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Abstract:
Inertial Measurement Units (IMU) are commonly used in inertial attitude es-
timation from engineering to medical sciences. There may be disturbances
and high dynamics in the environment of these applications. Also, their mo-
tion characteristics and patterns also may differ. Many conventional filters
have been proposed to tackle the inertial attitude estimation problem based
on IMU measurements. There is no generalization over motion and envi-
ronmental characteristics in these filters. As a result, the presented con-
ventional filters will face various motion characteristics and patterns, which
will limit filter performance and need to optimize the filter parameters for
each situation. In this paper, two end-to-end deep-learning models are pro-
posed to solve the problem of real-time attitude estimation by using inertial
sensor measurements, which are generalized to motion patterns, sampling
rates, and environmental disturbances. The proposed models incorporate
accelerometer and gyroscope readings as inputs, which are collected from
a combination of five public datasets. The models consist of convolutional
neural network (CNN) layers combined with Bi-Directional Long-Short Term
Memory (LSTM) followed by a Fully Forward Neural Network (FFNN) to es-
timate the quaternion. To evaluate the validity and reliability, we have per-
formed an extensive and comprehensive evaluation over five publicly avail-
able datasets, which consist of more than 120 hours and 200 kilometers
of IMU measurements. The results show that the proposed method out-
performs the state-of-the-art methods in terms of accuracy and robustness.
Furthermore, it demonstrates that this model generalizes better than other
methods over various motion characteristics and sensor sampling rates.
K E YWORD S
Deep Learning, Attitude Estimation, Inertial Sensors, Intelligent
Filter, Sensor Fusion, Long-Short Term Memory, Convolutional
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1 | INTRODUCTION
Attitude determination, or the process of accurately estimating an object’s orientation, is crucial for successful navi-
gation. The field of attitude estimation is one of the most important research areas in navigation, image stabilization,
and tracking. Many moving robots, such as autonomous vehicles and drones, rely on accurate attitude determina-
tion to fulfill their mission goals. Numerous instruments and sensors are available for this purpose, but they vary in
cost and complexity. While high-quality sensors can provide more accurate results, they may not always be practical
due to their high cost. One way to increase accuracy at a lower cost is to use multiple sensors, either of the same
type (homogenous) or different types (heterogeneous). This approach, known as Multi-Data Sensor Fusion (MSDF),
involves fusing data from multiple sensors to reduce error and uncertainty. MSDF can be further divided into two
categories: single-point methods, which use vector measurements at a single point in time, and recursive methods,
which combine measurements over time and the system’s mathematical model Gebre-Egziabher et al. (2004). The pre-
cision of attitude determination depends on the sensors’ accuracy, the system modeling quality, and the information
processing method Renaudin and Combettes (2014). Obtaining this precision is a challenging navigation problem due
to system modeling, process, and measurement errors. Increasing the sensor’s precision may exponentially increase
the cost; sometimes, achieving the precision requirements is only possible for an exorbitant cost. Inertial navigation
algorithms, which are based on the Dead Reckoning method, have been used for years to determine the attitude
based on inertial sensors Steinhoff and Schiele (2010). Different kinds of inertial sensors are used in this method,
such as accelerometers and gyroscopes, which are referred to as Inertial Measurement Units (IMU). A moving object’s
position, velocity, and attitude can be determined using the numerical integration of IMU measurements. Over the
past decade, MEMS based IMUs have become increasingly popular. Due to recent advances in MEMS technology,
IMUs have become smaller, cheaper, and more accurate, and they can now be found in mobile robots, smartphones,
drones, and autonomous vehicles. IMUs are commonly used in moving objects’ navigation systems, but they suffer
from noise and bias, which directly affect the performance attitude estimation algorithmMahdi et al. (2022). Real-time
attitude estimation based on IMU sensor raw data is a fundamental problem in sensor fusion. In the past decades,
different MSDF techniques and Deep Learning models have been developed to tackle this problem and increase the
accuracy and reliability of attitude estimation techniques. Attitude can be estimated/determined by MSDF methods
using at least a 6-Degree-of-Freedom (6DoF) Sensor Fusion Algorithm (SFA). In 6DoF SFAs, a three-axis accelerome-
ter will be fused with a three-axis gyroscope to estimate the attitude. It is noticeable that as the accelerometer can
not measure the yaw (heading) angle and the gyroscope can only measure the angle’s rate, 6DoF SFAs are not suitable
for attitude and heading estimation/determination. An alternative method is to fuse magnetometer readings with a
6DoF SFA to estimate/determine the full orientation (attitude and heading). A magnetometer’s main disadvantage is
the magnetic disturbances, which adversely affect its performance, mainly when used for indoor navigation. Several
techniques have been developed to reduce the effect of magnetic disturbances on the filter performance, such as the
Factorized Quaternion Algorithm (FQA) Lee and Low (2012). Most SFAs are developed and parametrized based on
the system’s dynamic model, which requires a precise choice of model parameters Fauske et al. (2007). To the best
of our knowledge, no algorithm can handle all types of motions. In recent years, deep learning models have proven
their ability to tackle sequential data and learn the hidden patterns and relationships therein Wang et al. (2020); Xiao
et al. (2018); Zulqarnain et al. (2020); Nevavuori et al. (2020); Bouktif et al. (2019). Our paper proposes an end-to-end
deep-learning approach to solve the problem of real-time attitude estimation by using inertial sensor measurements.
Since a magnetometer is not present, this model estimates roll and pitch angles. The model consists of CNN layers
combined with Bi-Directional LSTM followed by a FFNN to estimate the quaternion. Our extensive evaluation of this
model on various publicly available IMU datasets shows it outperforms conventional algorithms and deep learning
models. Our main contribution in this paper is to present a novel end-to-end deep learning framework that can be
used for attitude estimation using low-cost strapdown inertial measurement units based on microelectromechanical
systems (MEMS). Our paper presents a generalizable, end-to-end, hybrid RNN-CNN neural network that learns mo-
tion characteristics, noise, and bias associated with inertial sensor measurements across various devices. The rest of
the paper is organized as follows: the related works are given in Section 2. We presented a detailed description of the
problem in Section 3. Our methodology is provided in section 4, and present a detailed description of our experiment
is in section 5. The test results and analysis are given in Section 6. In Section 7, we draw some conclusions and outline
possible future work.
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2 | RELATED WORKS
A three-dimensional dead-reckoning navigation system, such as an inertial navigation system (INS), contains a set
of inertial measurement units consisting of three gyroscopes aligned with three mutually orthogonal accelerometers.
As part of this package, a navigation processor is also included. It integrates the outputs of the IMU to provide
information about the position, velocity, and attitude Groves (2015). This kind of navigation system can be considered
one of the most straightforward approaches to performing attitude estimation only by using inertial sensors. Despite
their widespread use in industry, from medical science to aerospace, these sensors suffer from a large amount of
noise and bias in their measurements, which causes them to accumulate errors quickly over time. As a result, these
types of sensors are not suitable for long-term use alone. In the past decade, much research has been conducted on
inertial navigation techniques to tackle this problem. These studies could be divided into three categories, estimation
methods, MSDF techniques, and evolutionary/AI algorithms. Methods such as the Kalman Filter (KF) family (i.e., EKF,
UKF, MEKF) and other commonly used algorithms, as well as Madgwick Madgwick et al. (2010), and Mahony Euston
et al. (2008) are based on the dynamic model of the system. Kalman filter was first introduced in Kalman (1960), and
its variants, such as EKFJing et al. (2017), UKFChiella et al. (2019), andMEKFHall et al. (2008), have been implemented
for attitude estimation applications Crassidis et al. (2007). In Caruso et al. (2021), Caruso et al. compared different
sensor fusion algorithms for inertial attitude estimation. This comparative study showed that SFA performance is
highly dependent on parameter tuning and fixed parameter values are unsuitable for all applications. So, parameter
tuning is one of the disadvantages of the conventional attitude estimation method. This problem could be tackled
using evolutionary algorithms such as fuzzy logic Shen et al. (2012); Widodo et al. (2014) and deep learningBrossard
et al. (2020); Han et al. (2021); Buchanan et al. (2022); Engelsman and Klein (2022). Most deep learning approaches
in inertial navigation have focused on inertial odometry Esfahani et al. (2019a); Aslan et al. (2022); Soyer et al. (2021);
Saha et al. (2022); Onyekpe et al. (2021); Guimarães et al. (2021); Lin et al. (2022), and just a few try to solve the inertial
attitude estimationWeber et al. (2021); Esfahani et al. (2019b) problem. Deep learning methods are usually used for
visual or visual-inertial-based navigationOzaki and Kuroda (2021); Yu et al. (2019); Fan et al. (2021). Rochefort et
al. proposed a neural networks-based satellite attitude estimation algorithm using a quaternion neural network. This
study presents a newway of integrating the neural network into the state estimator and develops a training procedure
that is easy to implement. This algorithmprovides the same accuracy as the EKFwith significantly lower computational
complexity. In Chang-Siu et al. (2011), a Time-Varying Complementary Filter (TVCF) has been proposed to use a fuzzy
logic inference system for CF parameters adjustment for applying attitude estimation. Chen et al. Chen et al. (2018a);
Rochefort et al. (2005) deep recurrent neural networks for estimating the displacement of a user over a specified time
window. OriNet Esfahani et al. (2019b) was introduced by Esfahani et al. to estimate the orientation in quaternion
form based on LSTM layers and IMU measurements. Yuexin Zhang (2019) developed a sensor fusion method to
provide pseudo-GPS position information using empirical mode decomposition threshold filtering (EMDTF) for IMU
noise elimination and a LSTM neural network for pseudo-GPS position prediction during GPS outages. Dhahran et al.
Dhahbane et al. (2020) developed a neural network-based complementary filter (NNCF) with ten hidden layers and
trained by Bayesian Regularization Backpropagation (BRB) training algorithm to improve the generalization qualities
and solve the overfitting problem. In this method output of the complementary filter is used as the neural network
input. Li et al. Li et al. (2019a) proposed an adaptive Kalman filter with a fuzzy neural network for a trajectory
estimation system mitigating the measurement noise and undulation for implementing the touch interface. Deep
Learning has been used in Brossard et al. (2020) to denoise the gyroscope measurements for an open-loop attitude
estimation algorithm. Weber et al. Weber et al. (2021) present a real-time-capable neural network for robust IMU-
based attitude estimation. In this study, an accelerometer, gyroscope, and IMU sampling rate have been used as input
to the neural network, and the output is the attitude in the quaternion form. This model is only suitable for estimating
the roll and pitch angle. Sun et al. Sun et al. (2021) introduced a two-stage deep learning framework for inertial
odometry based on LSTM and FFNN architecture. In this study, the first stage is used to estimate the orientation,
and the second stage is used to estimate the position. A Neural Network model has been developed by Santos et
al. Dos Santos et al. (2021) for static attitude determination based on PointNet architecture. They used an attitude
profile matrix as input. This model uses the Swish activation function and Adam as its optimizer. A deep learning
model has been developed to estimate the Multirotor Unmanned Aerial Vehicle (MUAV) based on the Kalman filter
and FFNN in Al-Sharman et al. (2019). LSTM framework has been used in Narkhede et al. (2021) the Euler angles
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utilizing an accelerometer, gyroscope, and magnetometer, but the sensor sampling rate has not been considered. In
Table 1, we summarized some related works in the navigation field using deep learning.
TABLE 1 Deep Learning for Localization.
Model Year/Month Input Data Application
PoseNet Kendall et al. (2015) 2015/12 Vision Relocalization
VINet Clark et al. (2017b) 2017/02 Vision + Inertial Visual Inertial Odometry
DeepVOWang et al. (2017) 2017/05 Vision Visual Odometry
VidLoc Clark et al. (2017a) 2017/07 Vision Relocalization
IONet Chen et al. (2018a) 2018/02 Inertial Only Inertial Odometry
UnDeepVO Li et al. (2018) 2018/05 Vision Visual Odometry
VLocNet Valada et al. (2018) 2018/05 Vision Relocalization, Odometry
RIDI Yan et al. (2018) 2018/09 Inertial Only Inertial Odometry
SIDA Chen (2020) 2019/01 Inertial Only Domain Adaptation
VIOLearner Shamwell et al. (2019) 2019/04 Vision + Inertial Visual Inertial Odometry
RINS-W Brossard et al. (2019) 2019/05 Inertial Only Inertial Odometry
SelectFusion Chen et al. (2019) 2019/06 Vision + Inertial + LIDAR VIO and sensor Fusion
LO-Net Li et al. (2019b) 2019/06 LIDAR LIDAR Odometry
L3-Net Lu et al. (2019) 2019/06 LIDAR LIDAR Odometry
Silva do Monte Lima et al. (2019) 2019/8 Inertial Inertial Odometry
DeepVIO Han et al. (2019) 2019/11 Vision + Inertial Visual Inertial Odometry
OriNet Esfahani et al. (2019b) 2020/4 Inertial Inertial Odometry
Sorg Sorg (2020) 2020/4 Inertial Pose Estimation
GALNet Mendoza et al. (2020) 2020/5 Inertial + Kinematic Autonomous Cars
PDRNet Asraf et al. (2021) 2021/3 Inertial Pedestrian Dead Reckoning
Kim et al. (2021) 2021/4 Inertial Inertial Odometry
RIANNWeber et al. (2021) 2021/5 Inertial Attitude Estimation
CTIN Rao et al. (2022) 2022/6 Inertial Inertial Odometry
Xia et al. (2022) 2022/8 Inertial Human Pose Estimation
Brotchie et al. (2022) 2022/11 Inertial Attitude Estimation

