
Noname manuscript No.
(will be inserted by the editor)

A numerical method for solving the space fractional Navier-Stokes
equations

Zihan Yue 1 · Wei Jiang2 · Zhong Chen2 · Boying
Wu1 · Biao Zhang1

Received: date / Accepted: date

Abstract In this work, bases on the reproducing kernel theory and collocation method, we study the
space Riesz fractional Navier-Stokes equations, and propose the numerical method to solve it. Firstly
the new base space can be constructed by the spline and reproducing kernel space. The ε-approximate
solution in binary spline space in the form of finite terms can be derived. Through using the colloca-
tion method, the approximate problem is solved. In addition, we provide analysis of the stability and
convergence. In final, two numerical examples are provided to show the effectiveness of our method.
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1 Introduction

The Navier-Stokes (N-S) equation is established by the French scientist Navier in 1821 and the British
scientist Stokes in 1845. It applies the laws of mass conservation, momentum conservation, and energy
conservation to fluid motion. The Navier-Stokes equations describe the interaction between liquid and
rigid body, which can be termed as the second law of Newton’s motion for fluid, and play an indispensable
role in many important practical problems [1–3]. The classic Navier-Stokes equation is denoted as:

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∆u.

Recently, fractional calculus has received much attention due to its practical applications. The frac-
tional calculus theory has found widespread applications in many fields. Based on the fractional theory,
the fractional Navier-Stokes equations have been received much attention in recent years [4–6]. El-Shahed
and Salem [7] firstly have replaced differential operator in the classic Navier-Stokes equation with a frac-
tional differential operator, and obtained the time fractional Navier-Stokes equation. Meanwhile, the
space fractional Navier-Stokes equation replaces Laplace operator with a fractional differential operator.
As pointed out in [8], it was not feasible to use the traditional differential equation to describe the irreg-
ular wind flow, and the space fraction Navier-Stokes equation happened to be a turbulence model. Xu
and Shen [9] have considered the stochastic time-space fractional incompressible Navier-Stokes equation
driven by white noise. Except different fractional Navier-Stokes equation modeling, there are also many
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studies on fractional Navier-Stokes equation theory [10–12]. But it makes difficult to obtain the analyt-
ical solutions, so the numerical solution of fractional Navier-Stokes equations has attracted the interest
of many authors. There are many numerical method applying to this kind of equations, such as finite
element method, finite difference method and spectral method and so on. Yang [13] has investigated the
fractional partial differential equation with Riesz fractional derivatives. Xu [14] has studied the space
fractional Navier-Stokes equations by using the finite difference method. Sayevand [15] has obtained
the numerical solution of the fractional Navier-Stokes equation through a non-standard finite difference
method.

In this paper, we consider the following space fractional Navier-Stokes equations with Riesz deriva-
tives, which are obtained from replacing Laplacian operator in the Navier-Stokes equations by Riesz
fractional derivatives:

∂

∂t
u(y, t)− 1

Re

∂α

∂ |y|α u(y, t) = f(y, t), (1)

where (y, t) ∈ D := [0, 1] × [0, T ], f(y, t) ∈ C(D), Re represents the generalized Reynolds number, and
∂α

∂|y|α is denoted as the Riesz fractional derivative operator with α ∈ (1, 2]. The initial and boundary
conditions are satisfied as follows:

u(y, 0) = 0, 0 ≤ y ≤ 1,

u(0, t) = u(1, t) = 0, 0 ≤ t ≤ T
(2)

Reproducing kernel methods are a case of spectral collocation method and reproducing kernel space
is an ideal space framework for studying function approximation. In the recently year, it has been used
to solve various differential equations owing to its good properties [16–18].

To this end, a novel numerical method is proposed to solve these kinds of equations. Using the
reproducing kernel theory and spline space, the new basis can be constructed. Through the collocation
method, we can get the ε-approximate solution by solving coefficients of approximation solution. The
stability of the method is further proved, and the convergence of the method is analyzed. Finally, the
theoretical results are verified by numerical examples. In this framework, the rest of the paper is organized
as follows: Section 2 presents the preliminary concepts and notions. Section 3 develops the numerical
method for solving the Eq.(1) with (2). The stability of the method and the convergence appears in
Section 4. Section 5 gives numerical examples to illustrate the effectiveness of the proposed theory.
Section 6 outlines a brief conclusion.

2 Preliminary concepts and notions

2.1 Risez fractional derivative operators

Definition 1 The left and right Riemann-Liouvile fractional derivatives operators with respect to order
α are denoted as the following:

0D
α
y u(y, t) =

1

Γ (n− α)

∂n

∂yn

∫ y

0

(y − η)n−α−1u(η, t)dη,

1D
α
y u(y, t) =

(−1)n

Γ (n− α)

∂n

∂yn

∫ 1

y

(η − y)n−α−1u(η, t)dη,

where n− 1 < α ≤ n, and n = dαe.

