References
Barberán, A., Bates, S.T., Casamayor, E.O. & Fierer, N. (2012). Using network analysis to explore co-occurrence patterns in soil microbial communities. The ISME Journal , 6, 343-351.
Bardgett, R.D. & van der Putten, W.H. (2014). Belowground biodiversity and ecosystem functioning. Nature , 515, 505-511.
Bastian, M., Heymann, S. & Jacomy, M. (2009). Gephi: an open source software for exploring and manipulating networks. In: Proceedings of the international AAAI conference on web and social media , pp. 361-362.
Chen, B., Jiao, S., Luo, S., Ma, B., Qi, W., Cao, C. et al.(2021). High soil pH enhances the network interactions among bacterial and archaeal microbiota in alpine grasslands of the Tibetan Plateau.Environ Microbiol , 23, 464-477.
Chen, Y., Wang, J., Yang, N., Wen, Z., Sun, X., Chai, Y. et al.(2018). Wheat microbiome bacteria can reduce virulence of a plant pathogenic fungus by altering histone acetylation. Nature Communications , 9, 3429.
Chu, H., Gao, G.-F., Ma, Y., Fan, K. & Delgado-Baquerizo, M. (2020). Soil Microbial Biogeography in a Changing World: Recent Advances and Future Perspectives. mSystems , 5, e00803-00819.
Cobian, G.M., Egan, C.P. & Amend, A.S. (2019). Plant–microbe specificity varies as a function of elevation. The ISME Journal , 13, 2778-2788.
Dormann, C.F., Fründ, J., Blüthgen, N. & Gruber, B.J.T.O.E.J. (2009). Indices, graphs and null models: analyzing bipartite ecological networks. The Open Ecology Journal , 2, 7-24.
Douglas, G.M., Maffei, V.J., Zaneveld, J., Yurgel, S.N., Brown, J.R., Taylor, C.M. et al. (2019). PICRUSt2: An improved and extensible approach for metagenome inference. bioRxiv , 672295.
Eida, A.A., Ziegler, M., Lafi, F.F., Michell, C.T., Voolstra, C.R., Hirt, H. et al. (2018). Desert plant bacteria reveal host influence and beneficial plant growth properties. PLOS ONE , 13, e0208223.
Feng, K., Zhang, Y., He, Z., Ning, D. & Deng, Y. (2019). Interdomain ecological networks between plants and microbes. Molecular ecology resources , 19, 1565-1577.
Fuhrman, J.A., Steele, J.A., Hewson, I., Schwalbach, M.S., Brown, M.V., Green, J.L. et al. (2008). A latitudinal diversity gradient in planktonic marine bacteria. PNAS , 105, 7774-7778.
Guimera, R., Amaral, L.A.N.J.J.o.S.M.T. & Experiment (2005). Cartography of complex networks: modules and universal roles.Journal of Statistical Mechanics Theory and Experiment , 2005, P02001.
Huang, R., McGrath, S.P., Hirsch, P.R., Clark, I.M., Storkey, J., Wu, L.et al. (2019). Plant-microbe networks in soil are weakened by century-long use of inorganic fertilizers. Microb Biotechnol , 12, 1464-1475.
Jacomy, M., Venturini, T., Heymann, S. & Bastian, M. (2014). ForceAtlas2, a Continuous Graph Layout Algorithm for Handy Network Visualization Designed for the Gephi Software. PLOS ONE , 9, e98679.
Jing, X., Sanders, N.J., Shi, Y., Chu, H., Classen, A.T., Zhao, K.et al. (2015). The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate.Nature Communications , 6, 8159.
Lane, D.J., Pace, B., Olsen, G.J., Stahl, D.A., Sogin, M.L. & Pace, N.R. (1985). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A , 82, 6955-6959.
Langfelder, P. & Horvath, S. (2012). Fast R Functions for Robust Correlations and Hierarchical Clustering. J Stat Softw , 46, i11.
Ma, B., Wang, H., Dsouza, M., Lou, J., He, Y., Dai, Z. et al.(2016). Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in eastern China.ISME J , 10, 1891-1901.
Ni, Y., Yang, T., Ma, Y., Zhang, K., Soltis, P.S., Soltis, D.E. et al. (2021). Soil pH determines bacterial distribution and assembly processes in natural mountain forests of eastern China. Global Ecology and Biogeography , 30, 2164-2177.
Nuske, S.J., Anslan, S., Tedersoo, L., Bonner, M.T.L., Congdon, B.C. & Abell, S.E. (2018). The endangered northern bettong, Bettongia tropica, performs a unique and potentially irreplaceable dispersal function for ectomycorrhizal truffle fungi. Molecular Ecology , 27, 4960-4971.
Olesen, J.M., Bascompte, J., Dupont, Y.L. & Jordano, P. (2007). The modularity of pollination networks. PNAS , 104, 19891-19896.
Peay, K.G., Kennedy, P.G. & Talbot, J.M. (2016). Dimensions of biodiversity in the Earth mycobiome. Nature Reviews Microbiology , 14, 434-447.
Polme, S., Bahram, M., Jacquemyn, H., Kennedy, P., Kohout, P., Moora, M.et al. (2018). Host preference and network properties in biotrophic plant-fungal associations. New Phytol , 217, 1230-1239.
Põlme, S., Bahram, M., Jacquemyn, H., Kennedy, P., Kohout, P., Moora, M.et al. (2018). Host preference and network properties in biotrophic plant–fungal associations. New Phytol , 217, 1230-1239.
Richards, L.A., Dyer, L.A., Forister, M.L., Smilanich, A.M., Dodson, C.D., Leonard, M.D. et al. (2015). Phytochemical diversity drives plant–insect community diversity. PNAS , 112, 10973-10978.
