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[bookmark: _xnufv0uj6vvz]Abbreviation
CDM: chemically defined medium
CFU: colony forming unit
dFBA: dynamic flux balance analysis
DW: dry weight
FBA: flux balance analysis
GSMM: genome scale metabolic model
LAB: lactic acid bacteria
LB: Lactobacillus delbrueckii subsp. bulgaricus
MAG: metagenome assembled genome
ST: Streptococcus thermophilus
[bookmark: _ktyg9kaykxbh]

[bookmark: _f4v7gbfvfed]Abstract
Genome-scale metabolic models (GSMMs) and flux balance analysis (FBA) have been extensively used to model and design bacterial fermentation. However, FBA-based metabolic models designed for simulating the dynamics of co-culture with quantitative accuracy are still uncommon, which is particularly true for lactic acid bacteria (LAB) used for yogurt fermentation. To investigate metabolic interactions in yogurt starter culture of Streptococcus thermophilus (ST) and Lactobacillus delbrueckii subsp. bulgaricus (LB), this study built a dynamic community-level GSMM based on metagenomic analysis. We first assessed the accuracy of the model by comparing predicted bacterial growth, consumption of lactose and production of lactic acid with reference experimental data, and then used it to predict the impact of different initial ST:LB inoculation ratios (gDW/gDW) on acidification. The dynamic simulation demonstrated the mutual dependence of ST and LB during the yogurt fermentation process. The modeling pipeline presented in this work provided a basis for the computer-aided process design and control of the production of fermented dairy products, contributing to the development of precision fermentation in the food industry.
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[bookmark: _5w84z1cqlph9]1.Introduction
Yogurt is an important fermented dairy product, traditionally made by a starter culture composed of lactic acid bacteria (LAB), such as Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, and Lactobacillus acidophilus (Mohammadi et al., 2012). In industrial production of yogurt, the control of the fermentation process, in terms of acidification and the production of flavor and probiotic compounds, largely depends on the composition of the starter culture. The interactions of LABs affect the fermentation kinetics and thus influence the properties of the yogurt. For example, it was found that the co-culture of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus could result in a higher productivity of lactic acid than that of Streptococcus thermophilus and Lactobacillus acidophilus (R. P. de S. Oliveira et al., 2012). Therefore, designing an optimal yogurt starter culture for desired yogurt properties is one of the core engineering objectives for yogurt manufacturers.
To investigate and rationally engineer the yogurt starter culture in a more efficient and low-cost manner, a computational model is needed to simulate key variables, e.g., LAB biomass level, concentrations of critical compounds, in the fermentation process. There are mainly two types of models for simulating microbial growth and metabolism: differential-equation-based model and flux balance analysis (FBA)-based model. So far, there have been a lot of trials for differential-equation-based models to simulate growth, substrate consumption and lactic acid production of LABs (Bouguettoucha et al., 2011). However, some of these models are too simplistic, which only consist of Monod or extended Monod equations that empirically link microbial growth and substrate utilization (Bâati et al., 2004); (Youssef et al., 2005); (Vázquez & Murado, 2008), leaving the whole metabolic network as a “black box”. There also exist differential-equation-based “white box” models that capture the metabolic activity via a series of enzyme kinetic equations (Foster et al., 2021). These models are typically costly in construction due to various enzyme kinetic mechanisms (Ulusu, 2015) and would require a large number of enzyme kinetic parameters that are difficult to obtain (Bar-Even et al., 2011).
Alternatively, FBA-based metabolic models can avoid major shortcomings of differential-equation-based models. Firstly, genome scale metabolic models (GSMMs) can be easily reconstructed where annotated genomes are available (Mendoza et al., 2019); secondly, FBA does not require the information on enzyme kinetic mechanisms and kinetic parameters (e.g. ) (Orth et al., 2010); and finally the gene-protein-reaction relations in GSMMs allow the integration of multi-omics data, such as quantified proteomics (Bakker et al., 2010). Currently, several GSMMs for dairy-origin LABs have already been reconstructed (A. P. Oliveira et al., 2005); (Pastink et al., 2009); (Flahaut et al., 2013); (Özcan et al., 2019), and a dynamic co-culture metabolic model for cheese starter culture involving those GSMMs has been built (Özcan et al., 2021). However, there is still a lack of metagenome-scale metabolic models (Branco dos Santos et al., 2013) that can simulate the growth and metabolism of the LAB co-culture used in real industrial scenarios (as opposed to assumed ones). Furthermore, existing FBA models of LAB cultures could not simulate unique inter-species interactions in yogurt fermentation. 