Definition 2 The Riesz fractional derivative in Eq.(1) is denotes as:

∂α

∂ |y|α u(y, t) = −σ(0D
α
y +1 D

α
y )u(y, t),

where σ = 1
2 cos( πα

2
) , and 1 < α ≤ 2.
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Definition 3 The left and right Caputo fractional differential operators CDα0 and CDα1 are denoted as
the following:

CDα0 u(y, t) =
1

Γ (n− α)

∫ y

0

(y − η)n−α−1 ∂
nu(η, t)

∂ηn
dη,

CDα1 u(y, t) =
(−1)n

Γ (n− α)

∫ 1

y

(η − y)n−α−1 ∂
nu(η, t)

∂ηn
dη,

where n− 1 < α ≤ n, and n = dαe.

2.2 Reproducing kernel spaces

Definition 4 Setting B is an arbitrary nonempty abstract set and H is a Hilbert space, the element of
H is the real or complex functions defined on B. Then, set K(t, s) : B × B → R is an binary function
and the conditions is as follows:

1. K(t, s) ∈ H with respect to t, for ∀s ∈ B;
2. for ∀s ∈ B and f ∈ H,

f(s) = (f(t),K(t, s))t,

therefore, H is called a reproducing kernel space, K(t, s) is called a reproducing kernel.

Accronding to [19], absolutely continuous function space is denoted by the following form:

AC[a, b] = {f(x)|f(x) is an absolutely continuous function in [a, b]},

ACn[a, b] = {f(x)|f (n−1)(x) is an absolutely continuous function in [a, b]}.

Definition 5 Define the Hilbert space asWm
2 = Wm

2 [a, b] = {f(x)|f(x) ∈ ACm[a, b], fm(x) ∈ L2[a, b]}.
And we give the definition of the inner product in Wm

2 :

(f(x), g(x))Wm
2

=
m−1∑
k=0

f (k)(a)g(k)(a) +
∫ b
a
f (m)(x)g(m)(x)dx,∀f(x), g(x) ∈Wm

2 ,

and ‖f(x)‖Wm
2

=
√

(f(x), f(x))Wm
2

.

Similar to [19], we can define and prove that W2[0, T ] and W3[0, 1] are reproducing kernel spaces.

Definition 6 W2[0, T ] = {f(x) ∈W 2
2 [0, T ]|f(0) = 0}, equipped with the following inner product

(f(x), g(x))W2[0,T ] = f ′(0)g′(0) +

∫ T

0

f ′′(x)g′′(x)dx. (3)

Definition 7 W3[0, 1] = {f(x) ∈ W 3
2 [0, 1]|f(0) = 0, f(1) = 0}, equipped with the following inner

product

(f(x), g(x))W3[0,1] = f ′(0)g′(0) + f ′′(0)g′′(0) +

∫ 1

0

f ′′′(x)g′′′(x)dx. (4)

Meanwhile, the reproducing kernels of W2[0, T ] and W3[0, 1] can be denoted respectively by

r2(t, s) =

{
ts+ ts2

2 −
s3

6 , s ≤ t,
ts+ st2

2 −
t3

6 , t < s.
R3(x, y) =

{
1 + xy + x2y2

4 + x2y3

12 −
xy4

24 + y5

120 , y ≤ x,
1 + x5

120 + (x− x4

24 )y + 1
12x

2(3 + x)y2, x < y.
(5)

Definition 8 Define the continuous space C1(Ω), Ω = [0, 1]× [0, T ]:

C1(Ω) =

{
∂|i|∂|j|

∂y|i|∂t|j|
u(y, t) ∈ C(Ω), |i|+ |j| ≤ 2, u(0, t) = u(1, t) = 0, u(y, 0) = 0

}
,

the norm is denoted as:

‖u‖C1(Ω) = max

{
‖ ∂|i|∂|j|

∂y|i|∂t|j|
u(y, t)‖C(Ω), |i|+ |j| ≤ 2

}
.
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2.3 Spline spaces

Definition 9 Define the division of [a, b], π : a = ξ0 < ξ1 < ξ2 < · · · < ξn−1 < ξn = b. Set kl =
[ξl−1, ξl] , l = 1, · · · , n, so that the spline space can be expressed as

Sk,π =
{
φ ∈ Ck−1 [a, b] : φ|kj ∈ Pk, j = 1, 2, 3, · · · , n

}
,

where Pk is polynomial function space and its order is not greater than k over kj .

Then due to the Definition 2.9, there are two spline spaces defined as:

S̃5,πy =
{
φ ∈ S5,πy [0, 1] : φ(0) = φ(1) = 0

}
, S̃3,πt = {φ ∈ S3,πt [0, T ] : φ(0) = 0} ,

where πy is a division of [0, 1] about space and πt is a division of [0, T ] about time. Let Ω = {(y, t) : 0 ≤
y ≤ 1, 0 ≤ t ≤ T}, πy : 0 = y0 < y1 < · · · < yn = 1 and πt : 0 = t0 < t1 < · · · < tn = T . The set of
points πyt = {(yi, tj) : 0 ≤ i ≤ n; 0 ≤ j ≤ n} = πy · πt represents the discretization of the domain Ω.

