References
Abatzoglou, J. T. and Kolden, C. A. Climate change in western US deserts: potential for increased wildfire and invasive annual grasses.Rangeland Ecology and Management 64 , 471–478 (2011).
Albano, C. M., McGwire, K. C., Hausner, M. B., McEvoy, D. J., Morton, C. G. and Huntington, J. L. Drought sensitivity and trends of riparian vegetation vigor in Nevada, USA (1985–2018). Remote Sensing12 :1362 (2020).
Alexander, J. M., Diez, J. M. and Levine, J. M. Novel competitors shape species’ responses to climate change. Nature 525 , 515–518 (2015).
Barry, R. G. Mountain, weather, and climate, 3rdedition. Cambridge University Press: Cambridge, UK 52-55, 412-415, (2008).
Behle, W. H., Bushman, J. B. and Clayton, M. Distributional data on uncommon birds in Utah and adjacent states. The Wilson Bulletin75 , 450–456 (1963).
Bolger, D. T., Patten, M. A. & Bostock, D. C. Avian reproductive failure in response to an extreme climatic event. Oecologia142 , 398–406 (2005).
Boyte, S. P., Wylie, B. K. and Major, D. J. Cheatgrass percent cover change: comparing recent estimates to climate change−driven predictions in the northern Great Basin. Rangeland Ecology and Management69 , 265–279 (2016).
Bradley, B. A. and Mustard, J. F. Identifying land cover variability distinct from land cover change: cheatgrass in the Great Basin.Remote Sensing of Environment 94 , 204–213 (2005).
Brussard, P. F., Charlet, D. A. and Dobkin, D. S. Great Basin – Mojave Desert Region. in Status and trends of the nation’s biological resources (eds. Mac, M. J., Opler, P. A., Puckett Haecker, C. E. and Doran, P. D.) p. 505–529 (U.S. Department of the Interior, U.S. Geological Survey, Reston, Virginia, 1998).
Campos‐Cerqueira, M., Arendt, W. J., Wunderle, J. M. and Aide, T. M. Have bird distributions shifted along an elevational gradient on a tropical mountain? Ecology and Evolution 7 , 9914–9924 (2017).
Chambers, J. C. Climate change and the Great Basin. in Collaborative management and research in the Great Basin -examining the issues and developing a framework for action (eds. Chambers, J. C., Devoe, N., and Evenden, A.) p. 29-32 (Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, 2008).
Chen, I., Hill, J. K., Ohlemüller, R., Roy, D. B. and Thomas, C. D. Rapid range shifts of species of climate warming. Science333 , 1024–1026 (2011).
Cline, M. H., Strong, A. M., Sillett, T. S., Rodenhouse, N. L. and Holmes, R. T. Correlates and consequences of breeding dispersal in a migratory songbird. The Auk 130 , 742–752 (2013).
Clucas, B. and Marzluff, J. M. A cross-continental look at the patterns of avian species diversity and composition across an urbanization gradient. Wildlife Research 42 , 554–562 (2015).
Curtis, J. A., Flint, L. E., Flint, A. L., Lundquist, J. D., Hudgens, B. Boydston, E. E. and Young, J. K. Incorporating cold-air pooling into downscaled climate models increases potential refugia for snow-dependent species within the Sierra Nevada ecoregion, CA.PLoS ONE 9 , e106984 (2014).
DeLuca, W. V. and King, D. I. Montane birds shift downslope despite recent warming in the northern Appalachian Mountains. Journal of Ornithology 158 , 493–505 (2017).
Deutsch, C. A., Tewksbury, J. J, Huey, R. B., Sheldon, K. S., Ghalambor, C. K, Haak, D. C. and Martin, P. R. Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences 105 , 6668–6672 (2008).
Dwire, K. A., Mellmann-Brown, S. and Gurrieri, J. T. Potential effects of climate change on riparian areas, wetlands, and groundwater-dependent ecosystems in the Blue Mountains, Oregon, USA. Climate Services10 , 44–52 (2018).
Fahrig, L. and Rytwinski, T. Effects of roads on animal abundance: an empirical review and synthesis. Ecology and Society 14 , 21 (2009).
Fensenmyer, K. A., Dauwalter, D. C., Evans, C. and Allai, T. Livestock management, beaver, and climate influences on riparian vegetation in a semi-arid landscape. PLoS ONE 13 , e0208928. https://doi.org/10.1371/journal.pone.0208928 (2018).