With the aim to quantitatively model the fermentation kinetics and metabolic interactions of yogurt-fermentation LAB cultures, this study built a dynamic community-level metabolic model with reconstructed GSMMs of major species identified in the yogurt starter culture, i.e., Streptococcus thermophilus (ST) and Lactobacillus delbrueckii subsp. bulgaricus (LB), based on metagenomic analysis. Subsequently, we showed how the model can simulate the growth and metabolism of the ST/LB co-culture during yogurt fermentation with good accuracy. Finally, we explored the potential of the developed model in supporting the design and optimization of the yogurt fermentation process via simulating the impact of differential ST/LB inoculation ratio on the overall fermentation behavior.
[bookmark: _mavqfu2b3u9n]2.Materials and methods
[bookmark: _bondixb2hqxk]2.1 Sample preparation and fermentation conditions
	A commercial yogurt fermentation starter (YoFlex Premium 1.0, CHR Hansen, Denmark) of packsize 250 U was used. The Fonterra whole milk powder was added in 1 liter water and stirred for 1 hour to prepare the growth medium (12% (w/w)). The growth medium was heated to 95 ℃ for 5 minutes, and then cooled to 42 ℃ for the inoculation of the fermentation starter. The temperature of the fermentation process was maintained at 43 ℃ for 5 hours until the fermentation system reached the end point at pH = ~4.5.
[bookmark: _5mfhmuskew2p]2.2 Cell counting and pH measurement
Viable cell counting was used to quantify the growth kinetics of bacteria during fermentation. Lactic acid bacteria were isolated from samples at different time points (0 min, 30 min, 60 min, 90 min, 105 min, 120 min, 150 min, 180 min, 240 min, 300 min) with dilution plate method (1:10). Then, isolated bacteria were cultured on MRS agar (AOBOX，China) and M17 agar (AOBOX, China) under the 37 ℃ anaerobic condition for 48 hours to count the CFU (colony-forming unit). However, due to inactivity of bacterial cells under low temperature in storage, viable cell counting reflected an additive curve of cell activation and cell growth at the lagging and exponential phase, resulting in inaccurate quantification of growth kinetics. Hence, the validation of dynamic simulation used reference experimental data from the work of Oliveira et al (R. P. de S. Oliveira et al., 2012). 
The fermentation monitor (iCinac, AMS, France) was used to measure pH change, the detection electrode was Inlab Smart pro-ISM (Mettler Toledo, Switzerland). Datapoints were collected three times per minute. Before measurement, the electrode was calibrated with the standard pH calibration solution.
[bookmark: _1f6zk7fiianv]2.3 Metabolomics quantification
The concentrations of lactic acid and lactose at different time points during fermentation were measured using HPLC-DAD (Agilent 1260, USA) with a C18 column (250 mm ×4.6 mm, Agilent, USA) and HPLC-RI (Waters 2695-2414, USA) with a Zorbax NH2 column (250 mm × 4.6 mm, Agilent, USA) separately. For lactic acid, samples were centrifuged at 8000×g for 15 min in 4 ℃, and the supernatant, after filtered with 0.22 μm pore size, was measured by HPLC. The injection volume was 10 μL, and the flow rate of the mobile phase (A= 0.1% phosphoric acid, B= acetonitrile) was 0.5 mL/min. The column temperature was set at 30 ℃ and the detection wavelength was 220 nm. The gradient elution procedure was as follows: 0-4 min, 90%-60% elution A; 4-6 min, 60%-50% elution A; 6-9 min, 50%-80% elution A; 9-15 min, 80%-90% elution A. For lactose, samples were first mixed with 12% TCA and centrifuged at 8000×g for 15 min in 4 ℃, and the supernatant, after filtered with 0.22 μm pore size, was measured by HPLC. The injection volume was 10 μL, and the flow rate of the mobile phase (acetonitrile and water were fixed at the ratio of 70:30 (V/V)) was 1 mL/min. The column and detector temperature were set at 40 ℃. Lactic acid and lactose concentrations measured in this study were not used to valid the dynamic simulation, as explained in section 2.2. They were only used to validate predicted lactic acid yield ratios from lactose consumed (section 3.2) and measured lactic acid concentrations were used to fit a linear function for pH (section 2.4.3).