Definition 10 The space Sπyt , S̃5,πy ⊗ S̃3,πt = {un(y, t)|un(y, t) =
n∑

i,j=1

di,jBi(y)Bj(t)} is a bivariate

spline space with base {Bi(y)Bj(t), i, j = 1, 2, · · · , n}, where ⊗ means the direct product, {Bi(y)}ni=1

and {Bj(t)}nj=1 are the bases of the spline space S̃5,πy and S̃3,πt respectively.

3 The ε-approximate solution of equation

3.1 Constructing the new base

In this section, we will demonstrate that a new base is constructed in the spline space.

Lemma 1
{
t, t2, r2(t, t1), · · · , r2(t, tn)

}
is linearly independent and is a base of S̃3,πt .

Proof. Assuming that the division of [0, T ] is 0 = t0 < t1 < t2 < · · · < tn = T , for every 1 ≤ l ≤ n,
select q ∈ W2[0, T ], such that q(tl) = 1 and q(tk) = 0, k 6= l. Meanwhile, q(t) = 0 when t is close to 0 or
T , so q′(0) = q′(T ) = 0.

Taking any integer in [1, n− 1], assuming that at+ bt2 +
n−1∑
i=1

cir2(t, ti) = 0. From Eq.(3), so

0 = (at+ bt2 +

n−1∑
i=1

cir2(t, ti), q(t))W2[0,T ]

= a(t, q(t))W2[0,T ] + b(t2, q(t))W2[0,T ] +

n−1∑
i=1

ci(r2(t, ti), q(t))W2[0,T ]

= 0 + 0 +

n−1∑
i=1

ciq(ti)

= cl, l = 1, 2, · · · , n− 1.

On the other hand, when l = n, considering with Eq.(5), it follows that

at+ bt2 + cn(tT +
Tt2

2
− t3

6
) = 0,

it is obvious that a = b = cn = 0. Therefore {Bti}n+2
i=1 = {t, t2, r2(t, t1), · · · , r2(t, tn)} is linearly

independent.
Next we will verify that {Bti}n+2

i=1 is a base of S̃3,πt . According to definition of the r2(t, ti), we can
get r2(t, ti) ∈ C2[0, T ]. Meanwhile, r2(t, ti) is a piecewise cubic polynomial with r2(0, ti) = 0, which

implies that r2(t, ti) ∈ S̃3,πt , for i ∈ [1, n]. Also t, t2 ∈ S̃3,πt , then {Bti}n+2
i=1 ∈ S̃3,πt . Since dim

S̃3,πt = n+ 2, and {Bti}n+2
i=1 is a linear independent set, so that {Bti}n+2

i=1 is a base of S̃3,πt .
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Theorem 1
{
y(1− y), y2(1− y), y3(1− y), y4(1− y), R3(y, y1), · · · , R3(y, yn−1)

}
is linearly indepen-

dent and is a base of S̃5,πy .

Proof. Assuming that the division of [0, 1] is 0 = y0 < y1 < y2 < · · · < yn−1 < yn = 1, for every
1 ≤ k ≤ n− 1, select h ∈W3[0, 1], which satisfying h(yk) = 1 and h(yj) = 0, when j 6= k. It can be
found that when y verges to 0 or 1, h(y) = 0. Then h′(0) = h′(1) = h′′(0) = h′′(1) = 0.

Assuming that

ay(1− y) + by2(1− y) + cy3(1− y) + dy4(1− y) +

n−1∑
i=1

eiR3(y, yi) = 0.

So considering with the Eq.(5), and∫ 1

0

yh′′′(y)dy = h′′(1)− h′(1) + h′(0),∫ 1

0

y2h′′′(y)dy = h′′(1)− 2h′(1) + 2h(1)− 2h(0),

it follows that,

0 = (ay(1− y) + by2(1− y) + cy3(1− y) + dy4(1− y) +

n−1∑
i=1

eiR3(y, yi), h(y))W3[0,1]

= a(y(1− y, h(y))W3[0,1] + b(y2(1− y), h(y))W3[0,1] + c(y3(1− y), h(y))W3[0,1]

+ d(y4(1− y), h(y))W3[0,1] +

n−1∑
i=1

ei(R3(y, yi), h(y))W3[0,1]

= 0 + 0 + 0 + 0 +

n−1∑
i=1

eih(yi)

= ek, k = 1, 2, · · · , n− 1.

On the other hand, assuming that

ay(1− y) + by2(1− y) + cy3(1− y) + dy4(1− y) = 0,

it is obvious that a = b = c = d = 0.
Therefore {Byi}n+3

i=1 =
{
y(1− y), y2(1− y), y3(1− y), y4(1− y), R3(y, y1), · · · , R3(y, yn−1)

}
is

linearly independent. Next we will verify that it is a base of S̃5,πy . Due to the definition of the R3(y, yi),
we can get R3(y, yi) ∈ C5[0, 1]. On the other hand, R3(y, yi) is a piecewise quintic polynomial with

R3(0, yi) = R3(1, yi) = 0, which implies that R3(y, yi) ∈ S̃5,πy , for every i = 1,2,· · · ,n− 1.

Obviously, y(1− y), y2(1− y), y3(1− y), y4(1− y) ∈ S̃5,πy , then {Byi}n+3
i=1 ∈ S̃5,πy . Since dim

S̃5,πy = n+ 3, {Byi}n+3
i=1 is a linear independent set, it yields that {Byi}n+3

i=1 is a base of S̃5,πy .