Rousk, J., Bååth, E., Brookes, P.C., Lauber, C.L., Lozupone, C., Caporaso, J.G. et al. (2010). Soil bacterial and fungal communities across a pH gradient in an arable soil. The ISME Journal , 4, 1340-1351.
Seaton, F.M., Reinsch, S., Goodall, T., White, N., Jones, D.L., Griffiths, R.I. et al. (2022). Long-Term Drought and Warming Alter Soil Bacterial and Fungal Communities in an Upland Heathland.Ecosystems , 25, 1279-1294.
Seidl, V., Song, L., Lindquist, E., Gruber, S., Koptchinskiy, A., Zeilinger, S. et al. (2009). Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC Genomics , 10, 567.
Shen, C., Wang, J., He, J.-Z., Yu, F.-H., Ge, Y. & Cann, I. (2021). Plant Diversity Enhances Soil Fungal Diversity and Microbial Resistance to Plant Invasion. Applied and Environmental Microbiology , 87, e00251-00221.
Shen, C., Wang, J., Jing, Z., Qiao, N.-H., Xiong, C. & Ge, Y. (2022). Plant diversity enhances soil fungal network stability indirectly through the increase of soil carbon and fungal keystone taxa richness.Science of The Total Environment , 818, 151737.
Shi, Y., Fan, K., Li, Y., Yang, T., He, J.S. & Chu, H. (2019). Archaea Enhance the Robustness of Microbial Co‐occurrence Networks in Tibetan Plateau Soils. Soil Science Society of America Journal , 83, 1093-1099.
Svetnik, V., Liaw, A., Tong, C., Culberson, J.C., Sheridan, R.P. & Feuston, B.P. (2003). Random Forest:  A Classification and Regression Tool for Compound Classification and QSAR Modeling. Journal of Chemical Information and Computer Sciences , 43, 1947-1958.
Toju, H., Guimaraes, P.R., Jr., Olesen, J.M. & Thompson, J.N. (2015). Below-ground plant-fungus network topology is not congruent with above-ground plant-animal network topology. Sci Adv , 1, e1500291.
Toju, H., Yamamoto, S., Sato, H., Tanabe, A.S., Gilbert, G.S. & Kadowaki, K. (2013). Community composition of root-associated fungi in a Quercus-dominated temperate forest: “codominance” of mycorrhizal and root-endophytic fungi. Ecology and Evolution , 3, 1281-1293.
Wardle, D.A., Bardgett, R.D., Klironomos, J.N., Setälä, H., van der Putten, W.H. & Wall, D.H. (2004). Ecological Linkages Between Aboveground and Belowground Biota. Science, 1629-1633.
Ware, I.M., Van Nuland, M.E., Yang, Z.K., Schadt, C.W., Schweitzer, J.A. & Bailey, J.K. (2021). Climate-driven divergence in plant-microbiome interactions generates range-wide variation in bud break phenology.Communications Biology , 4, 748.
Winkler, D., Lubetkin, K., Carrell, A., Jabis, M., Yang, Y. & Kueppers, L. (2019). Responses of alpine plant communities to climate warming. pp. 297-346.
Xue, P., Minasny, B. & McBratney, A.B. (2022). Land-use affects soil microbial co-occurrence networks and their putative functions.Applied Soil Ecology , 169, 104184.
Yang, T., Adams, J.M., Shi, Y., He, J.S., Jing, X., Chen, L. et al. (2017). Soil fungal diversity in natural grasslands of the Tibetan Plateau: associations with plant diversity and productivity. New Phytol , 215, 756-765.
Yang, T., Shi, Y., Zhu, J., Zhao, C., Wang, J., Liu, Z. et al.(2021a). The spatial variation of soil bacterial community assembly processes affects the accuracy of source tracking in ten major Chinese cities. Science China. Life sciences , 64, 1546-1559.
Yang, T., Tedersoo, L., Liu, X., Gao, G.-F., Dong, K., Adams, J.M.et al. (2022a). Fungi stabilize multi-kingdom community in a high elevation timberline ecosystem. iMeta , 1, e49.
Yang, T., Tedersoo, L., Soltis, P.S., Soltis, D.E., Gilbert, J.A., Sun, M. et al. (2019). Phylogenetic imprint of woody plants on the soil mycobiome in natural mountain forests of eastern China. The ISME Journal , 13, 686-697.
Yang, T., Tedersoo, L., Soltis, P.S., Soltis, D.E., Sun, M., Ma, Y.et al. (2022b). Plant and fungal species interactions differ between aboveground and belowground habitats in mountain forests of eastern China. Science China Life Sciences .
Yang, Y., Shi, Y., Kerfahi, D., Ogwu, M.C., Wang, J., Dong, K. et al. (2021b). Elevation-related climate trends dominate fungal co-occurrence network structure and the abundance of keystone taxa on Mt. Norikura, Japan. Sci Total Environ , 799, 149368.
Yao, H., Sun, X., He, C., Maitra, P., Li, X.-C. & Guo, L.-D. (2019). Phyllosphere epiphytic and endophytic fungal community and network structures differ in a tropical mangrove ecosystem. Microbiome , 7, 57.
Yuan, M.M., Guo, X., Wu, L., Zhang, Y., Xiao, N., Ning, D. et al.(2021). Climate warming enhances microbial network complexity and stability. Nature Climate Change , 11, 343-348.
Zhu, F., Fang, Y., Wang, Z., Wang, P., Yang, K., Xiao, L. et al.(2022). Salicylic acid remodeling of the rhizosphere microbiome induces watermelon root resistance against Fusarium oxysporum f. sp. niveum infection. Fontiers in Microbiology , 13.