References
Abatzoglou, J. T. and Kolden, C. A. Climate change in western US
deserts: potential for increased wildfire and invasive annual grasses.Rangeland Ecology and Management 64 , 471–478 (2011).
Albano, C. M., McGwire, K. C., Hausner, M. B., McEvoy, D. J., Morton, C.
G. and Huntington, J. L. Drought sensitivity and trends of riparian
vegetation vigor in Nevada, USA (1985–2018). Remote Sensing12 :1362 (2020).
Alexander, J. M., Diez, J. M. and Levine, J. M. Novel competitors shape
species’ responses to climate change. Nature 525 ,
515–518 (2015).
Barry, R. G. Mountain, weather, and climate, 3rdedition. Cambridge University Press: Cambridge, UK 52-55, 412-415,
(2008).
Behle, W. H., Bushman, J. B. and Clayton, M. Distributional data on
uncommon birds in Utah and adjacent states. The Wilson Bulletin75 , 450–456 (1963).
Bolger, D. T., Patten, M. A. & Bostock, D. C. Avian reproductive
failure in response to an extreme climatic event. Oecologia142 , 398–406 (2005).
Boyte, S. P., Wylie, B. K. and Major, D. J. Cheatgrass percent cover
change: comparing recent estimates to climate change−driven predictions
in the northern Great Basin. Rangeland Ecology and Management69 , 265–279 (2016).
Bradley, B. A. and Mustard, J. F. Identifying land cover variability
distinct from land cover change: cheatgrass in the Great Basin.Remote Sensing of Environment 94 , 204–213 (2005).
Brussard, P. F., Charlet, D. A. and Dobkin, D. S. Great Basin – Mojave
Desert Region. in Status and trends of the nation’s biological
resources (eds. Mac, M. J., Opler, P. A., Puckett Haecker, C. E. and
Doran, P. D.) p. 505–529 (U.S. Department of the Interior, U.S.
Geological Survey, Reston, Virginia, 1998).
Campos‐Cerqueira, M., Arendt, W. J., Wunderle, J. M. and Aide, T. M.
Have bird distributions shifted along an elevational gradient on a
tropical mountain? Ecology and Evolution 7 , 9914–9924
(2017).
Chambers, J. C. Climate change and the Great Basin. in
Collaborative management and research in the Great Basin -examining the issues and developing a framework for action (eds.
Chambers, J. C., Devoe, N., and Evenden, A.) p. 29-32 (Fort Collins, CO:
U.S. Department of Agriculture, Forest Service, Rocky Mountain Research
Station, 2008).
Chen, I., Hill, J. K., Ohlemüller, R., Roy, D. B. and Thomas, C. D.
Rapid range shifts of species of climate warming. Science333 , 1024–1026 (2011).
Cline, M. H., Strong, A. M., Sillett, T. S., Rodenhouse, N. L. and
Holmes, R. T. Correlates and consequences of breeding dispersal in a
migratory songbird. The Auk 130 , 742–752 (2013).
Clucas, B. and Marzluff, J. M. A cross-continental look at the patterns
of avian species diversity and composition across an urbanization
gradient. Wildlife Research 42 , 554–562 (2015).
Curtis, J. A., Flint, L. E., Flint, A. L., Lundquist, J. D., Hudgens, B.
Boydston, E. E. and Young, J. K. Incorporating cold-air pooling
into downscaled climate models increases potential refugia for
snow-dependent species within the Sierra Nevada ecoregion, CA.PLoS ONE 9 , e106984 (2014).
DeLuca, W. V. and King, D. I. Montane birds shift downslope despite
recent warming in the northern Appalachian Mountains. Journal of
Ornithology 158 , 493–505 (2017).
Deutsch, C. A., Tewksbury, J. J, Huey, R. B., Sheldon, K. S., Ghalambor,
C. K, Haak, D. C. and Martin, P. R. Impacts of climate warming on
terrestrial ectotherms across latitude. Proceedings of the
National Academy of Sciences 105 , 6668–6672 (2008).
Dwire, K. A., Mellmann-Brown, S. and Gurrieri, J. T. Potential effects
of climate change on riparian areas, wetlands, and groundwater-dependent
ecosystems in the Blue Mountains, Oregon, USA. Climate Services10 , 44–52 (2018).
Fahrig, L. and Rytwinski, T. Effects of roads on animal abundance: an
empirical review and synthesis. Ecology and Society 14 ,
21 (2009).
Fensenmyer, K. A., Dauwalter, D. C., Evans, C. and Allai, T. Livestock
management, beaver, and climate influences on riparian vegetation in a
semi-arid landscape. PLoS ONE 13 , e0208928.
https://doi.org/10.1371/journal.pone.0208928 (2018).