In terms of Sπyt , S̃5,πy ⊗ S̃3,πt , combining the above Lemma 1 and Theorem 1, it yields that

K = {Byi(y)}n+3
i=1 ⊗ {Bti(t)}

n+2
i=1 is a new base in Sπyt . Then the approximate solution un(y, t) can be

expressed by

un(y, t) =

n+3∑
i=1

n+2∑
j=1

ΛijByi(y)⊗Btj (t)

=

n−1∑
i=1

n∑
j=1

aijR3(y, yi)r2(t, tj) +

n−1∑
i=1

(bit+ cit
2)R3(y, yi) +

n∑
j=1

(djy(1− y)

+ ejy
2(1− y) + piy

3(1− y) + qiy
4(1− y))r2(t, tj) + (z1y(1− y)

+ z2y
2(1− y) + z3y

3(1− y) + z4y
4(1− y))t+ (z5y(1− y)

+ z6y
2(1− y) + z7y

3(1− y) + z8y
4(1− y))t2.

(6)
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3.2 Implementation of a method to approximate the solution of the equation

According to the above reproducing kernel theory, this section will introduce a new numerical method
to solve the Eq.(1) with (2) based on collocation method. Because of the Definition 2, the Eq.(1) is
expanded as:

∂

∂t
u(y, t) +

1

Re

1

2 cos(πα2 )
(0D

α
y +1 D

α
y )u(y, t) = f(y, t). (7)

Let m = dαe, then converting Riemann-Liouvile fractional derivatives operator 0D
α
y and 1D

α
y to

Caputo fractional derivatives operator CDα0 and CDα1 , the Eq.(7) is rewritten as:

∂

∂t
u(y, t) +

1

Re

1

2 cos(πα2 )

1

Γ (2− α)
((1− α)y−αu(0, t) + y1−α∂yu(0, t) + (1− α)(1− y)−αu(1, t)

− (1− y)1−α∂yu(1, t)) +
1

Re

1

2 cos(πα2 )
(CDα0 u(y, t) + CDα1 u(y, t)) = f(y, t),

where 1 < α ≤ 2. Since the boundary condition is u(0, t) = u(1, t) = 0, so define the operator L as the
follow:

Lu(y, t) =
∂

∂t
u(y, t) +

1

Re

1

2 cos(πα2 )

1

Γ (2− α)
(

∫ y

0

(y − η)1−α∂2ηu(η, t)dη +

∫ 1

y

(η − y)1−α∂2ηu(η, t)dη

+ y1−α∂yu(0, t)− (1− y)1−α∂yu(1, t)) = f(y, t),

(8)

Then the Eq.(1) is turned to an equation:

Lu(y, t) = f(y, t). (9)

Lemma 2 L : C1(Ω)→ L1(Ω) is a bouned operator.

Proof. Since L is denoted by Eq.(8):

Lu(y, t) =
∂

∂t
u(y, t) +

1

Re

1

2 cos(πα2 )

1

Γ (2− α)
(

∫ y

0

(y − η)1−α∂2ηu(η, t)dη +

∫ 1

y

(η − y)1−α∂2ηu(η, t)dη

+ y1−α∂yu(0, t)− (1− y)1−α∂yu(1, t))

Let M0 = 1
Re

1
2 cos( πα

2
)

1
Γ (2−α) , so that in the sense of L1 norm:

‖Lu‖L1(Ω) =

∫ T

0

∫ 1

0

| ∂
∂t
u(y, t) +M0(

∫ y

0

(y − η)1−α∂2ηu(η, t)dη +

∫ 1

y

(η − y)1−α∂2ηu(η, t)dη
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+ y1−α∂yu(0, t)− (1− y)1−α∂yu(1, t))|dydt

≤
∫ T

0

∫ 1

0

| ∂
∂t
u(y, t)|dydt+M0(

∫ T

0

∫ 1

0

|
∫ y

0

(y − η)1−α∂2ηu(η, t)dη|dydt+

∫ T

0

∫ 1

0

|y1−α∂yu(0, t)|dydt

+

∫ T

0

∫ 1

0

|
∫ 1

y

(η − y)1−α∂2ηu(η, t)dη|dydt+

∫ T

0

∫ 1

0

|(1− y)1−α∂yu(1, t)|dydt)

≤
∫ T

0

∫ 1

0

‖u‖C1(Ω)dydt+M0(

∫ T

0

∫ 1

0

∫ y

0

(y − η)1−α‖u‖C1(Ω)dηdydt+

∫ T

0

∫ 1

0

y1−α‖u‖C1(Ω)dydt

+

∫ T

0

∫ 1

0

∫ 1

y

(η − y)1−α‖u‖C1(Ω)dηdydt+

∫ T

0

∫ 1

0

(1− y)1−α‖u‖C1(Ω)dydt)

≤ (T +M0(

∫ T

0

∫ 1

0

∫ y

0

(y − η)1−αdηdydt+

∫ T

0

∫ 1

0

∫ 1

y

(η − y)1−αdηdydt+

∫ T

0

∫ 1

0

y1−αdydt

+

∫ T

0

∫ 1

0

(1− y)1−αdydt))‖u‖C1(Ω)

= (T +M0T (
1

2− α
1

3− α +
1

2− α
1

3− α +
1

2− α +
1

2− α ))‖u‖C1(Ω)

,M‖u‖C1(Ω),

where M , T + 2M0T ( 1
2−α

1
3−α + 1

2−α ) is a constant. So, ‖Lu‖L1(Ω) ≤M‖u‖C1(Ω), it means that

L : C1(Ω) to L1(Ω) is a bounded operator.