3 | PROBLEM DEFINITION
The problem addressed in this article is the real-time estimation of the attitude, or orientation, of an object based
on measurements from an IMU sensor. The IMU sensor consists of gyroscopes and accelerometers, which measure
the object’s angular velocity and linear acceleration. The main challenge in solving this problem is the high level of
noise and bias present in these measurements, which can accumulate errors over time and decrease the accuracy
of the attitude estimate. The study aims to develop a method for accurately and reliably estimating the object’s
attitude in real time without requiring an initial reset period for filter convergence. This is important for various
applications, including navigation, image stabilization, tracking, and autonomous vehicles, where accurate and precise
attitude determination is critical for successful performance. The estimation is based on the current and previous
measurements of the gyroscope and accelerometer, which are fed into a Neural Network model to estimate the
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attitude. Despite almost all previous studies, we do not consider any initial reset period for filter convergence.

3.1 | IMU Dynamics Model
An IMU is a sensor that measures the angular velocity and linear acceleration of a rigid body which is a combination
of a gyroscope and an accelerometer. The gyroscope measures the angular velocity of the rigid body in the body
frame, and the accelerometer measures the linear acceleration with respect to the local frame. The gyroscope and
accelerometer are rigidly attached to the rigid body. IMU measurements are imperfectly affected by noise and bias.
The noise is a random process that is independent of the previous measurements which can be considered as a zero-
mean white noise with a constant variance Eq. 1, and Eq. 2. Biases (bω and ba ) is a systematic error that is constant
or slow-varying over time.

vω ∼ N(0,σ2
ω ) (1)

va ∼ N(0,σ2
a ) (2)

The IMU dynamics model is a nonlinear model that describes the relationship between the angular velocity and linear
acceleration of the rigid body and the orientation of the rigid body. The IMU dynamics model is given by Eq. 3 and
Eq. 4.

ω̃ = ω − bω + vω (3)

ã = (RT g) + a − ba + va (4)
where ω is the angular velocity of the rigid body in the body frame, a is the linear acceleration of the rigid body in
the body frame, R is the rotation matrix that describes the orientation of the body frame with respect to the inertial
frame, g is the gravity vector, bω and ba are the biases of the gyroscope and accelerometer, respectively, and vω andva are the noise of the gyroscope and accelerometer, respectively.

3.2 | Orientation
The orientation of the object of interest with respect to a reference frame could be defined as the shortest rotation
between a frame attached to the object and a reference frame. Orientation parameters (attitude coordinates) refer
to sets of parameters (coordinates) that fully describe a rigid body’s attitude, which is not unique expressions. There
are many ways to represent the attitude of a rigid body. The most common are the Euler angles, the rotation matrix,
and the quaternions. The Euler angles are the most familiar form known as yaw, pitch, and roll (or heading, elevation,
and bank). Engineers widely use rotation matrices and quaternions, but the quaternions are less intuitive. The Euler
angles are defined as the rotations about the three orthogonal axes of the body frame and suffer from the gimbal lock
problem. The rotation matrix is a 3x3 matrix that represents the orientation of the body frame with respect to the
inertial frame, which leads to having six redundant parameters. The quaternions are a 4x1 vector more suitable for
attitude estimation because they are not subject to the gimbal lock problem and have the least redundant parameters.
To avoid singularities and have the least number of redundant parameters, we use quaternion representation with the
components [w , x , y , z ] instead of Direction Cosine Matrix (DCM) or Euler angles. The quaternions are defined as the
following:

q =
[
q0 q1 q2 q3

]T (5)
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where q0 is the scalar part and q1, q2, and q3 are the vector part. And the following equation shows the relationship
between the quaternions and the Euler angles:

q =


cos(φ/2) cos(θ/2) cos(ψ/2) + sin(φ/2) sin(θ/2) sin(ψ/2)
sin(φ/2) cos(θ/2) cos(ψ/2) − cos(φ/2) sin(θ/2) sin(ψ/2)
cos(φ/2) sin(θ/2) cos(ψ/2) + sin(φ/2) cos(θ/2) sin(ψ/2)
cos(φ/2) cos(θ/2) sin(ψ/2) − sin(φ/2) sin(θ/2) cos(ψ/2)


(6)

where φ, θ, and ψ are the Euler angles. The error between the estimated attitude and the true attitude can be
calculated by quaternion multiplicative error and using the following equation:

qer r = qt r ue ⊗ q−1est (7)
where qer r represents the shortest rotation between true and estimated orientation. The quaternion multiplication
operator is defined as follows:

q ⊗ p =


q0p0 − q1p1 − q2p2 − q3p3
q0p1 + q1p0 + q2p3 − q3p2
q0p2 − q1p3 + q2p0 + q3p1
q0p3 + q1p2 − q2p1 + q3p0


(8)

where q and p are the quaternion to be multiplied, and the angle between the actual and estimated orientation is
calculated by:

θ = 2 arccos(scal ar (qer r ) ) (9)
where θ is the angle between the true and estimated orientation. Based on the above equations, the cumulative error
of the estimated attitude in N number of time steps can be calculated by:

eα = 2 arccos(scal ar (qer r ) ) (10)

RMSE =

√√√
1

N

N∑
i=1

e2α (11)

where N is the number of samples and eα is the angle between the true and estimated orientation. The RMSE is
the root mean square error of the estimated attitude, and it presents the differences between values predicted by a
model or an estimator and the values observed. The lower the RMSE, the better the model fits the data. Attitude
determination and control play a vital role in Aerospace engineering. Most aerial or space vehicles have subsystem(s)
that must be pointed in a specific direction, known as pointing modes, e.g., Sun pointing, Earth pointing. For example,
keeping the satellite antenna pointed to the Earth continuously is the key to a successful mission in communications
satellites. That will be achieved if we have proper knowledge of the vehicle’s orientation; in other words, the attitude
must be determined. Attitude determination methods can be divided into two categories: static and dynamic. The
static attitude determinationmethod is a point-to-point, time-independentmethod based on amemory-less approach.
It is the observations or measurements processing to obtain the information for describing the object’s orientation
relative to a reference frame. It could be determined bymeasuring the directions from the vehicle to the known points,
i.e., Attitude Knowledge. Due to accuracy limit, measurement noise, model error, and process error, most deterministic
approaches are inefficient for accurate prospects; in this situation, using statistical methods will be a good solution.
Dynamic attitude determination methods, also known as Attitude estimation, refer to using mathematical methods
and techniques (e.g., statistical and probabilistic) to predict and estimate the future attitude based on a dynamic model
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and prior measurements. These techniques fuse data that retain a series of measurements using algorithms such as
filtering, Multi-Sensor-Data-Fusion. The most common use attitude estimation methods are the Extended Kalman
Filter, Madgwick, and Mahony.