Fleishman, E. Detections of breeding birds in the Wassuk Range,
Sweetwater Mountains, and east slope of the Sierra Nevada, Nevada and
California. 2nd Edition. Fort Collins, CO, USA: Forest Service Research
Data Archive. https://doi.org/10.2737/RDS-2015-0031-2 (2019a).
Fleishman, E. Detections of breeding birds in the Shoshone, Toiyabe,
Toquima, and Monitor ranges, Nevada (4th Edition).
Fort Collins, CO: Forest Service Research Data Archive. Updated 08
January 2020. https://doi.org/10.2737/RDS-2011-0002-4 (2019b).
Fleishman, E. and Murphy, D. D. Minimizing uncertainty in interpreting
responses of butterflies to climate change. in Ecological
consequences of climate change: mechanisms, conservation, and
management (eds. Beever, E. and Belant, J.) p. 55–66 (Taylor and
Francis, London, 2012).
Freeman, B. G. and Class Freeman, A. M. Rapid upslope shifts in New
Guinean birds illustrate strong distributional responses of tropical
montane species to global warming. Proceedings of the National
Academy of Sciences 111 , 4490–4494 (2014).
Freeman, B. G. Thermal tolerances to cold do not predict upper
elevational limits in New Guinean montane birds. Diversity and
Distributions 22 , 309–317 (2016).
Freeman, B. G., Lee‐Yaw, J. A., Sunday, J. M. and Hargreaves, A. L.
Expanding, shifting and shrinking: the impact of global warming on
species’ elevational distributions. Global Ecology and
Biogeography 27 , 1268–1276 (2018).
Frey, S. J. K., Hadley, A. S. and Betts, M. G. Microclimate predicts
within-season distribution dynamics of montane forest birds.Diversity and Distributions 22 , 944–959 (2016).
Friedman, A. R., Hwang, Y.-T., Chiang, J. C. H. & Frierson, D. M. W.
Interhemispheric temperature asymmetry over the twentieth century and in
future projections. Journal of Climate 26 , 5419–5433
(2013).
Gelman, A. and Hill, J. Data analysis using regression and
multilevel/hierarchical models. (Cambridge University Press, Cambridge,
UK, 2007).
Gow, E. A. and Stutchbury, B. J. M. Within-season nesting dispersal and
molt dispersal are linked to habitat shifts in a neotropical migratory
songbird. Wilson Journal of Ornithology 125 , 696–708
(2013).
Greenwood, P. J. and Harvey, P. H. The natal and breeding dispersal of
birds. Annual Review of Ecology and Systematics 13 ,
1–21 (1982).
Hobbins, M. T. The variability of ASCE standardized reference
evapotranspiration: a rigorous, CONUS-wide decomposition and
attribution. Transactions of the American Society of Agricultural
and Biological Engineers 59 , 561–576 (2016).
Iknayan, K. J. and Beissinger, S. R. In transition: avian biogeographic
responses to a century of climate change across desert biomes.Global Change Biology 26 , 3268–3284 (2020).
Janzen, D. H. Why mountain passes are higher in the tropics. The
American Naturalist 101 , 233–249 (1967).
Kellner, K. A wrapper around ‘rjags’ to streamline ‘JAGS’ analyses.
https://github.com/kenkellner/jagsUI (2019).
Khaliq, I., Hof, C., Prinzinger, R., Böhning-Gaese, K. and Pfenninger,
M. Global variation in thermal tolerances and vulnerability of
endotherms to climate change. Proceedings of the Royal Society B:
Biological Sciences 281 , 20141097 (2014).
Kirchman, J. and Keuren, A. Altitudinal range shifts of birds at the
southern periphery of the Boreal Forest: 40 years of change in the
adirondack mountains. The Wilson Journal of Ornithology129 , 742–753 (2017).
Kozlovsky, D. Y., Branch, C. L., Pitera, A. M. and Pravosudov, V. V.
Fluctuations in annual climatic extremes are associated with
reproductive variation in resident mountain chickadees. Royal
Society Open Science 5, 171604 (2018).
Lenoir, J., Gegout J. C., Marquet, P. A., de Ruffray, P. and Brisse, H.
A significant upward shift in plant species optimum elevation during the
20th century. Science 320, 1768-1771
(2008).
Lenoir, J., Gegout, J. C., Guisan, A., Vittoz, P., Wohlegemuth, T.,
Zimmermann, N., Dullinger, S., Pauli, H., Willner, W. and Svenning, J.
C. Going against the flow: potential mechanisms for unexpected
downslope range shifts in a warming climate. Ecography33 , 295–303 (2010).
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, A.
J. and Langtimm, C. A. Estimating site occupancy rates when
detection probabilities are less than one. Ecology 83 ,
2248–2255 (2002).