Lemma 3 u(y, t) and un(y, t) are the true solution and the approximate solution in Sπyt of the Eq.(9)
respectively, there are the following conditions according to [20] and [21]:

‖u− un‖C(Ω) ≤ λ0h4,

‖D|1|u−D|1|un‖C(Ω) ≤ λ1h3,

‖D|2|u−D|2|un‖C(Ω) ≤ λ2h2,

where h = min{hy, ht}, hy and ht are the partition of the space S̃5,πy and S̃3,πt respectively, and p =

(i, j), |p| = i+ j, D|p|u = ∂|p|u

∂yi∂tj . λ0, λ1, λ2 represent only depending on the C norms of mixed partial
of no more than p order, p = 0, 1, 2.

Definition 11 For any ε > 0, if ‖Lv − f‖L1(Ω) =
∫ T
0

∫ 1

0
|Lv(y, t) − f(y, t)|dydt < ε, then v(y, t) is an

ε-approximate solution for Eq.(9).

Theorem 2 Supposed that un(y, t) is the solution from Eq.(6), if for any ε > 0, there exists N ∈ N+,

when each n > N , ũn(y, t) =
n+3∑
i=1

n+2∑
j=1

Λ̃ijByi(y) ⊗ Btj (t) is an ε-approximate solution of Eq.(7), whose

coefficient variation Λ̃ij satisfies

‖Lũn(y, t)− f(y, t)‖L1(Ω) = min
Λ̃ij

‖Lun(y, t)− f(y, t)‖L1(Ω),

and

ũn(y, t) =

n+3∑
i=1

n+2∑
j=1

Λ̃ijBy(yi)⊗Bt(tj)

=

n−1∑
i=1

n∑
j=1

ãijR3(y, yi)r2(t, tj) +

n−1∑
i=1

(b̃it+ c̃it
2)R3(y, yi) +

n∑
j=1

(d̃jy(1− y)

+ ẽjy
2(1− y) + p̃iy

3(1− y) + q̃iy
4(1− y))r2(t, tj) + (z̃1y(1− y)

+ z̃2y
2(1− y) + z̃3y

3(1− y) + z̃4y
4(1− y))t+ (z̃5y(1− y)

+ z̃6y
2(1− y) + z̃7y

3(1− y) + z̃8y
4(1− y))t2.
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Proof. Supposed that u(y, t) is the true solution. As Lemma 3 points out, there exists a positive number
γ such that

‖u− un‖C1(Ω) ≤ γh2.

Since Lemma 2 shows ‖L‖ ≤M , division h becomes decreasing as n increasing, then it can be
found that for ∀ε > 0, there exists N ∈ N+, such that for every n > N ,

‖u− un‖C1(Ω) ≤ γh2 ≤
ε

M
,

we obtain that

‖Lun − f‖L1(Ω) = ‖L(un − u)‖L1(Ω) ≤ ‖L‖‖u− un‖C1(Ω) ≤M‖u− un‖C1(Ω) ≤ ε.

Therefore, ‖Lũn − f‖L1(Ω) ≤ ‖Lun − f‖L1(Ω) ≤ ε. Owing to the definition of ε-approximate
solution, it obviously that ũn(y, t) is an ε-approximate solution of Eq.(7).

As mentioned above, we can derive ‖Lũn − f‖L1(Ω) ≤ γMh2 ≤ ε. So un can be an ε−approximate
solution by choosing different n. To this end, we can use the numerical experiments to estimate the value

of γ by selecting the value h. As long as letting h ≤
√

ε
γM , the estimation of n can be obtained.

Now, we give the procedure of this method in order to find the minimum of

‖Lun(y, t)− f(y, t)‖L1(Ω). (10)

We put un(y, t) =
n+3∑
i=1

n+2∑
j=1

ΛijByi(y)⊗Btj (t), then it can derive that

Lun(y, t) =

n+3∑
i=1

n+2∑
j=1

ΛijLByi(y)⊗Btj (t)

=

n+3∑
i=1

n+2∑
j=1

Λij(Byi(y)
∂

∂t
Btj (t) +

1

Re

1

2 cos(πα2 )

1

Γ (2− α)
(

∫ y

0

(y − η)1−α∂2ηByi(η)dη

+

∫ 1

y

(η − y)1−α∂2ηByi(η)dη +
∂

∂y
Byi(0)y1−α − ∂

∂y
Byi(1)(1− y)1−α)Btj (t)).