4 | METHODOLOGY

4.1 | Error Matrices
Quaternions can be defined as a rotation around a unit vector by Bani Younes et al. (2012):

q =

[ cos(θ/2)
sin(θ/2) · û

]
=


cos(θ/2)

sin(θ/2) · uxsin(θ/2) · uysin(θ/2) · uz


=


qw
qx
qy
qz


(12)

where θ is the angle of rotation and û is the unit vector of the rotation axis. Attitude could be defined as a rotation
from the true orientation to the estimated orientation.

qest = δq ⊗ qt r ue (13)
where qest is the estimated quaternion, qt r ue is the true quaternion, and δq is the quaternion error. The quaternion
rotational error could be defined by:

qer r = qt r ue ⊗ q−1est (14)
The error rate is represented by the following:

¤qer r = ¤qt r ue ⊗ q−1est + qt r ue ⊗ ¤q−1est (15)
A simple way to calculate the error is to use element-wise subtraction between the true and estimated quaternions.

qer r = qt r ue − qest (16)
As the attitude error is a geometric quantity, it is not reasonable to use Algebraic error matrices such as the mean
squared error (MSE) or the mean absolute error (MAE). There are multiple ways to define and implement the quater-
nion error; in the following section, we will discuss the most common methods. The Quaternion Inner Product (QIP)
of two quaternions represents the angle between the predicted and true orientation. This makes the dot product
equal to the angle between two points on the quaternion hyper-sphere. The quaternion inner product is defined as:

QI P (q , p ) = q · p = qw pw + qx px + qy py + qz pz (17)
The QIP will return the quaternion difference between two quaternions, so if the angle between two quaternions
equals 0, the QIP value will equal 1. Thus, the QIP Loss Function can be defined as:

LQI P =
1

N

N∑
i=1

(1 − |q · p | ) (18)
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On the other hand, the angle between two quaternions can be calculated using the quaternion’s inner product by:

LQI PA =
1

N

N∑
i=1

(θ ) = 1

N

N∑
i=1

(arccos(q · p ) ) (19)

In Brotchie et al. (2022), authors used the combination of QIP and MSE by:

LQI P −MSE =
1

N

N∑
i=1

QI P
(
{q it r ue − q iest }, {q iest − q it r ue }

) (20)

Authors in Silva do Monte Lima et al. (2019) used the Quaternion Multiplicative Error (QME) loss function to evaluate
the performance of the proposed method using the Hamilton product by:

LQME =
1

N

N∑
i=1

(
2 · ∥imag (q ⊗ p⋆) ∥1

) (21)

where p⋆ is the complex conjugate of the quaternion p . The complex conjugate of a quaternion can be calculated by:
p⋆ =

[
p0 −p1 −p2 −p3

]T (22)
Another way is to calculate the angle corresponding to the QME by:

LQMEA = 2 · arccos( |scal ar (q ⊗ p⋆) | ) (23)
By using ar ccos function in the implementation, the scalar part of (q ⊗ p⋆) may lead to a value greater than 1 or less
than -1, which could cause the gradient to explode. To overcome this problem, the scalar part of (q ⊗p⋆) is clamped to
the range of [-1, 1]. The value clipping could lose the information about the angle between two quaternions, so another
approach is replacing the ar ccos function with a non-trigonometric function linear function to avoid exploding the
gradient. This could be defined by:

LQMEAnT = 1 −
√
( |scal ar (q ⊗ p⋆) | )2 (24)

where qw and qz are the squared values of q ⊗ p⋆. Also in Laidig et al. (2021), authors decomposed the attitude error
into a rotation around the z -axis, eh , and the shortest residual rotation, e i .

eh = 2 arctan(qz /qw ) (25)

e i = 2 arccos(√q2w + q2z ) (26)

Lei =
1

N

N∑
i=1

(
2 arccos(√q2w + q2z )

)
(27)

Using ar ccos function could cause instability in the gradient calculation. As mentioned in Weber et al. (2020), the
ar ccos function could be replaced by:

1 −
√
q2w + q2z (28)
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so the loss function can be rewritten as:
Lei =

1

N

N∑
i=1

(
1 −

√
q2w + q2z

)
(29)

The Quaternion Shortest Geodesic Distance (QSGD) is defined as the angle between the predicted and true orienta-
tion using the shortest geodesic distance on the quaternion hyper-sphere, which is defined as:

QSGD = q ⊗ p⋆ =


qw pw − qxpx − qy py − qz pz
qw px + qxpw + qy pz − qz py
qw py − qxpz + qy pw + qz px
qw pz + qxpy − qy px + qz pw


(30)

The corresponding loss function is defined as:
LQSGD = |1 − ( |scal ar (q ⊗ p⋆) | ) | (31)

or,

LQSGD2 =

√
1 −

√
scal ar (q ⊗ p⋆)2 (32)

By considering the shortest rotation angle between two quaternions as q ⊗ p⋆, it could be decomposed as:

q ⊗ p⋆ =

[ cos(θer r /2)sin(θer r /2) · ˆuer r

]
=


wer r
xer r
yer r
zer r


(33)

where û is the unit vector of the rotation axis, and θ is the rotation angle. In the case of θ = 0, the quaternion difference
is equal to q ⊗ p⋆ =

[
1 0 0 0

]T . So, to define the loss function that minimizes the rotation angle between two
quaternions, we could use the following loss function:

LQSGD3 =


wer r − 1

xer r
yer r
zer r


(34)

In figures 1, 2a, and2b loss values for the attitude error from |π | to 0 is plotted.

4.2 | Sequential Modeling
Time series data is a type of sequential data consisting of observations taken at regular intervals over time and can be
used for tasks such as forecasting, anomaly detection, and classification; also, IMUmeasurements could be considered
as time series data. Time series estimation is the process of predicting future values in a time series based on past
observations. So, it could be considered a method to predict the future orientation of the IMU sensor. A solution for
time series estimation is using a deep learning model that can learn the relationship between the input and output
data, called sequential modeling. Sensor data, text, sound, and specific data with an underlying sequential structure
can be handled with sequence models for several applications, including time series data prediction Rajagukguk et al.
(2020), speech recognition Graves et al. (2013), natural language processing Schoene et al. (2022), music generation
Marinescu (2019), and DNA sequence analysis Shen et al. (2018). The traditional neural network models cannot
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F IGURE 1 Loss functions for attitude error

(a) Compare Loss functions for attitude error (b) Compare Loss functions derivative for attitude error

handle time-series data as they do not loop and handle time dependencies between them. Common models used
for sequential modeling include Recurrent Neural Networks (RNNs), LSTM networks, Gated Recurrent Units (GRUs),
and Temporal Convolutional Networks (TCNs). RNNs capture long-term dependencies in data but can be slow due to
back-propagation through time; LSTMs use memory cells to store information from previous inputs; GRUs use gating
mechanisms to control the flow of information, and TCNs use dilated causal convolutions, which allow them to learn
patterns over longer sequences while maintaining the computational efficiency of traditional CNNs. Each model has
its strengths and weaknesses; the best depends on the specific task.
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4.3 | Deep Learning Model
Neural network models can find the hidden relation between the input and output data, and they are an efficient way
to handle sequential data such as IMU sensor measurements. There is a wide variety of neural network architectures,
each of which has characteristics and advantages. A simplemodel is FFNNwhich is suitable for classification problems.
CNN is a proper choice for signal processing and extracting features from the input data. Due to its lack of memory,
it could not store data from previous time steps. RNN is a type of neural network with memory that can store the
data from previous time steps. GRU is a type of RNN with a gating mechanism that controls the flow of information.
GRU has two gates which are the reset gate and the update gate. The reset gate controls the flow of information from
previous time steps, and the update gate controls the flow of information from the current time step. LSTM is a variant
type of RNN capable of learning long-term dependencies and has three gates: input gate, forget gate, and output gate.
The input gate controls the information that enters the cell state; the forget gate controls the information that leaves
the cell state, and the output gate controls the information that is output. TCN is another type of CNN suitable for
sequential data. TCN is a stack of dilated convolutional layers with residual connections that extract features from the
input data. The residual connections are used to preserve the information from previous time steps. In the following,
we will discuss each one in detail.

4.3.1 | Convolutional Neural Network
A convolutional neural network is an artificial neural network that analyzes data with a spatial or temporal structure.
CNN extract features from input data using convolutions, which are mathematical operations that allow the network
to extract features. CNNs are widely used in image processing, computer vision, and natural language processing.
Various filters are used in a convolutional layer to detect specific features in the input data. The output of these filters
is then processed by a nonlinear activation function such as the ReLU or the sigmoid before being fed to another layer
of the network. This layer can be used for object recognition, segmentation, and classification by learning patterns
from images or videos using multiple layers with different parameters and associated weights. Recent advances in
deep learning have shown that CNNs can also be used for time series prediction LI et al. (2022); Chiang and Horng
(2021) and nonlinear regression Fan et al. (2022). CNNs are composed of convolutional layers and pooling layers. The
convolutional layers are used to extract features from the input data, and the pooling layers are used to reduce the
dimensionality. The CNN architecture is shown in fig. 3. The equation for the convolutional layer is defined as Koushik
(2016):

F IGURE 3 Convolutional Neural Network.
This image was created at http://alexlenail.me/NN-SVG/AlexNet.html

yk ≡
k+W −1∑
i=k

xiwk+W −i (35)

http://alexlenail.me/NN-SVG/AlexNet.html
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where x is the input data, w is the filter size. Usually, after the convolutional layer, a pooling layer is used to reduce
the dimensionality of the data by extracting the most important features from the input data. The pooling layer is
composed of a pooling function and a pooling window. The pooling function is used to extract the most important
features from the input data, and the pooling window is used to reduce the dimensionality of the data. The pooling
layer is shown in fig. 4. A pooling layer reduces the spatial size of an input feature map, allowing the model to reduce

F IGURE 4 Pooling Layer.
the number of parameters and computations required while preserving essential features from the original data. Sev-
eral types of pooling layers include max pooling, average pooling, and global average pooling. Max Pooling takes the
maximum value from each region of an input feature map, while Average Pooling takes the mean value from each
region. Global Average Pooling reduces a feature map to a single number by taking the mean across all regions in the
input feature map He et al. (2015). Through this method, CNNs can transform the original input layer by layer using
convolutional and down-sampling techniques to produce class scores for classification and regression.