Fleishman, E. Detections of breeding birds in the Wassuk Range, Sweetwater Mountains, and east slope of the Sierra Nevada, Nevada and California. 2nd Edition. Fort Collins, CO, USA: Forest Service Research Data Archive. https://doi.org/10.2737/RDS-2015-0031-2 (2019a).
Fleishman, E. Detections of breeding birds in the Shoshone, Toiyabe, Toquima, and Monitor ranges, Nevada (4th Edition). Fort Collins, CO: Forest Service Research Data Archive. Updated 08 January 2020. https://doi.org/10.2737/RDS-2011-0002-4 (2019b).
Fleishman, E. and Murphy, D. D. Minimizing uncertainty in interpreting responses of butterflies to climate change. in Ecological consequences of climate change: mechanisms, conservation, and management (eds. Beever, E. and Belant, J.) p. 55–66 (Taylor and Francis, London, 2012).
Freeman, B. G. and Class Freeman, A. M. Rapid upslope shifts in New Guinean birds illustrate strong distributional responses of tropical montane species to global warming. Proceedings of the National Academy of Sciences 111 , 4490–4494 (2014).
Freeman, B. G. Thermal tolerances to cold do not predict upper elevational limits in New Guinean montane birds. Diversity and Distributions 22 , 309–317 (2016).
Freeman, B. G., Lee‐Yaw, J. A., Sunday, J. M. and Hargreaves, A. L. Expanding, shifting and shrinking: the impact of global warming on species’ elevational distributions. Global Ecology and Biogeography 27 , 1268–1276 (2018).
Frey, S. J. K., Hadley, A. S. and Betts, M. G. Microclimate predicts within-season distribution dynamics of montane forest birds.Diversity and Distributions 22 , 944–959 (2016).
Friedman, A. R., Hwang, Y.-T., Chiang, J. C. H. & Frierson, D. M. W. Interhemispheric temperature asymmetry over the twentieth century and in future projections. Journal of Climate 26 , 5419–5433 (2013).
Gelman, A. and Hill, J. Data analysis using regression and multilevel/hierarchical models. (Cambridge University Press, Cambridge, UK, 2007).
Gow, E. A. and Stutchbury, B. J. M. Within-season nesting dispersal and molt dispersal are linked to habitat shifts in a neotropical migratory songbird. Wilson Journal of Ornithology 125 , 696–708 (2013).
Greenwood, P. J. and Harvey, P. H. The natal and breeding dispersal of birds. Annual Review of Ecology and Systematics 13 , 1–21 (1982).
Hobbins, M. T. The variability of ASCE standardized reference evapotranspiration: a rigorous, CONUS-wide decomposition and attribution. Transactions of the American Society of Agricultural and Biological Engineers 59 , 561–576 (2016).
Iknayan, K. J. and Beissinger, S. R. In transition: avian biogeographic responses to a century of climate change across desert biomes.Global Change Biology 26 , 3268–3284 (2020).
Janzen, D. H. Why mountain passes are higher in the tropics. The American Naturalist 101 , 233–249 (1967).
Kellner, K. A wrapper around ‘rjags’ to streamline ‘JAGS’ analyses. https://github.com/kenkellner/jagsUI (2019).
Khaliq, I., Hof, C., Prinzinger, R., Böhning-Gaese, K. and Pfenninger, M. Global variation in thermal tolerances and vulnerability of endotherms to climate change. Proceedings of the Royal Society B: Biological Sciences 281 , 20141097 (2014).
Kirchman, J. and Keuren, A. Altitudinal range shifts of birds at the southern periphery of the Boreal Forest: 40 years of change in the adirondack mountains. The Wilson Journal of Ornithology129 , 742–753 (2017).
Kozlovsky, D. Y., Branch, C. L., Pitera, A. M. and Pravosudov, V. V. Fluctuations in annual climatic extremes are associated with reproductive variation in resident mountain chickadees. Royal Society Open Science 5, 171604 (2018).
Lenoir, J., Gegout J. C., Marquet, P. A., de Ruffray, P. and Brisse, H. A significant upward shift in plant species optimum elevation during the 20th century. Science 320, 1768-1771 (2008).
Lenoir, J., Gegout, J. C., Guisan, A., Vittoz, P., Wohlegemuth, T., Zimmermann, N., Dullinger, S., Pauli, H., Willner, W. and Svenning, J. C. Going against the flow: potential mechanisms for unexpected downslope range shifts in a warming climate. Ecography33 , 295–303 (2010).