In further,

Lun(y, t) =

n−1∑
i=1

n∑
j=1

aijLR3(y, yi)r2(t, tj) +

n−1∑
i=1

L(bit+ cit
2)R3(y, yi) +

n∑
j=1

L(djy(1− y) + ejy
2(1− y)

+ piy
3(1− y) + qiy

4(1− y))r2(t, tj) + L(z1y(1− y) + z2y
2(1− y) + z3y

3(1− y) + z4y
4(1− y))t

+ L(z5y(1− y) + z6y
2(1− y) + z7y

3(1− y) + z8y
4(1− y))t2

,
N1∑
i=1

µigi(y, t),

where N1 = n2 + 5n + 6, {µi}N1

i=1 = {{Λij}n+2
j=1 }

n+3
i=1 = {{aij}nj=1}n−1

i=1 ∪ {bi}
n−1
i=1 ∪ {ci}

n−1
i=1 ∪ {di}

n
i=1 ∪

{ei}ni=1 ∪ {pi}ni=1 ∪ {qi}ni=1 ∪ {zi}8i=1.
Next finding the minimum value of Eq.(10) is equivalent to solving the following equations which is

linear and at least has one solution.

min
µi∈R

m∑
j=1

(

N1∑
i=1

µigi(yj , tj)− f(yj , tj))
2, (11)
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where {(yj = 1
m j, tj = T

m j)}
m
j=1, m is large enough.

Putting gi = (gi(y1, t1), · · · , gi(ym, tm))T ∈ Rm, F = (f(y1, t1), · · · , f(ym, tm))T ∈ Rm, where Rm
represents a Euclidean space of dimension m. Eq.(11) is equivalent to

min
µi∈R

‖
N1∑
i=1

µigi − F‖2Rm .

Definition 12 Set F ∈ Rm, Γ = span{gi}N1
i=1,

‖Φ− F‖Rm = min
S∗∈Γ

‖S∗ − F‖Rm ,

consequently, the best approximation element of F in Γ is Φ.

Theorem 3 Supposed that the vector Φ ∈ Γ satisfying

‖Φ− F‖Rm = min
S∗∈Γ

∥∥S∗ − F∥∥Rm ,
then Φ is the unique vector in Γ .

Theorem 4 Set F ∈ Rm, when k ∈ [1, N1], z ∈ Γ , there exists (F − z, gk)Rm = 0 if and only if z is the
best approximation element for F in Γ .

Theorem 5 z =
N1∑
i=1

µ∗g is best element of approximation F in Γ if and only if the solution of the

normal equation of Eq.(11) is {µ∗i }N1
i=1, which is obtained from solving the following equation.

∂

∂µk

m∑
j=1

[

N1∑
i=1

µigi(yj , tj)− f(yj , tj)]
2 = 0, k = 1, 2, · · · , N1. (12)

Proof. The system Eq.(12) is

2
m∑
j=1

[

N1∑
i=1

µigi(yj , tj)− f(yj , tj)] · gk(yj , tj) = 0, k = 1, 2, · · · , N1,

m∑
j=1

N1∑
i=1

µigi(yj , tj) · gk(yj , tj) =
m∑
j=1

f(yj , tj) · gk(yj , tj), k = 1, 2, · · · , N1,

it can be rewritten as

m∑
j=1

µi(gi, gk)Rm =
m∑
j=1

(f, gk)Rm , i, k = 1, 2, · · · , N1,

it is then following as that

m∑
j=1

(f −
N1∑
i=1

µigi, gk)Rm = 0, k = 1, 2, · · · , N1,

m∑
j=1

(f −
N1∑
i=1

µigi, gk)Rm = 0, k = 1, 2, · · · , N1,

m∑
j=1

(f − z, gk)Rm = 0, k = 1, 2, · · · , N1,

using the Theorem 4 derives the conclusion.
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4 Stability and convergence analysis

In further, we will discuss the stability of the numerical scheme and show the convergence in C1 norm
sense.

Denoting that D(L) = {Lu|u ∈ C1(Ω)} ⊂ L1(Ω).

Theorem 6 L is the closed operator and inverse operator L−1 is bounded.

Proof. First of all, we will show that D(L) is a closed operator. It can be sufficiently proved from that
for any z0 ∈ D(L). When z0 = 0, the conclusion is obvious derived. Assuming that z0 6= 0, then there
has a sequence zn ∈ D(L) such that ‖zn − z0‖L1(Ω) tends to zero and has a sequence yn ∈ C1(Ω)
satisfying Lyn = zn.

Let N = {y ∈ C1(Ω)|Ly = 0}, then it is equivalent to N = {0}. Otherwise, assuming that there
exists other nonzero solution y, then there exists a infinite sequence ynk ⊆ N , so ynk ∈ N , it follows
that Lynk = znk = 0, then z0 = 0, it derives a contradiction.