Mamantov, M. A., Gibson‐Reinemer, D. K., Linck, E. B. and Sheldon, K. S.
Climate-driven range shifts of montane species vary with elevation.Global Ecology and Biogeography 30 , 784-794 (2021).
Martin, T. E. Abiotic vs. biotic influences on habitat selection of
coexisting species: climate change impacts? Ecology 82 ,
175–188 (2001).
McCain, C., Szewczyk, T. and Knight, K. B. Population variability
complicates the accurate detection of climate change responses.Global Change Biology 22 , 2081–2093 (2016).
McFarland, T. M. and van Riper, C. Use of normalized difference
vegetation index (NDVI) habitat models to predict breeding birds on the
San Pedro River, Arizona. U.S. Geological Survey Open-file Report
2013-1100 42 p. (2013).
McNab, B. K. Metabolism: ecology shapes bird bioenergetics.Nature 426 , 620–621 (2003).
Messmer, D. J., Alisauskas, R. T., Pöysä, H., Runko, P. and Clark, R. G.
Plasticity in timing of avian breeding in response to spring temperature
differs between early and late nesting species. Scientific
Reports 11 , 5410 (2021). doi: 10.1038/s41598-021-84160-6.
Morison, J. I. L. and Morecroft, M. D. Plant Growth and Climate
Change , Chapter 4: Temperature and plant development: phenology and
seasonality. (John Wiley and Sons, 2008).
Moritz, C., Patton, J. L., Conroy, C. J., Parra, J. L., White, G. C. and
Beissinger, S. R. Impact of a century of climate change on small-mammal
communities in Yosemite National Park, USA. Science 322 ,
261–264 (2008).
Northrup, J. M., Rivers, J. W., Yang, Z. and Betts, M. G. Synergistic
effects of climate and land-use change influence broad-scale avian
population declines. Global Change Biology 25 ,
1561–1575 (2019).
Parmesan, C., Gaines, S., Gonzalez, L., Kaufman, D., Kingsolver, J.,
Peterson, A. and Sagarin, R. Empirical perspectives on species
borders: from traditional biogeography to global change. Oikos108 , 58–75 (2005).
Pecl, G. T. et al. Biodiversity redistribution under climate
change: impacts on ecosystems and human well-being. Science355 , 1389 (2017).
Pepin, N. et al. Elevation-dependent warming in mountain regions
of the world. Nature Climate Change 5 , 424–430 (2015).
Perry, L. G., Andersen, D. C., Reynolds, L. V., Nelson, S. M. and
Shafroth, P. B. Vulnerability of riparian ecosystems to elevated
CO2 and climate change in arid and semiarid western
North America. Global Change Biology 18 , 821–842
(2012).
Petersky, R. and Harpold, A. Now you see it, now you don’t: a case study
of ephemeral snowpack and soil moisture response in the Great Basin,
USA. Hydrology and Earth System Sciences 22 , 4891–4906
(2018).
Plummer, M. JAGS: a program for analysis of Bayesian graphical models
using Gibbs sampling. Proceedings of the 3rdInternational Workshop on Distributed Statistical Computing: March
20-22, 2003 Vienna, Austria.
Poff, B., Koestner, K. A., Neary, D. G. and V. Henderson. Threats to
riparian ecosystems in western North America: an analysis of existing
literature. Journal of the American Water Resources Association ,
JAWRA-10-0076-P. https://doi.org/10.1111/j.1752-1688.2011.00571.x
(2011).
Pollock, H. S., Brawn, J. D. and Cheviron, Z. A. Heat tolerances of
temperate and tropical birds and their implications for susceptibility
to climate warming. Functional Ecology 35 , 93–104
(2021).
R Development Core Team. R: A language and environment for statistical
computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN
3-900051-07-0, http://www.R-project.org. (2020).
Riddell, E. A., Iknayan, K. J., Wolf, B. O., Sinervo, B. and Beissinger,
S. R. Cooling requirements fueled the collapse of a desert bird
community from climate change. Proceedings of the National Academy
of Sciences 116 , 21609–21615 (2019).
Royle, J. A. and Nichols, J. D. Estimating abundance from repeated
presence-absence data or point counts. Ecology 84 ,
777–790 (2003).
Rupic, M., Wetzell, L., Marra, J. J. and Balwani, S. 2014-2016 El Niño
assessment report: an overview of the impacts of the 2014-2016 El Niño
in the U.S-Affiliated Pacific Islands (USAPI). NOAA (2018).
Rupp, D. E., Shafer, S. L., Daly, C., Jones, J. A. and Frey, S. J. K.