MacKenzie, D. I., Nichols, J. D., Lachman, G. B., Droege, S., Royle, A. J. and Langtimm, C. A. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83 , 2248–2255 (2002).
Mamantov, M. A., Gibson‐Reinemer, D. K., Linck, E. B. and Sheldon, K. S. Climate-driven range shifts of montane species vary with elevation.Global Ecology and Biogeography 30 , 784-794 (2021).
Martin, T. E. Abiotic vs. biotic influences on habitat selection of coexisting species: climate change impacts? Ecology 82 , 175–188 (2001).
McCain, C., Szewczyk, T. and Knight, K. B. Population variability complicates the accurate detection of climate change responses.Global Change Biology 22 , 2081–2093 (2016).
McFarland, T. M. and van Riper, C. Use of normalized difference vegetation index (NDVI) habitat models to predict breeding birds on the San Pedro River, Arizona. U.S. Geological Survey Open-file Report 2013-1100 42 p. (2013).
McNab, B. K. Metabolism: ecology shapes bird bioenergetics.Nature 426 , 620–621 (2003).
Messmer, D. J., Alisauskas, R. T., Pöysä, H., Runko, P. and Clark, R. G. Plasticity in timing of avian breeding in response to spring temperature differs between early and late nesting species. Scientific Reports 11 , 5410 (2021). doi: 10.1038/s41598-021-84160-6.
Morison, J. I. L. and Morecroft, M. D. Plant Growth and Climate Change , Chapter 4: Temperature and plant development: phenology and seasonality. (John Wiley and Sons, 2008).
Moritz, C., Patton, J. L., Conroy, C. J., Parra, J. L., White, G. C. and Beissinger, S. R. Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322 , 261–264 (2008).
Northrup, J. M., Rivers, J. W., Yang, Z. and Betts, M. G. Synergistic effects of climate and land-use change influence broad-scale avian population declines. Global Change Biology 25 , 1561–1575 (2019).
Parmesan, C., Gaines, S., Gonzalez, L., Kaufman, D., Kingsolver, J., Peterson, A. and Sagarin, R. Empirical perspectives on species borders: from traditional biogeography to global change. Oikos108 , 58–75 (2005).
Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science355 , 1389 (2017).
Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nature Climate Change 5 , 424–430 (2015).
Perry, L. G., Andersen, D. C., Reynolds, L. V., Nelson, S. M. and Shafroth, P. B. Vulnerability of riparian ecosystems to elevated CO2 and climate change in arid and semiarid western North America. Global Change Biology 18 , 821–842 (2012).
Petersky, R. and Harpold, A. Now you see it, now you don’t: a case study of ephemeral snowpack and soil moisture response in the Great Basin, USA. Hydrology and Earth System Sciences 22 , 4891–4906 (2018).
Plummer, M. JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. Proceedings of the 3rdInternational Workshop on Distributed Statistical Computing: March 20-22, 2003 Vienna, Austria.
Poff, B., Koestner, K. A., Neary, D. G. and V. Henderson. Threats to riparian ecosystems in western North America: an analysis of existing literature. Journal of the American Water Resources Association , JAWRA-10-0076-P. https://doi.org/10.1111/j.1752-1688.2011.00571.x (2011).
Pollock, H. S., Brawn, J. D. and Cheviron, Z. A. Heat tolerances of temperate and tropical birds and their implications for susceptibility to climate warming. Functional Ecology 35 , 93–104 (2021).
R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org. (2020).
Riddell, E. A., Iknayan, K. J., Wolf, B. O., Sinervo, B. and Beissinger, S. R. Cooling requirements fueled the collapse of a desert bird community from climate change. Proceedings of the National Academy of Sciences 116 , 21609–21615 (2019).
Royle, J. A. and Nichols, J. D. Estimating abundance from repeated presence-absence data or point counts. Ecology 84 , 777–790 (2003).
Rupic, M., Wetzell, L., Marra, J. J. and Balwani, S. 2014-2016 El Niño assessment report: an overview of the impacts of the 2014-2016 El Niño in the U.S-Affiliated Pacific Islands (USAPI). NOAA (2018).
Rupp, D. E., Shafer, S. L., Daly, C., Jones, J. A. and Frey, S. J. K. Temperature gradients and inversions in a forested Cascade Range basin: synoptic- to local-scale controls. Journal of Geophysical Research: Atmospheres 125 , e2020JD032686 (2020). doi: 10.1029/2020JD032686.