Next we will illustrate that {yn} is bounded. Conversely, supposing that ‖yn‖C1(Ω) →∞.
Set un = yn

‖yn‖C1(Ω)
, then ‖un‖C1(Ω) = 1, so {un} is bounded. Since L is bounded, so far it has

convergence subsequence unk , it has

lim
k→∞

unk = u0, lim
k→∞

Lunk = Lu0,

so,

Lu0 = lim
k→∞

Lunk = lim
k→∞

L ynk
‖ynk‖C1(Ω)

= lim
k→∞

znk
‖ynk‖C1(Ω)

= 0,

then u0 ∈ N , u0 = 0,

‖unk − u0‖L1(Ω) =

∥∥∥∥∥ ynk
‖ynk‖C1(Ω)

− 0

∥∥∥∥∥
L1(Ω)

= 1,

which implies the contradiction, so {yn} is bounded. Then there is a subsequence {ynl} ⊂ {yn} such
that ynl → yn. Note that

znl = Lynl .

Let l→∞,

‖Ly0 − z0‖L1(Ω) = ‖Ly0 − Lynl + Lynl − znl + znl − z0‖L1(Ω) → 0,

then, Ly0 = z0, which implies z0 ∈ R(L), so R(L) is closed.
Finally, take into account D(L) is closed in the Banach space L1(Ω), obviously

L−1 : D(L)→ C1(Ω) is bounded through inverse operator theorem.

Theorem 7 The approximate scheme of the above numerical method is stable.

Proof. Suppose θ(x, y) is the disturbing function, then Lu(x, y) = F (x, y) + θ(x, y). u(x, y) is the true
solution, and the ε-approximate solution of u(x, y) is un(x, y). Then, we can get that

‖u− un‖C1(Ω) = ‖u− u+ u− un‖C1(Ω)

≤ ‖u− u‖C1(Ω) + ‖u− un‖C1(Ω)

≤ ‖L−1‖ · ‖Lu− Lu‖L1(Ω) + ‖L−1‖ · ‖Lu− Lun‖L1(Ω)

≤ ‖L−1‖(‖θ‖C1(Ω) + ‖L‖ · ε).

Using the Theorem 6, L−1 is bounded, ε is arbitrarily and θ is the disturbing function, so the
approximate scheme in this paper is stable.
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Theorem 8 In the sense of C1 norm, the numerical solution ũn(y, t) converges to the true solution
u(y, t).

Proof. Noting that

‖u− ũn‖C1(Ω) =
∥∥∥L−1(Lu− Lũn)

∥∥∥
C1(Ω)

≤
∥∥∥L−1

∥∥∥ · ‖Lu− Lũn‖L1(Ω)

From Theorem2 and Theorem 6, we can get that ‖u− ũn‖C1(Ω) ≤
∥∥L−1

∥∥ · ε < ε.

5 Numerical examples

In this section, we will give two examples to demonstrate the effectiveness of our theoretical analysis.
Examples of different values of α are discussed, different values of the number of grids are showed
and their true solutions are available for comparison in the literature. Our numerical is computed by
Mathematics 11 software and all calculations run on a lenovo computer with Intel i5-5200U, 2.20 GHz
CPU and 8GB RAM.

Smooth Process Considering the base of our method is integer order polynomial, when the exact

solution contains the fractional terms tα, we can do some transformation to solve. Let t = ρ
2
α , then

ρ = t
α
2 , the new exact solution is v(y, ρ) = y2(1− y)2ρ2. Denoting the left end term of Eq.(9) as Lu(y, t)

and the right end term of Eq.(9) as f(y, t), then the Eq.(9) becomes:

Lv(y, ρ) = f(y, ρ
2
α ), (13)

using our method to solve the new Eq.(13) obtaining the numerical solution vn(y, ρ), then un(y, t) =
vn(y, t

α
2 ). We define this process as the smooth process of the solution.

Example 1 Consider the following equation from Reference [14]:

∂

∂t
u(y, t)− 1

Re

∂α

∂|y|α u(y, t) =
1

Re

tα

2 cos(πα2 )
(

2

Γ (3− α)
(y2−α + (1− y)2−α)− 12

Γ (4− α)
(y3−α+

(1− y)3−α) +
24

Γ (5− α)
(y4−α + (1− y)4−α)) + αtα−1y2(1− y)2,

‘ (14)

with

u(y, 0) = 0, 0 ≤ y ≤ 1,

u(0, t) = u(1, t) = 0, t > 0, 1 < α ≤ 2.
(15)

In the paper [14], it is shown that the exact solution of Eq.(14) and Eq.(15) is u(y, t) = y2(1− y)2tα.
Using the smooth process, we get the following experimental results. First, Table 1 shows the comparison
between the results of the non-smooth process and the smooth process. It shows the effectiveness of
smooth processes. Figure 1 (a) and (b) compare the numerical and exact solution for α = 1.4 and
α = 1.7 with N=5 in our method respectively. We calculate the approximate solution at T = 2.0, α =
1.6, Re = 5, and give numerical solutions for different values of y, meanwhile compare them with
Reference [14]. The numerical results are shown in Table 2. Table 3 shows the absolute errors of our
method at T = 2.0, Re = 5 with different values of α and the different numbers of grids, it shows that
the more accurate approximate solution can be obtained by using the proposed method with the less
number grids.