Temperature gradients and inversions in a forested Cascade Range basin:
synoptic- to local-scale controls. Journal of Geophysical
Research: Atmospheres 125 , e2020JD032686 (2020). doi:
10.1029/2020JD032686.
Seto, K. C., Fleishman, E., Fay, J. P. and Betrus, C. J. Linking spatial
patterns of bird and butterfly species richness with Landsat TM derived
NDVI. International Journal of Remote Sensing 25 ,
4309–4324 (2004).
Snyder, K. A., Evers, L., Chambers, J. C., Bradford, J. B. and Loik, M.
E. Effects of changing climate on the hydrological cycle in cold
desert ecosystems of the Great Basin and Columbia Plateau.Rangeland Ecology and Management 72 , 1–12 (2019).
Socolar, J. B., Epanchin, P. N., Beissinger, S. R. and Tingley, M. W.
Phenological shifts conserve thermal niches in North American birds and
reshape expectations for climate-driven range shifts. Proceedings
of the National Academy of Sciences 14 , 12976–12981 (2017).
Suggitt, A. J., Gillingham, P. K, Hill, J. K, Huntley, B., Kunin, W. E.,
Roy, D. B. and Thomas, C. D. Habitat microclimates drive fine‐scale
variation in extreme temperatures. Oikos 120, 1-8
(2011).
Sundqvist, M. K., Sanders, N. J. and Wardle, D. A. Community and
ecosystem responses to elevational gradients: processes, mechanisms, and
insights for global change. Annual Review of Ecology, Evolution,
and Systematics 44 , 261–280 (2013).
Sparks, T. H. and Tryjanowski, P. The detection of climate impacts: some
methodological considerations. International Journal of
Climatology 25 , 271–277 (2005).
Tang, G. and Arnone, J. A. Trends in surface air temperature and
temperature extremes in the Great Basin during the 20th century from
ground-based observations. Journal of Geophysical Research:
Atmospheres 118 , 3579–3589 (2013).
Theobald, W. F. Global Tourism . (Routledge, 2012).
Thomas, C. D. and Lennon, J. J. Birds extend their ranges northwards.Nature 399 , 213–213 (1999).
Tingley, M. and Beissinger, S. Detecting range shifts from historical
species occurrences: new perspectives on old data. Trends in
Ecology and Evolution 24 , 625–33 (2009).
Tingley, M. W., Koo, M. S., Moritz, C., Rush, A. C. and Beissinger, S.
R. The push and pull of climate change causes heterogeneous shifts in
avian elevational ranges. Global Change Biology 18 ,
3279–3290 (2012).
Van Tatenhove, A., Filiberti, E., Sillett, T. S., Rodenhouse, N. and
Hallworth, M. Climate-related distribution shifts of migratory songbirds
and sciurids in the White Mountain National Forest. Forests10 , 84 (2019).
Visser, M. E., Gienapp, P., Husby, A., Morrisey, M., de la Hera, I.,
Pulido, F. and Both, C. Effects of spring temperatures on the strength
of selection on timing of reproduction in a long-distance migratory
bird. PLoS Biology , 13 , e1002120 (2015). doi:
10.1371/journal.pbio.1002120.
Wang, J., Rich, P., Price, K. and Kettle, W. Relations between NDVI and
tree productivity in the central Great Plains. International
Journal of Remote Sensing 25 , 3127–3138 (2004).
Whitehouse, M. J., Harrison, N. M., Mackenzie, J. and Hinsley, S. A.
2013. Preferred habitat of breeding birds may be compromised by climate
change: unexpected effects of an exceptionally cold, wet spring.PLoS ONE 8 , e75536 (2013). doi:
10.1371/journal.pone.0075536.
Williamson, M. A. et al. Fire, livestock grazing, topography, and
precipitation affect occurrence and prevalence of cheatgrass
(Bromus tectorum ) in the central Great Basin, USA.Biological Invasions 22 , 663–680 (2020).
Xue, T., Tang, G., Sun, L., Wu, Y., Liu, Y. and Dou, Y. Long-term trends
in precipitation and precipitation extremes and underlying mechanisms in
the U.S. Great Basin during 1951-2013. Journal of Geophysical
Research: Atmospheres 122 , 6152-6169 (2017).
Zuckerberg, B., Ribic, C. A. and McCauley, L. A. Effects of temperature
and precipitation on grassland bird nesting success as mediated by patch
size. Conservation Biology 32 , 872–882 (2018).
Table 1. Elevational shifts in occupancy of breeding birds in
the western Great Basin. Species reported are those for which the best
model included the interaction of year and elevation (interaction),
>90% of the posterior density of the interaction was above
or below zero, and simulations indicated that the interaction was likely
not a product of stochasticity (see Supporting Information, Tables 1 and
3).