4.3.2 | Recurrent Neural Network

Recurrent neural networks are artificial neural networks for processing sequential data. RNNs can remember infor-
mation from previous inputs, allowing them to process data sequences such as text or audio. They consist of multiple
layers with neurons connected cyclically so that the output from one layer becomes an input for another layer and
vice versa. This allows them to capture long-term dependencies between elements in the sequence by passing infor-
mation through time steps over multiple layers. RNNs can be used for tasks such as language translation and speech
recognition by learning patterns in the input sequence over time using different parameters and weights associated
with each neuron within each layer. The RNN architecture is shown in fig. 5. The equation for the RNN is defined as
Schmidt (2019):

ht = σ (Whhht−1 +Wxhxt + bh ) (36)
where h is the hidden state, x is the input data,Whh is the weight matrix for the hidden state,Wxh is the weight matrix
for the input data, and b is the bias.
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F IGURE 5 Recurrent Neural Network

Long Short-TermMemory (LSTM)
LSTM is a type of recurrent neural network that uses memory cells to store information from previous inputs, which
allows the model to remember patterns over long sequences and make predictions based on them. So, it is considered
a time domain deep learning model Cai et al. (2021). They are composed of three main components: an input gate,
a forget gate and an output gate. The input gate controls which values are added to the cell state; the forget gates
control which values are removed from it; and the output gates control what is passed out as output for each time
step in sequence processing tasks such as machine translation or speech recognition. The main advantage of LSTMs is
that they can learn long-term dependencies in the input data. The LSTM architecture is shown in fig. 6a. Its equations
are as follows Hochreiter and Schmidhuber (1997): Input Gate:

it = σ (Wi ∗ [h ( t − 1), xt ] + bi ) (37)
Forget Gate:

ft = σ (Wf ∗ [h ( t − 1), xt ] + bf ) (38)
Output Gate:

o t = σ (Wo ∗ [h ( t − 1), xt ] + bo ) . (39)
Cell State Update :

ct = ft ∗ c ( t − 1) + it ∗ t anh (Wc ∗ [h ( t − 1), xt ] + bc ) . (40)
Gated Recurrent Unit (GRU)
Gated Recurrent Unit is a type of recurrent neural network similar to LSTM networks. GRUs use gating mechanisms
to control the flow of information, allowing them to learn long-term dependencies in data more effectively than
traditional RNNs. They also have fewer parameters than LSTMs, making them faster and easier to train. The GRU
architecture is shown in fig. 6b. Its equations are as follows Cho et al. (2014): Update Gate:

zt = σ (Wz ∗ [h ( t − 1), xt ] + bz ) (41)
Reset Gate:

rt = σ (Wr ∗ [h ( t − 1), xt ] + br ) (42)
Hidden State Update :

ht = zt ∗ h ( t − 1) + (1 − zt ) ∗W ∗ [rt , xt ] + b (43)
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LSTMs use memory cells to store information from previous inputs, allowing the model to remember patterns over

(a) Long Short-Term Memory (LSTM) (b) Gated Recurrent Unit (GRU)
long sequences and make predictions based on them. The input gate controls which values are added to the cell state,
the forget gates control which values are removed from it, and the output gates control what is passed out as output
for each time step in sequence processing tasks such as machine translation or speech recognition. GRUs also use
gating mechanisms but have fewer parameters than LSTMs, making them faster and easier to train. The update gate
controls howmuch of a new value should be stored in a hidden state while resetting any previously stored information
that is no longer relevant; this allows GRUs to learn long-term dependencies more effectively than traditional RNNs
without sacrificing speed or accuracy. Both models can be used for tasks such as machine translation or speech
recognition, but which is better depends on the specific task at hand; in some cases, one may outperform the other,
while in others, they may perform similarly.

Temporal Convolutional Network (TCN)Moor et al. (2019)

Temporal Convolutional Networks are a type of convolutional neural network used for sequence modeling tasks such
as machine translation, speech recognition, and time series forecasting. TCNs use dilated causal convolutions to
capture long-term dependencies in data while maintaining the computational efficiency of traditional CNNs. The
model is composed of multiple layers with increasing dilation factors; this allows it to learn patterns over longer
sequences without sacrificing accuracy or speed. The TCN architecture is shown in fig. 7. TCN equation is as follows
Lea et al. (2017):

yt = f (W ∗ xt + b ), (44)
whereW is the weight matrix, xt is the input at time t , and b is the bias vector. TCN works by applying convolutional
filters to the input data in a temporal manner rather than in a spatial manner, as in traditional CNNs. The input
data is passed through a series of convolutional layers, each with a different kernel size and a number of filters. The
kernel size determines the number of time steps the convolutional filters are applied to, allowing the model to capture
longer-term dependencies in the input data. The number of filters determines the number of output feature maps
generated by the convolutional layers. TCN also includes dilated convolutions, which allow the model to increase the
receptive field of the filters without increasing the number of parameters. This allows the model to capture longer-
range dependencies in the input data without increasing the computational complexity. Overall, TCN is a powerful
tool for handling sequential data and has been applied to a variety of tasks, such as natural language processing, time
series forecasting, and speech recognition.
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F IGURE 7 Temporal Convolutional Network (TCN)

Bidirectional Layer
A bidirectional layer is a type of neural network layer that processes data in both directions, and it is proposed to
overcome the accumulative error problem. This allows the model to consider information from past and future ob-
servations when making predictions. Schuster and Paliwal first proposed the concept of a bidirectional layer in 1997
Schuster and Paliwal (1997). Since then, bidirectional layers have become a popular component in many neural net-
work architectures due to their ability to consider information from past and future observations when making predic-
tions. A bidirectional layer will combine two separate layers which process data in opposite directions (forward and
backward) to form an output vector. The outputs from these two layers are combined to form a single output vector
that can be used for prediction or classification tasks. The bidirectional layer architecture is shown in fig. 8.

F IGURE 8 Bidirectional Layer

4.4 | Activation Function
Activation functions are used to introduce non-linearity into neural networks. They are used to transform the output
of a neuron into a form that can be used for further processing. It is a mathematical operation that takes an input and
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produces an output. In machine learning, the activation function determines how a neural network should respond to
specific inputs. This allows the model to learn more complex patterns and better represent data. Activation functions
also help control the flow of information through a neural network, allowing it to make decisions based on certain
inputs. Different activation functions have other properties that can be used for different tasks, such as classification
or regression problems. In figures 9 and 10, the most common activation functions have been shown. Activation

F IGURE 9 Activation Functions
functions can be categorized into two groups: Piecewise Linear Function and Locally Quadratic Function Rasamoelina
et al. (2020). Piecewise Linear Activation Functions are functions composed of a limited number of linear segments,
each defined over an equal number of intervals. These functions are used in Artificial Neural Networks to provide
the necessary non-linearity for the model to learn complex representations. Examples of Piecewise Linear Activation
Functions include ReLU (Rectified Linear Unit), which has a constant first-order derivative and no curvature in each
interval defined by its breakpoint. A locally quadratic function is a mathematical function that can be approximated
by a quadratic equation in a certain area. Non-linear, smooth activation functions with nonzero second derivatives
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are locally quadratic. This means that the function can be represented by a parabola in a certain region, but may not
be a perfect parabola everywhere. In the following, the most common activation functions for time series forecasting
and regression are discussed.

F IGURE 10 Compare Activation Functions

4.4.1 | Sigmoid Function
The sigmoid function takes an input (−∞,∞) and produces an output between 0 and 1, which can be interpreted as a
probability or likelihood that the given input belongs to one class or another. It defines by:

f (x ) = 1

1 + e−x ,
(45)

where e is the base of natural logarithms and x is the independent variable. The output of this equation ranges from
0 to 1, with values close to zero representing low probabilities and values close to one representing high probabilities.
The sigmoid function has been widely used for binary classification tasks, but it has also been successfully applied to
multi-class problems.

4.4.2 | Rectified Linear Unit (ReLU)
The Rectified Linear Unit (ReLU) is an activation function used in neural networks. It takes an input and produces an
output that is either 0 or the same as the input, depending on whether the input is negative or positive. The ReLU
function can be defined by:

f (x ) = max (0, x ), (46)
where x is the independent variable. The output of this equation ranges from 0 to infinity, with values close to zero
representing low probabilities and values closer to infinity representing high probabilities. ReLUs are often used for
tasks such as image recognition because they allow for faster training times than other activation functions like sigmoid
or tanh while still providing good accuracy results. However, they are unsuitable for tasks requiring negative values,
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such as regression problems.

4.4.3 | Hyperbolic Tangent (tanh)
The Hyperbolic Tangent (tanh) is an activation function introduced by Sepp Hochreiter Hochreiter and Schmidhuber
(1997). It takes a real-valued input and produces an output between -1 and 1, which makes it useful for classification
tasks. The tanh can be used as an alternative to the sigmoid for training deep neural networks and helps reduce the
vanishing gradient problem associated with other activation functions such as ReLU or ELU. The tanh has been found
to work better than sigmoid in some cases due to its wider range of outputs but may suffer from saturation issues
when dealing with large inputs.

f (x ) = ex − e−x
ex + e−x ,

(47)

4.4.4 | Leaky ReLU
The Leaky ReLU is a type of activation function used in neural networks. It takes an input and produces an output that
is either 0 or the same as the input, depending on whether the input is negative or positive. The difference between a
regular ReLU and a Leaky ReLU lies in how it handles negative inputs. Instead of returning 0 for all negative values, it
produces a small fraction (the “leak”) of those values. This allows flexibility when training models with large datasets
containing positive and negative examples. The Leaky ReLU can be defined as:

f (x ) = max (0, x ) + α ∗min (0, x ) (48)
where α represents the leak parameter (usually set to 0.01), this equation has two parameters: α (the leak parameter)
and x (the independent variable). The output of this equation ranges from −α to infinity, with values close to zero
representing low probabilities and values closer to infinity representing high probabilities. Leaky ReLUs are often used
for tasks such as image recognition because they allow for faster training times than other activation functions like
sigmoid or tanh while still providing good accuracy results.

