, Chen S, Liu F, Li R, Qiu Y (2020) Identification of a novel planthopper resistance gene from wild rice (Oryza rufipogon Griff). The Crop Journal 8 : 1057-1070
Lin J, Wang X, Li Y, Bi F, Cheng L, Huang F, Li R, Qiu Y (2019) Fine mapping, candidate genes analysis, and characterization of a brown planthopper (Nilaparvata lugens Stål) resistance gene in the rice variety ARC5984. Euphytica 216 : 13
Cheng L, Zhu Y, Li J, Jiang Z, Shu W, Qiu Y (2021) Mapping and breeding application of the brown planthopper (Nilaparvata lugens )-resistance genes derived from a durable resistant PTB33 rice variety (Oryza sativa ) Plant Breeding 140 : 981-989
Yang L, Ding J, Zhang C, Jia J, Weng H, Liu W, Zhang D (2004) Estimating the copy number of transgenes in transformed rice by real-time quantitative PCR. Plant Cell Reports 23 : 759-763
Zhang Y, Su J, Duan S, Ao Y, Dai J, Liu J, Wang P, Li Y, Liu B, Feng D, Wang J, Wang H (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7 : 30
Liu C, Du B, Hao F, Lei H, Wan Q, He G, Wang Y, Tang H (2017) Dynamic metabolic responses of brown planthoppers towards susceptible and resistant rice plants. Plant Biotechnology Journal 15 : 1346-1357
Zhang D, Shi J, Yang X (2016) Role of Lipid Metabolism in Plant Pollen Exine Development. Subcellular Biochemistry 86: 315-337