Example 2 Consider the following equation of the Eq.(1):

f(y, t) =
1

Re

t2 + tα

2 cos(πα2 )
(

1

Γ (2− α)
(y1−α + (1− y)1−α)− 2

Γ (3− α)
(y2−α + (1− y)2−α))

+ (2t+ αtα−1)y(1− y),

‘ (16)
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(a) α = 1.4, Re=5
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u(y, 2)

un(y, 2)

(b) α = 1.7, Re=5

Fig. 1: Numerical and exact solutions for Eq.(14), when α = 1.4, 1.7, t = 2, Re = 5, y ∈ [0, 1].

Table 1: Absolute errors E in Example 1 at α = 5
3 , t = 2.0, Re = 5, N = 5

y Exact solute u smooth uN non-smooth Errors smooth Errors error
0.1 0.0257158970 0.0257158970 3.14808 × 10−4 3.46945 × 10−18

0.3 0.1400087728 0.1400087728 7.48720 × 10−4 2.77556 × 10−17

0.5 0.1984251315 0.1984251315 9.06256 × 10−4 5.55112 × 10−17

0.7 0.1400087728 0.1400087728 7.48720 × 10−4 8.32667 × 10−17

0.9 0.0257158970 0.0257158970 3.14808 × 10−4 1.38778 × 10−17

Table 2: Numerical and exact solutions of Example 1, when N = 5, α = 1.6, t = 2.0, Re = 5

y uExact uOurSmooth Ref [15] Absolute error
0.1 0.024554608 0.024554608 3.68931 × E−6 3.46945 × E−17

0.3 0.133686201 0.133686201 5.40072 × E−6 8.32667 × E−17

0.5 0.189464571 0.189464571 2.02411 × E−6 8.32667 × E−17

0.7 0.133686201 0.133686201 5.92651 × E−6 2.77556 × E−17

0.9 0.024554608 0.024554608 1.70567 × E−6 5.20417 × E−17
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Table 3: Max absolute errors E in Example 1 at t = 2.0, Re = 5

n α = 1.1 α = 1.3 α = 1.5 α = 1.7 α = 1.9
2 5.54030 × 10−3 6.95651 × 10−3 8.72048 × 10−2 1.09855 × 10−2 1.40833 × 10−2

3 1.35456 × 10−4 9.10695 × 10−5 1.92272 × 10−4 2.23553 × 10−4 3.02558 × 10−4

4 1.40363 × 10−15 3.21556 × 10−16 2.28002 × 10−16 1.66599 × 10−16 5.53226 × 10−16

5 8.96865 × 10−16 4.84510 × 10−16 1.77189 × 10−16 2.15629 × 10−17 3.41824 × 10−16

6 8.68382 × 10−16 1.51252 × 10−16 2.92916 × 10−16 1.63766 × 10−16 2.69174 × 10−16

Table 4: Absolute errors E in Example 2 at α = 5
3 , t = 2.0, Re = 5, N = 5

y Exact solute u smooth uN non-smooth Errors smooth Errors error
0.1 0.64573219 0.64571560 4.46542 × 10−5 1.65856 × 10−5

0.3 1.50670844 1.50666925 1.07371 × 10−4 3.91946 × 10−5

0.5 1.79370053 1.79365306 1.30029 × 10−4 4.74696 × 10−5

0.7 1.50670844 1.50666925 1.07371 × 10−4 3.91946 × 10−5

0.9 0.64573219 0.64571560 4.46542 × 10−5 1.65856 × 10−5

Table 5: Max absolute errors E in Example 2 at t = 2.0, Re = 5, N = 5

n α = 1.2 α = 1.4 α = 1.6 α = 1.8
3 3.71443 × 10−1 2.34533 × 10−2 7.18462 × 10−3 2.08833 × 10−1

4 2.01559 × 10−4 5.98739 × 10−5 9.35679 × 10−5 3.87268 × 10−5

5 6.97333 × 10−5 3.46344 × 10−5 5.71383 × 10−5 2.34353 × 10−5

10 5.58921 × 10−6 4.48243 × 10−6 1.02532 × 10−5 5.22770 × 10−6

with

u(y, 0) = 0, 0 ≤ y ≤ 1,

u(0, t) = u(1, t) = 0, t > 0, 1 < α ≤ 2.
(17)

Its exact solution is u(y, t) = y(1 − y)(t2 + tα). We consider the two process for the time order,
firstly we use our method to solve the Eq.(16) without discussing the smooth process, and get some
numerical results. On the other hand, we use our method and the smooth process to solve the Eq.(16),
then get some numerical results. The numerical results for α = 5

3 , T = 2, Re = 5, N = 5 are presented
in Table 4. We can find that the order of absolute errors is 4 or 5, meanwhile the numerical results
of using the smooth process is better than the other one, but is not good as the Example 1. Table 5
shows that the max absolute errors obtained by the method with the Smooth process for different α at
y ∈ [0, 1], t = 2, Re = 5. It can be found that with the number of grids increasing, the error reducing
at the different value of α.

6 Conclusion

We proposed a novel basis based on reproducing kernel theory in the spline space, then through using
the collocation method, we advance a new numerical method for solving the Riesz space fractional
Navier-Stokes equations. On this basis, we analyze the stability of the method, and we solve the system
of equations by means of ε−approximate solution theory. Finally, the numerical examples indicate the
feasibility and effectiveness of the method.
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