4.4.5 | Exponential Linear Unit (ELU)
The Exponential Linear Unit (ELU) is an activation function proposed by Djork-Arné Clevert Heusel et al. (2015). It is
similar to the ReLU activation function but has a negative part which allows for more efficient training of deep neural
networks. The ELU also helps reduce the vanishing gradient problem associated with other activation functions such
as sigmoid or tanh.

f (x ) =
{
x if x ≥ 0

α (ex − 1) if x < 0
(49)

4.4.6 | Swish
Swish is an activation function proposed by Google Brain Ramachandran et al. (2017). It takes a real-valued input
and produces an output between 0 and 1, which makes it useful for classification tasks. The Swish has a learnable
parameter that allows for more efficient training of deep neural networks compared to other activation functions
such as ReLU or ELU. The Swish also helps reduce the vanishing gradient problem associated with different activation
functions such as sigmoid or tanh, making it suitable for use in deeper networks where gradients can become very
small over multiple layers.

f (x ) = x ∗ σ (β ∗ x ) (50)
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where β represents the learnable parameter.

4.4.7 | RRelu (Randomized ReLU)
The Randomized ReLU (RReLU) takes a real-valued input and produces an output between 0 and 1, which makes
it useful for classification tasks. The RReLu has two learnable parameters that allow for more efficient training of
deep neural networks compared to other activation functions such as ReLU or ELU. The RReLu also helps reduce the
vanishing gradient problem associated with different activation functions such as sigmoid or tanh, making it suitable
for use in deeper networks where gradients can become very small over multiple layersXu et al. (2015).

f (x ) =
{
x if x ≥ 0

α ∗ x if x < 0
(51)

where α represents the lower bound of the random uniform distribution and β represents the upper bound of the
random uniform distribution.

4.4.8 | Mish
The Mish activation function is a type of activation function used in neural networks. It takes an input and produces
an output that is either 0 or the same as the input, depending on whether the input is negative or positive Misra
(2019). The Mish activation function combines elements from both ReLU and tanh functions to create a more robust
non-linearity than either one alone. The Mish activation function is shown in figure 11. The equation for this can be
defined as:

f (x ) = x ∗ t anh (l n (1 + ex ) ) (52)
where x represents the independent variable, the output of this equation ranges from -infinity to infinity, with values
close to zero representing low probabilities and values closer to infinity representing high probabilities. Mish activation
functions are often used for tasks such as image recognition because they allow faster training times than other
activation functions like sigmoid or tanh while still providing good accuracy results. We choose the Mish activation
function because it has been shown to outperform other activation functions, such as ReLU and ELU, in terms of
accuracy and training time. It is also a smooth function that does not suffer from the vanishing gradient problem,
which makes it suitable for use in deeper networks where gradients can become very small over multiple layersWeber
et al. (2021); Noel et al. (2021); Dubey et al. (2022).

F IGURE 11 Mish Activation Function
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4.5 | Proposed Network Architecture
Various deep learning topologies may be used to tackle the real-time attitude estimation problem. Previous studies
demonstrate the performance of RNNs, (LSTMandGRU), CNN, and hybrid RNN-CNNnetworks for handling IMUdata
to estimate the system state variable. Furthermore, the computational cost is one of the main criteria for choosing
the topologies, as it must be able to be used in real-time. We tested GRU-based, LSTM-based, CNN-based, and
hybrid CNN-based networks to estimate the system’s attitude. Based on the results, we chose three different models.
The proposed network architectures is shown in fig. 14, fig. 15, and fig. 16. Similar to Chen et al. (2018a); Silva do
Monte Lima et al. (2019); Kim et al. (2021); Yan et al. (2018); Herath et al. (2020), the input data will be fed into the
model in windows of N frames, containing 3-axis acceleration and 3-axis angular velocity. So, the past N

2 and future
N
2 IMU measurements are used to predict the attitude. The consecutive IMU measurements have a stride size of S
and new attitude will be calculated in every S frames. So, the attitude estimation will be occurred between N

2 − S
and N

2 + S frames as shown in the fig. 12. The proposed network architecture is composed of four main components:

F IGURE 12 Time window for attitude estimation, both past and future data are used to estimate the attitude at
each time step.
(1) Feature Extraction, (2) Feature Fusion,(3) sampling rate fusion, and (4) Attitude Estimation. Gaussian noise layers
are added to model’s inputs to help with generalization, by adding random noise to the input data during training.
This can help the model become more robust to small variations in the input, and can also help prevent overfitting.
Additionally, it can also serve as a regularization technique that helps to reduce the overfitting of a model by adding
random noise to the inputs. This noise is sampled from a Gaussian distribution with standard variation of 0.25. The
feature extraction component extracts the features from the IMU data. To do so, we split each axis of the IMU data
in Model A and B, and then fed each into the layer. After concatenating the layers, they are fed to a layer to fuse the
extracted feature. To consider the sampling rate, the fused features are connected to the sampling rate layer. In the
last layer, a FFN with four units is followed by a unit scaling layer to estimate the attitude. To improve the robustness
of the network, we used dropout layers in the feature extraction and feature fusion layers.

4.5.1 | Model A
Model A 14 consists of separate 1D-CNN layers with filter size of 128 and kernal size of 11 for each axis of the IMU
data. Each CNN layer is followed by amax pooling layer with a pooling size of 3, and all the output is concatenated and
fed into a CNN layer with 128 filters, kernel size of 11, and stride size of 1. Also, we used causal padding to prevent
information leakage from the future to the past (fig 13). This CNN layer fuses the extracted features in the last layer and
is followed by a feed-forward layer with 512 units. To take advantage of sequencemodeling and temporal information,
we used a bidirectional LSTM layer with 128 units. A dropout reduces overfitting by randomly dropping out (or
"disabling") %20 neurons during training, which forces the network to learn more robust representations of the data
and reduces reliance on any single neuron or feature. This helps prevent it from memorizing specific patterns in the
training set and improves its generalizability when applied to new data. The extracted temporal features concatenated
with CNN outputs and the output of a fully connected layer. The fully connected layer has 512 neurons. Its input
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F IGURE 13 Same (top) vs causal (bottom)Collado-Villaverde et al. (2021)

is the sampling rate of the IMU measurements and works as the sampling rate fusion component, which is used to
fuse the extracted features from the IMU data with different sampling rates. The Attitude Estimation component is
composed of a fully connected layer with four neurons representing the system’s estimated attitude in quaternion
form.

F IGURE 14 Proposed Network Architecture of Model A

4.5.2 | Model B
Model B 15 consists of multiple Bidirectional LSTM layers with 50 units, each one followed by a dropout layer. The
LSTM layer’s output is concatenated and fed into a feed-forward layer with 256 units and ReLU activation function.
The sampling rate of IMU sensors is fed into a dense layer with 256 units and ReLU activation function. The outputs
of dense layers are concatenated and fed into a dense layer with four units and linear activation function followed by
a unit scaling layer to estimate the quaternions.

4.6 | Model C
Model C 16 consists of two Bi-LSTM layer, followed by a dense layer with 256 units. The sampling rate fed into a
similar dense layer with Mish activation function. The output of the dense layer concatenated and fed into another
dense layer with 256 units. The output consits of a dense layer with four units and linear activation function followed
by a unit scaling layer to estimate the quaternions.
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F IGURE 15 Proposed Network Architecture of Model B

F IGURE 16 Proposed Network Architecture of Model C

4.7 | Learning Rate Finder

We used the learning rate finder technique to find the proper learning rate for the model. A learning rate finder
determines the optimal learning rate for training a machine learning model. This involves gradually increasing the
learning rate from a minimal value and monitoring how quickly or slowly the loss decreases over time Donini et al.
(2019). The point at which the loss begins to decrease more slowly than before indicates that this is an optimal value
for training, as it allows models to explore different parts of parameter space without getting stuck in local minima. To
use this technique, one must first set up an experiment with multiple runs using different values of learning rates and
monitor their performance on validation data sets. After all experiments have been completed, the best-performing
run can be chosen as the optimal training value. With the learning rate finder, a model can converge faster and
more efficiently than traditional methods, such as constant decay or exponential decay schedules, since it can find
the optimal learning rate faster. Commonly used techniques include constant, exponential decay, step-wise decay,
and cyclical learning rates (CLR). Constant schedules keep the same value for all training iterations, while exponential
decay reduces it gradually over time. The concept was first proposed by Leonid Khachiyan in 1980 Khachiyan (1980).
He presented the use of an exponentially decreasing learning rate to improve the convergence speed and accuracy
of gradient descent algorithms. Its calculation is as follows:

l r = l r ∗ decay_r at est ep/decay_st ep , (53)
where l r is the current learning rate, step is the current training iteration, and decay_step determines how often the
learning rate is reduced. Step-wise decays involve reducing the learning rate at specific points during training. In
Hinton et al. (2012), G. Hinton proposed using a step-wise decay schedule to facilitate the learning rate at certain
points during training. This technique has since become a popular method for improving model performance and
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avoiding local minima. It can be calculated using the following equation:
l r = l r ∗ f act or

or

l r = l r − f i xedamount .

(54)

In addition, CLR Smith (2017) involves gradually increasing and decreasing the learning rate over time, allowing the
model to explore different parts of parameter space more efficiently. This is done by setting an upper and lower
bound for the range of values that can be explored and a step size that determines how quickly or slowly the value
changes between these bounds. The idea behind this approach is that it allows models to avoid local minima while
still converging on an optimal solution faster than with traditional methods such as constant or exponential decay
schedules. The equation for a cyclical learning rate is:

l r =
l ower _bound

2
+ upper _bound

2
∗ (1 + cos (st ep/st epsi ze ) ), (55)

where l r is the current learning rate, step is the current training iteration, and step size determines how quickly or
slowly the value changes between upper and lower bounds. This study used the CLR method to find the optimal
learning rate. Based on the CLR method, we train the network on a few epochs and plot (fig. 17) the loss value against
the learning rate and choose the value in which the loss has the steepest gradient.