Seto, K. C., Fleishman, E., Fay, J. P. and Betrus, C. J. Linking spatial patterns of bird and butterfly species richness with Landsat TM derived NDVI. International Journal of Remote Sensing 25 , 4309–4324 (2004).
Snyder, K. A., Evers, L., Chambers, J. C., Bradford, J. B. and Loik, M. E. Effects of changing climate on the hydrological cycle in cold desert ecosystems of the Great Basin and Columbia Plateau.Rangeland Ecology and Management 72 , 1–12 (2019).
Socolar, J. B., Epanchin, P. N., Beissinger, S. R. and Tingley, M. W. Phenological shifts conserve thermal niches in North American birds and reshape expectations for climate-driven range shifts. Proceedings of the National Academy of Sciences 14 , 12976–12981 (2017).
Suggitt, A. J., Gillingham, P. K, Hill, J. K, Huntley, B., Kunin, W. E., Roy, D. B. and Thomas, C. D. Habitat microclimates drive fine‐scale variation in extreme temperatures. Oikos 120, 1-8 (2011).
Sundqvist, M. K., Sanders, N. J. and Wardle, D. A. Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change. Annual Review of Ecology, Evolution, and Systematics 44 , 261–280 (2013).
Sparks, T. H. and Tryjanowski, P. The detection of climate impacts: some methodological considerations. International Journal of Climatology 25 , 271–277 (2005).
Tang, G. and Arnone, J. A. Trends in surface air temperature and temperature extremes in the Great Basin during the 20th century from ground-based observations. Journal of Geophysical Research: Atmospheres 118 , 3579–3589 (2013).
Theobald, W. F. Global Tourism . (Routledge, 2012).
Thomas, C. D. and Lennon, J. J. Birds extend their ranges northwards.Nature 399 , 213–213 (1999).
Tingley, M. and Beissinger, S. Detecting range shifts from historical species occurrences: new perspectives on old data. Trends in Ecology and Evolution 24 , 625–33 (2009).
Tingley, M. W., Koo, M. S., Moritz, C., Rush, A. C. and Beissinger, S. R. The push and pull of climate change causes heterogeneous shifts in avian elevational ranges. Global Change Biology 18 , 3279–3290 (2012).
Van Tatenhove, A., Filiberti, E., Sillett, T. S., Rodenhouse, N. and Hallworth, M. Climate-related distribution shifts of migratory songbirds and sciurids in the White Mountain National Forest. Forests10 , 84 (2019).
Visser, M. E., Gienapp, P., Husby, A., Morrisey, M., de la Hera, I., Pulido, F. and Both, C. Effects of spring temperatures on the strength of selection on timing of reproduction in a long-distance migratory bird. PLoS Biology , 13 , e1002120 (2015). doi: 10.1371/journal.pbio.1002120.
Wang, J., Rich, P., Price, K. and Kettle, W. Relations between NDVI and tree productivity in the central Great Plains. International Journal of Remote Sensing 25 , 3127–3138 (2004).
Whitehouse, M. J., Harrison, N. M., Mackenzie, J. and Hinsley, S. A. 2013. Preferred habitat of breeding birds may be compromised by climate change: unexpected effects of an exceptionally cold, wet spring.PLoS ONE 8 , e75536 (2013). doi: 10.1371/journal.pone.0075536.
Williamson, M. A. et al. Fire, livestock grazing, topography, and precipitation affect occurrence and prevalence of cheatgrass (Bromus tectorum ) in the central Great Basin, USA.Biological Invasions 22 , 663–680 (2020).
Xue, T., Tang, G., Sun, L., Wu, Y., Liu, Y. and Dou, Y. Long-term trends in precipitation and precipitation extremes and underlying mechanisms in the U.S. Great Basin during 1951-2013. Journal of Geophysical Research: Atmospheres 122 , 6152-6169 (2017).
Zuckerberg, B., Ribic, C. A. and McCauley, L. A. Effects of temperature and precipitation on grassland bird nesting success as mediated by patch size. Conservation Biology 32 , 872–882 (2018).
Table 1. Elevational shifts in occupancy of breeding birds in the western Great Basin. Species reported are those for which the best model included the interaction of year and elevation (interaction), >90% of the posterior density of the interaction was above or below zero, and simulations indicated that the interaction was likely not a product of stochasticity (see Supporting Information, Tables 1 and 3).