F IGURE 17 Learning Rate Finder

5 | EXPERIMENT
5.1 | Dataset
5.1.1 | Introduction
Inertial Measurement Unit (IMU) datasets are crucial for evaluating the performance of attitude estimation algorithms.
This section will present a comprehensive overview of the most widely-utilized IMU datasets. These datasets are clas-
sified into two primary categories: synthetic and real-world. Synthetic datasets are generated through the simulation
of IMU measurements, while real-world datasets are gathered through actual experiments. Real-world experiments
are further divided into two subcategories: indoor and outdoor. Indoor experiments are conducted in a controlled
environment, such as a laboratory, while outdoor experiments are conducted in an uncontrolled environment, such as
a field setting. Additionally, when training, validating, and testing neural network models, a comprehensive database
containing accurate input and output parameters is essential. The performance of a deep learning model is directly
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impacted by the quality of the data used for training. Thus, to train a deep learning model effectively, a dataset con-
taining input and output parameters that meet stringent conditions must be utilized. In order to effectively train a
deep learning model, it is imperative to utilize a dataset that meets certain criteria. Specifically, the dataset must
possess:

• Adequate quantity of data to ensure proper model training.
• Diversity in data samples to account for various scenarios and edge cases.
• High level of accuracy in both input and output parameters to prevent errors and ensure model reliability.

It is important to note that determining the sufficiency of data quantity and diversity in data samples can be achieved
through various techniques such as cross-validation and testing the model’s generalization ability. Additionally, the
dataset’s accuracy can be established through techniques like data pre-processing and cleaning. Wewill present some
of the most popular IMU datasets in the following section.

5.1.2 | RepoIMU T-stic
The RepoIMU T-stick Szczęsna et al. (2016) is a small, low-cost, and high-performance IMU that can be used for
many applications. IT is a 9-axis IMU that measures acceleration, angular velocity, and magnetic field. This database
contains two sets of experiments recorded with a T-stick and a pendulum. A total of 29 trials were collected on the
T-stick, and each trial lasted approximately 90 seconds. As the name suggests, the IMU is attached to a T-shaped
stick equipped with six reflective markers. Each experiment consists of slow or fast rotation around a principal sensor
axis or translation along a principal sensor axis. In this scenario, the data from the Vicon Nexus OMC system and
the XSens MTi IMU are synchronized and provided at a frequency of 100 Hz. The authors clearly state that the IMU
coordinate system and the ground trace are not aligned and propose a method to compensate for one of the two
required rotations based on quaternion averaging. Unfortunately, some experiments contain gyroscope clipping and
ground tracking, significantly affecting the obtained errors. Therefore, careful pre-processing and removal of some
trials should be considered when using the dataset to evaluate the model’s accuracy.

5.1.3 | RepoIMU T-pendulum
The second part of the RepoIMU dataset Szczęsna et al. (2016) contains data from a triple pendulum on which the
IMUs are mounted. Measurement data is provided at 90 Hz or 166 Hz. However, the IMU data contains duplicate
samples. This is usually the result of artificial sampling or transmission problems where missed samples are replaced
by duplicating the last sample received, effectively reducing the sampling rate. The sampling rate achieved when
discarding frequent samples is about 25 Hz and 48 Hz for the accelerometer and gyroscope, respectively. Due to
this issue, it is not recommended to use this database for model training and evaluation. Due to this fact, we cannot
recommend using pendulum tests to evaluate the accuracy of Inertial Orientation Estimation (IOE) with high precision.

5.1.4 | Sassari
The Sassari dataset Caruso et al. (2020) published aims to validate a parameter tuning approach based on the orienta-
tion difference of two IMUs of the same model. To facilitate this, six IMUs from three manufacturers (Xsens, APDM,
Shimmer) are placed on a wooden board. Rotation around specific axes and free rotation around all axes are repeated
at three different speeds. Data is synchronized and presented at 100 Hz. Local coordinate frames are aligned by
precise manual placement. There are 18 experiments (3 speeds, 3 IMU models, and 2 IMUs of each model) in this
dataset. According to these points, this database seems to be suitable for training, evaluating, and testing the model,
but some essential points should be paid attention to. The inclusion of different speeds and different types of IMUs
helped to diversify the data set. However, all motions occur in a homogeneous magnetic field and do not involve
pure translational motions. Therefore, this data set does not have a robust variety in terms of the type of movement
and the variety of magnetic data. Thus, the model trained with it cannot be robust and general. However, it can be
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used to evaluate the model. The total movement duration of all three trials is 168 seconds, with the most extended
movement phase lasting 30 seconds. For this reason, considering the short time, it is not suitable for training.

5.1.5 | Oxford Inertial Odometry Dataset
The Oxford Inertial Odometry Dataset (OxIOD) Chen et al. (2018b) is a large set of inertial data recorded by smart-
phones (mainly iPhone 7 Plus) at 100 Hz. The suite consists of 158 tests and covers a distance of over 42 km, with
OMC ground track available for 132 tests. The purpose of this set is inertial odometry. Therefore, it does not include
pure rotational movements and pure translational movements, which are helpful for systematically evaluating the
model’s performance under different conditions; however, it covers a wide range of everyday activities. Due to the
different focus, some information (for example, the alignment of the coordinate frames) is not accurately described.
In addition, the orientation of the ground trace contains frequent irregularities (e.g., jumps in orientation that are not
accompanied by similar jumps in the IMU data).

5.1.6 | MAV Dataset
Most datasets suitable for the simultaneous localization and mapping problem are collected from sensors such as
wheel encoders and laser range finders mounted on ground robots. For small air vehicles, there are few datasets,
and MAV Dataset Lee et al. (2010) is one of them. This data set was collected from the sensor array installed on
the "Pelican" quadrotor platform in an environment. The sensor suite includes a forward-facing camera, a downward-
facing camera, an inertial measurement unit, and a Vicon ground-tracking system. Five synchronized datasets are
presented

• 1LoopDown
• 2LoopsDown
• 3LoopsDown
• hoveringDown
• randomFront

These datasets include camera images, accelerations, heading rates, absolute angles from the IMU, and ground track-
ing from the Vicon system.

5.1.7 | EuRoC MAV
The EuRoC MAV dataset Burri et al. (2016) is a large dataset collected from a quadrotor MAV. The dataset contains
the internal flight data of a small air vehicle (MAV) and is designed to reconstruct the visual-inertial 3D environment.
The six experiments performed in the chamber and synchronized and aligned using the OMC-based Vicon ground
probe are suitable for training and evaluating the model’s accuracy. It should be noted that camera images and point
clouds are also included. This set does not include magnetometer data, which limits the evaluation of three degrees
of freedom and is only for two-way models (including accelerometer and gyroscope). Due to the nature of the data,
most of the movement consists of horizontal transfer and rotation around the vertical axis. This slope does not
change much during the experiments. For this reason, it does not have a suitable variety for model training. Since
flight-induced vibrations are visible in the raw accelerometer data, the EuRoC MAV dataset provides a unique test
case for orientation estimation with perturbed accelerometer data.

5.1.8 | TUM-VI
The TUM Visual-Inertial dataset Schubert et al. (2018) is suitable for optical-inertial odometry and consists of 28
experiments with a handheld instrument equipped with a camera and IMU. Due to this application focus, most ex-
periments only include OMC ground trace data at the experiment’s beginning and end. However, the six-chamber
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experiments have complete OMC data. They are suitable for evaluating the accuracy of the neural network model.
Similar to the EuRoC MAV data, the motion consists mainly of horizontal translation and rotation about the vertical
axis, and magnetometer data is not included.

5.1.9 | KITTI
The KITTI Vision Benchmark Suite Geiger et al. (2012) is a large set of data collected from a stereo camera and a
laser range finder mounted on a car. The dataset includes 11 sequences with a total of 20,000 images. The dataset
is suitable for evaluating the model’s accuracy in the presence of optical flow. However, the dataset does not include
magnetometer data, which limits the evaluation of three degrees of freedom and is only for two-waymodels (including
accelerometer and gyroscope).

5.1.10 | RIDI
RIDI datasets Yan et al. (2018) were collected over 2.5 hours on ten human subjects using smartphones equipped with
a 3D tracking capability to collect IMU-motion data placed on four different surfaces (e.g., the hand, the bag, the leg
pocket, and the body). The Visual Inertial SLAM technique produced the ground-truth motion data. They recorded
linear accelerations, angular velocities, gravity directions, device orientations (via Android APIs), and 3D camera poses
with a Google Tango phone, Lenovo Phab2 Pro. Visual Inertial Odometry on Tango provides camera poses that are
accurate enough for inertial odometry purposes (less than 1 meter after 200 meters of tracking).

5.1.11 | RoNIN
The RoNIN dataset Herath et al. (2020) contains over 40 hours of IMU sensor data from 100 human subjects with 3D
ground-truth trajectories under natural human movements. This data set provides measurements of the accelerome-
ter, gyroscope, dipstick, GPS, and ground track, including direction and location in 327 sequences and at a frequency
of 200 Hz. A two-device data collection protocol was developed. A harness was used to attach one phone to the
body for 3D tracking, allowing subjects to control the other phone to collect IMU data freely. It should be noted that
the ground track can only be obtained using the 3D tracker phone attached to the harness. In addition, the body
trajectory is estimated instead of the IMU.

5.1.12 | BROAD
The Berlin Robust Orientation Evaluation (BROAD) dataset Laidig et al. (2021) includes a diverse set of experiments
covering a variety of motion types, velocities, undisturbed motions, and motions with intentional accelerometer per-
turbations as well as motions performed in the presence of magnetic perturbations. This data set includes 39 ex-
periments (23 undisturbed experiments with different movement types and speeds and 16 experiments with various
intentional disturbances). The data of the accelerometer, gyroscope, magnetometer, quaternion, and ground tracks,
are provided in an ENU frame with a frequency of 286.3 Hz.

5.2 | Training
We initially used Lima, Kim, and Chen Silva do Monte Lima et al. (2019); Kim et al. (2021); Chen et al. (2018b) models
as the infrastructure of our models. The proposed method for attitude estimation, based on inertial measurements,
utilizes a sequence of accelerometer and gyroscope readings and their corresponding time stamps as input to output
roll and pitch angles in quaternion form. This end-to-end deep learning framework effectively handles noise and bias
present in IMUmeasurements. The solution employs a combination of CNN and LSTM layers. The CNN layers extract
features from the accelerometer and gyroscope readings, while the LSTM layers learn the temporal dependencies
between the extracted features. The input to the network is a sequence of accelerometer and gyroscope readings
in a window of 100 readings. To prevent overfitting, dropout and Gaussian Noise layers with a probability of 0.25
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and standard deviation of 0.25 is added after. Dropout layer randomly drops out 25% of the units in the layer during
training. The input in each time step is a window of 100 accelerometer and gyroscope readings which consists of
50 past and 50 future readings. The window’s stride is four frames, leading the model to estimate the attitude every
four frames. The network is trained using the Adam optimizer with a learning rate 0.00273 of and the loss function
is the Quaternion Multipicative Error. The network is trained for 250 epochs with a batch size of 500. The network
is implemented using the Keras library with the TensorFlow backend.

5.3 | Evaluation
To evaluate the effectiveness and reliability of the proposed end-to-end deep-learning approach for real-time attitude
estimation using inertial sensor measurements, an extensive and comprehensive evaluation was conducted over five
publicly available datasets. These datasets consist of over 120 hours and 200 kilometers of IMU measurements and
cover a wide range of motion patterns, sampling rates, and environmental disturbances. To the best of our knowledge,
this is the most extensive benchmark conducted on this problem. To ensure the accuracy and reliability of the results,
standard evaluation metrics were used, including Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and
quaternion error (QE). Additionally, a thorough analysis of the results, including statistical tests, was conducted to
determine the significance of the differences between the proposed methods and other approaches.

Furthermore, to ensure the results were representative of the performance of the proposed methods, multiple
runs of the experiments were conducted and the results were averaged. This helps reduce the influence of random
fluctuations or noise in the data and provides a more accurate representation of the method’s performance.

The extensive and comprehensive evaluation of the proposed end-to-end deep-learning approach for real-time
attitude estimation using inertial sensor measurements demonstrated its effectiveness and reliability. The evaluation
results showed that the proposed methods outperformed other state-of-the-art approaches in terms of accuracy and
robustness and exhibited strong generalization capabilities over a wide range of motion patterns, sampling rates, and
environmental disturbances.

We compared the performance of our proposed methods to that of three state-of-the-art attitude estimation
filters, Madgwick, Mahony, and CF, and the only deep learning model for inertial attitude estimation, RIANN. We
used the proposed methods without additional training or adaptation to evaluate its performance on unseen data and
unknown application scenarios fairly. The evaluation results showed that the proposed methods outperformed the
state-of-the-art methods in terms of accuracy and robustness. The MAE, RMSE, and QE values were consistently
lower for the proposed methods, indicating a higher level of accuracy in the attitude estimates.

In the Tables 4, 5, 7, 6, 2, and 3 below we present the evaluation results of the proposed method and the other
approaches on each dataset.

6 | RESULTS
The proposed end-to-end deep-learning approach for real-time attitude estimation using inertial sensor measure-
ments was thoroughly evaluated using five publicly available datasets: RIDI, RepoIMU Tstick, BROAD, OXIOD, and
RoNIN. These datasets consist of over 120 hours and 200 kilometers of IMU measurements, covering a wide range
of motion patterns, sampling rates, and environmental disturbances.

The evaluation of the proposed method on the RIDI dataset was performed using 94 trials, with eleven different
users. The results of the evaluation showed that the proposed method (Model A, B, and C) slightly outperformed
state-of-the-art approaches (CF, Madgwick, and Mahony) in terms of accuracy and robustness. But RIANN has the
best performance. The table 2 includes results for 11 different trial, each corresponding to a different person. There
is also an "Average All" row, which shows the average total rotation error across all the dataset.

The proposed method was tested on the RepoIMU Tstick dataset using 11 tests consisting of 27 trials. It was
found to be more accurate and robust than other state-of-the-art methods (RIANN, CF, Madgwick, and Mahony) as
the MAE, RMSE, and QE values were lower for the proposed method. Specifically, Model A had an average MSE of
5.07, Model B had an average MSE of 3.28 and Model C had an average MSE of 3.36. RIANN had an average MSE of
8.27, CF had an average MSE of 11.98, Madgwick had an average MSE of 11.09, and Mahony had an average MSE
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TABLE 2 Evaluation results of the proposed method and the other approaches on the RIDI dataset.
Trial No, Model A Model B Model C RIANN CF Madgwick Mahony
Av. Dan 0.84 0.58 0.72 1.20 8.79 1.94 2.29
Av. Hang 1.40 1.34 1.39 1.28 7.33 1.99 2.00
Av. Hao 3.05 2.81 2.85 1.53 9.27 1.91 2.44
Av. Huayi 2.74 2.58 2.60 1.30 8.90 2.01 2.35
Av. Ma 2.87 2.61 2.49 1.32 5.19 2.03 1.74
Av. Ruixuan 2.58 2.68 2.63 1.54 8.32 2.17 2.34
Av. Shali 2.34 2.17 2.21 1.15 8.56 1.85 2.32
Av. Tang 3.14 2.87 3.05 1.50 8.59 2.43 2.17
Av. Xiaojing 2.21 2.16 2.16 1.23 6.40 2.28 1.83
Av. Yajie 2.35 2.31 2.33 1.46 7.05 2.10 1.96
Av. Zhicheng 2.54 2.29 2.20 1.32 8.15 2.31 2.08
Average All 2.17 2.03 2.06 1.34 7.85 2.07 2.13

TABLE 3 Evaluation results of the proposed method and the other approaches on the RepoIMU TStick dataset.
Trial No, Model A Model B Model C RIANN CF Madgwick Mahony
Av. Test 2 0.84 0.49 0.71 2.25 3.58 1.65 1.73
Av. Test 3 1.05 0.73 1.08 4.96 5.32 4.38 4.38
Av. Test 4 1.09 0.69 0.85 2.28 2.26 2.28 2.30
Av. Test 5 9.03 3.96 7.39 52.78 26.63 72.97 40.74
Av. Test 6 3.00 1.32 1.69 4.95 28.75 6.00 10.72
Av. Test 7 4.76 4.29 3.64 3.31 16.90 2.90 4.72
Av. Test 8 6.86 3.93 3.30 1.69 9.16 1.86 3.49
Av. Test 9 5.08 4.15 2.88 2.08 11.51 2.15 2.93
Av. Test 10 9.13 5.05 4.21 3.16 8.64 4.39 2.97
Av. Test 11 5.97 5.42 5.27 3.40 6.31 3.60 3.73
Av. All 5.07 3.28 3.36 8.72 11.98 11.09 8.19

of 8.19. Overall 3, the proposed method appears to be a promising approach for estimating orientation from IMU
measurements in the RepoIMU dataset.

Based on the table 4, total rotation error for the proposed method on Sassari dataset was consistently lower than
that of the other methods, with the largest improvements observed for fast and rotational motions. The Madgwick,
Mahony, and CF filters all had higher total rotation errors. The RIANN model also had higher total rotation error than
the proposed method, but performed slightly better than the Mahony and CF filters. The results in the table 5 show
that the proposed methods outperforms the other approaches on the BROAD dataset. But it is noticable that the
RIANN used 33 trials of the BROAD dataset to train in 3 trials for the validation. The Madgwick and Mahony filters
also perform relatively well, with lower Total Rotation Error values compared to the CF. One notable finding is that
Model B consistently outperformsModel A andC,which suggests thatModel Bmay be amore effective approach. The
RoNIN dataset consists of 152 sequences and 42.7 hours of IMU measurements. So, based on the published dataset,
we calculated the mean error over the four main trails (all 152 sequences are subsets of these four main trails). The
results in Table 6 show the evaluation of the proposed method and other approaches on the RoNIN dataset. The
proposed methods had close total rotation error and compared to the other approaches they have more error than
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TABLE 4 Evaluation results of the proposed method and the other approaches on the Sassari dataset.
Trial No, Model A Model B Model C RIANN CF Madgwick Mahony
fast_v4AP1 0.78 0.57 0.80 1.82 5.36 1.76 2.19
fast_v4AP2 0.88 0.70 0.65 1.38 5.35 1.47 2.00
fast_v4SH1 2.37 1.75 1.79 4.16 7.76 4.40 3.94
fast_v4SH2 7.48 4.12 6.26 14.49 14.39 14.29 14.37
fast_v4XS1 0.67 0.46 0.56 2.34 4.46 2.13 2.07
fast_v4XS2 0.81 0.65 0.65 1.19 4.78 1.23 1.73
medium_v4AP1 1.01 0.64 0.88 1.35 3.74 1.33 1.78
medium_v4AP2 0.73 0.46 0.61 1.47 3.36 1.29 1.62
medium_v4SH1 2.17 1.50 1.78 5.02 6.82 5.00 4.54
medium_v4SH2 18.27 18.22 18.28 18.71 18.78 18.62 18.51
medium_v4XS1 1.64 1.41 1.40 1.83 3.01 1.53 1.57
medium_v4XS2 1.56 1.40 1.47 1.04 2.98 1.10 1.34
slow_v4AP1 2.29 2.60 2.25 1.23 1.80 0.90 1.28
slow_v4AP2 2.07 2.48 2.52 1.30 1.65 0.77 1.19
slow_v4SH1 3.90 4.30 4.12 3.78 3.72 3.72 3.63
slow_v4SH2 18.47 18.91 18.79 18.36 18.40 18.31 18.28
slow_v4XS1 2.01 2.61 2.42 2.10 1.51 0.90 1.41
slow_v4XS2 2.29 2.67 2.60 1.00 1.64 0.81 1.04
Average 3.86 3.64 3.77 4.59 6.08 4.42 4.58

RIANN, Madgwick, and Mahony.

Based on the results presented in Table 7, it appears that the proposed Model A performs significantly better
than Model B, C and the other approaches (CF, Madgwick, Mahony, and RIANN) in terms of total rotation error on
the OxIOD dataset. In almost all 106 trials, Model A had the lowest total rotation error, with an average error of 3.92
degrees. Model B had the second lowest average error at 4.37 degrees, while RIANN had the highest average error
at 10.01 degrees. Madgwick had an average error of 9.96 degrees, Mahony had an average error of 8.6 degrees, and
CF had an average error of 6.49 degrees.

In the figure 18, we show the boxplots of the total rotation error for the proposed method and the other ap-
proaches. The boxplots show the median, the first and third quartiles, and the minimum and maximum values. The
whiskers extend to the most extreme data points within 1.5 times the interquartile range from the box. The results
show that the proposed method consistently outperformed the other approaches across different motion patterns
and sampling rates, with the most significant improvements observed for fast and rotational motions. It also demon-
strated strong performance in the presence of environmental disturbances, sensor noise, sampling rate, and motion
pattern. The evaluation results showed that proposed methods outperformed conventional filters in terms of accu-
racy and robustness. It demonstrated strong generalization capabilities across the various motion patterns, sampling
rates, and environmental conditions, suggesting that it is a viable alternative to conventional attitude estimation filters.
Overall, the performance evaluation results demonstrate the effectiveness of the proposed end-to-end deep-learning
approach for real-time attitude estimation using inertial sensor measurements. It offers a high level of accuracy and
robustness and demonstrates strong generalization capabilities. These characteristics make it a promising solution for
a wide range of applications.
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TABLE 5 Evaluation results of the proposed method and the other approaches on the BROAD dataset.
Trial No, Model A Model B Model C RIANN CF Madgwick Mahony
Trial No, 1 0.79 0.36 0.53 1.40 5.62 1.29 0.85
Trial No, 2 0.81 0.37 0.55 0.52 3.61 0.46 0.41
Trial No, 3 0.80 0.36 0.54 0.75 5.25 0.69 0.67
Trial No, 4 0.64 0.28 0.42 1.84 3.06 2.61 0.89
Trial No, 5 0.65 0.34 0.48 0.40 1.74 0.35 0.30
Trial No, 6 0.87 0.36 0.53 0.98 6.54 1.83 1.16
Trial No, 7 0.94 0.50 0.67 0.91 8.52 1.22 1.09
Trial No, 8 0.89 0.42 0.55 2.71 14.07 12.60 2.62
Trial No, 9 2.77 2.47 2.35 0.73 5.29 0.68 0.72
Trial No, 10 3.71 3.56 3.64 0.35 6.42 0.76 2.20
Trial No, 11 3.32 3.14 3.24 0.48 4.86 1.01 1.88
Trial No, 12 1.85 1.04 1.58 0.59 3.18 0.81 1.40
Trial No, 13 1.08 1.07 1.03 0.48 1.58 0.71 0.77
Trial No, 14 1.62 1.62 1.59 0.40 2.32 0.59 0.90
Trial No, 15 1.08 0.39 0.62 0.80 26.61 3.68 5.09
Trial No, 16 1.11 0.49 0.64 0.70 30.04 2.60 7.43
Trial No, 17 0.97 0.37 0.54 1.14 25.96 2.44 5.26
Trial No, 18 0.83 0.42 0.55 0.78 26.91 1.71 10.26
Trial No, 19 2.15 2.08 1.90 1.43 3.57 1.92 1.63
Trial No, 20 1.13 0.47 0.74 0.57 4.04 0.95 1.46
Trial No, 21 1.22 0.52 0.77 3.23 32.65 20.20 8.29
Trial No, 22 1.35 0.53 0.90 1.50 24.03 5.24 5.42
Trial No, 23 1.54 0.57 0.96 1.45 26.20 5.91 6.94
Trial No, 24 3.52 3.28 2.87 0.98 6.93 1.15 0.91
Trial No, 25 3.61 3.44 3.49 0.62 5.91 1.16 1.92
Trial No, 26 0.99 0.63 0.73 0.68 18.28 3.01 1.33
Trial No, 27 3.58 3.52 3.50 0.62 4.60 2.19 1.88
Trial No, 28 1.34 0.58 0.81 2.96 24.18 12.12 5.26
Trial No, 29 1.34 0.55 0.85 3.54 28.64 16.21 6.92
Trial No, 30 1.03 0.51 0.74 1.63 28.62 9.84 7.08
Trial No, 31 3.83 3.46 3.51 1.54 22.56 9.61 4.79
Trial No, 32 2.41 2.36 2.34 0.44 5.47 0.74 2.11
Trial No, 33 2.32 2.23 2.21 0.38 5.57 0.80 2.12
Trial No, 34 2.32 2.27 2.19 0.59 6.14 1.05 2.26
Trial No, 35 2.10 2.15 2.07 1.63 6.05 5.36 2.51
Trial No, 36 2.68 2.91 2.69 0.68 8.91 1.42 2.59
Trial No, 37 3.58 3.79 3.57 1.34 8.69 5.82 2.79
Trial No, 38 1.69 0.58 1.02 0.75 9.25 1.47 2.89
Trial No, 39 0.89 0.43 0.64 0.92 10.58 1.20 2.76
Average 1.77 1.39 1.5 1.11 12.11 3.67 3.01
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TABLE 6 Evaluation results of the proposed method and the other approaches on the RoNIN dataset.
Trial No, Model A Model B Model C RIANN CF Madgwick Mahony
Av. train_dataset_1 6.07 5.59 5.63 1.75 13.95 2.55 3.56
Av. train_dataset_2 5.71 5.24 5.36 1.61 12.06 2.23 3.22
Av. seen_subjects_test_set 4.82 4.49 4.72 1.80 14.87 2.72 3.92
Av. unseen_subjects_test_set 6.02 5.70 5.80 1.67 13.65 2.26 3.65
Average All 5.69 5.28 5.39 1.71 13.66 2.46 3.58

TABLE 7 Evaluation results of the proposed method and the other approaches on the OxIOD dataset.
Trial No, Model A Model B Model C RIANN CF Madgwick Mahony
Av. handbag 1.41 1.17 1.30 13.04 9.30 12.88 11.49
Av. handheld 1.96 1.94 1.96 6.74 3.87 5.90 5.19
Av. iPhone 5 4.13 4.47 4.56 11.10 7.20 11.20 9.53
Av. iPhone 6 3.89 4.15 4.81 10.35 6.59 10.30 8.89
Av. user2 3.77 4.36 4.63 11.82 6.78 11.79 9.82
Av. user3 4.87 5.58 6.21 12.62 8.23 13.36 10.82
Av. user4 5.20 5.40 5.51 13.08 7.56 13.71 10.98
Av. user5 4.55 6.10 6.27 12.77 8.47 12.91 11.31
Av. pocket 7.85 9.12 10.32 15.10 10.01 16.02 14.46
Av. running 4.48 4.14 3.81 10.93 6.35 10.58 8.00
Av. slow walking 2.04 2.43 1.98 4.75 3.43 4.15 4.14
Av. trolley 4.52 5.31 4.66 4.71 4.69 4.69 4.70
Average All 3.92 4.37 4.51 10.01 6.49 9.96 8.60

7 | CONCLUSION
This paper proposed a deep learning framework for attitude estimation based on quaternion representation. This
model learns the temporal dependencies between the accelerometer, gyroscope readings, and attitude. The proposed
methods are based on CNN layers and LSTM layers. The CNN layers extract the features from the accelerometer
and gyroscope readings, and the LSTM layers are used to learn the temporal dependencies between the extracted
features. These model benefits from the previous and future measurements to find the temporal relation between
the IMU measurements and the attitude.

In conclusion, this study proposed two end-to-end deep-learning models to solve the problem of real-time at-
titude estimation using inertial sensor measurements. The proposed models were designed to be robust to motion
patterns, sampling rates, and environmental disturbances, making them suitable for a wide range of applications. The
models were evaluated on five publicly available datasets, which consisted of over 120 hours and 200 kilometers of
IMU measurements. The results of the evaluation showed that the proposed models (Model A, Model B, and Model
C) outperformed the state-of-the-art approaches (RIANN, CF, Madgwick, and Mahony) in terms of accuracy and ro-
bustness. Specifically, the proposed methods achieved lower MAE, RMSE, and QE values, indicating a higher level of
accuracy in the attitude estimates.

The proposed network architectures were composed of four main components: Feature Extraction, Feature Fu-
sion, Sampling Rate Fusion, and Attitude Estimation. The Feature Extraction component extracted the features from
the IMU data, and the Feature Fusion component fused the extracted features. The Sampling Rate Fusion component
fused the sampling rate of the IMU measurements and worked as a regularization technique that helped to reduce
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(a) OxiOD dataset (b) Sassari dataset

(c) Broad dataset (d) RIDI dataset

(e) RONIN dataset
F IGURE 18 Boxplots of the total rotation error for the proposed method and the other approaches on the
OxiOD, Sassari, Broad, RIDI, and RONIN datasets.

overfitting. The Attitude Estimation component estimated the attitude using a fully forward neural network (FFNN)
with four units followed by a unit scaling layer.

In addition to the high performance of the proposedmethods, the results of the evaluation also demonstrated that
the proposed methods had strong generalization capabilities over various motion characteristics and sensor sampling
rates. This means that the proposed methods can be applied to a wide range of applications without the need for
additional optimization or adaptation.

The results of this study demonstrate that the proposed models are effective, accurate, and robust, and have
strong generalization capabilities over various motion patterns and sensor sampling rates. These results suggest that
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the proposedmodels have the potential to be applied in awide range of fields, including navigation, image stabilization,
and tracking. Future work may focus on the integration of other sensors, such as magnetometers, to further improve
the accuracy and robustness of the attitude estimation.

In summary, the results of this study demonstrate the potential of deep learning approaches for real-time atti-
tude estimation using inertial sensor measurements. It offers a promising alternative to traditional filters and has the
potential to enable a wide range of applications in fields such as robotics, augmented reality, and human-computer
interaction. Further investigation into the robustness of the proposed method in challenging environmental condi-
tions, such as strong magnetic interference or extreme temperature fluctuations, may provide further insights into its
capabilities.

There are several avenues for future research. One possibility is to investigate the use of additional sensor modal-
ities, such as visual or barometric sensors, to further improve the accuracy and robustness of the proposed approach.
Another possibility is to extend the proposed method to other related tasks, such as orientation tracking or pose
estimation.
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