The concentrations of free amino acids in 12%(w/w) reconstituted milk were measured by UPLC (I-Class, Waters, USA) equipped with a triple quadrupole mass spectrometer (Xevo TQ-S micro, Waters, USA).  After shaken with 50% ethanol, 10 μL samples were mixed with 10 μL deionized water, 5 μL D-Norleucine (internal standard), and 40 μL 0.1% formic acid in isopropanol. The samples were centrifuged for 10 min at 10000×g in 4 ℃, the supernatant of samples was added in boric acid buffer and AccQ Tag solution (Kairos, USA) to achieve derivatization, and then filtered with 0.22 μm pore size.  The column was UPLC HSS T3 (1.7 μm, 2.1 mm × 150 mm, Waters, USA). The injection volume was 5 μL, and the flow rate of the mobile phase (A= 0.1% formic acid, B= acetonitrile) was 0.5 mL/min. The column temperature was set at 50 ℃. The mass spectrometer was operated in the electrospray ionization (ESI) mode with a 1.5 kV ionization energy, the cone voltage was 20 V, the desolvation temperature was 600 ℃, the desolvation gas flow rate was 1000 L/h, the cone gas flow rate was 10 L/h. The gradient elution procedure was as follows: 0-2.5 min, 96%-90% elution A; 2.5-5 min, 90%-72% elution A; 5-6 min, 72%-5% elution A; 6-7 min, 5%-5% elution A; 7-9 min, 5%-96% elution A.
[bookmark: _d22wi79fuwnz]2.4 Building the dynamic community-level metabolic model from the metagenome of the yogurt starter culture
Building the dynamic community-level metabolic model of the yogurt starter culture comprised two steps: 1. from metagenome to annotated protein coding genes of major species; 2. from coding genes to GSMMs (Figure 1). With the resulting GSMMs, dynamic flux balance analysis (dynamic FBA, or dFBA) was implemented to simulate bacterial growth and metabolism, and predict the change on fermentation behavior by perturbation to initial co-culture composition.
[image: ]
Figure 1. The workflow diagram of constructing a dynamic metabolic model for the yogurt starter culture based on metagenomic analysis


[bookmark: _vfb661iqjgj0]2.4.1 Metagenome assembly, binning, and annotation
	DNA extraction of the yogurt starter culture followed the procedure in the metagenomic study of cereal vinegar microbiota by Wu et al (L.-H. Wu et al., 2017). Three parallel DNA samples were sequenced by Illumina PE150 platform, and the raw data was filtered for high quality reads by removing adapter overlaps, reads with quality value lower than 38 and length lower than 350bp. After the quality control step, the cleaned data was assembled by MEGAHIT (Li et al., 2016) with default parameters.
MetaBAT2 (Kang et al., 2019), MaxBin2 (Y.-W. Wu et al., 2016) and CONCOCT (Alneberg et al., 2013) were used for species-level metagenome binning. Then, bins were refined and reassembled using refinement and reassembly modules in metaWRAP (Uritskiy et al., 2018). The final outputs are metagenome assembled genomes (MAGs) of high quality, assessed by CheckM (Parks et al., 2015). Those bins’ genomic abundances in each sample were then computed by the Quant_bin module in metaWRAP. 
The taxonomy profile was computed three times in different stages of metagenomic analysis. Using reference genomes, mOTUs identified species and computed relative abundances with unassembled DNA reads (Ruscheweyh et al., 2021). When the metagenome was assembled, the taxonomic labels were assigned to reads for profiling each sample’s taxonomy using KRAKEN 2.0 (Wood et al., 2019). Once high-quality bins were generated, GTDB-Tk classified bins’ species (Chaumeil et al., 2019). Three different taxonomic classification tools were used to ensure the reliability of results.
Protein-coding gene prediction for each MAG was done by Prodigal (Hyatt et al., 2010). The functional annotation of protein-coding genes using eggNOG-mapper (Cantalapiedra et al., 2021) was carried out with KEGG (Kanehisa et al., 2016) and CAZy databases (Cantarel et al., 2009), providing information on cellular pathways and carbohydrate active enzymes .
[bookmark: _dcaybzfimwb9]2.4.2 Reconstruction of genome-scale metabolic models 
Non-redundant protein sequences were filtered from concatenated protein sequences of three parallel samples and used as the input for automatic GSMM reconstruction by CarveMe (Machado et al., 2018). In addition to protein sequences, other inputs were chemically defined media (CDM) for gap filling and the universal bacterial template. The CDM was adopted from the co-culture metabolic model of cheese starter by Özcan et al (Özcan et al., 2021). The universal bacterial template used for reconstruction was specialized for gram-positive bacteria.
For refinement of GSMMs, the stoichiometric coefficients of biomass synthesis reactions were adjusted based on measured biomass composition (Pastink et al., 2009) and existing GSMMs of LABs (Teusink et al., 2006); (Pastink et al., 2009); (Magnúsdóttir et al., 2017); (Rau et al., 2022). Based on functional annotation of protein-coding genes (section 2.4.1), reactions included erroneously were removed and missing reactions were added (see SI, section 1). In addition, to characterize the proteolysis activity in the co-culture system, a self-defined reaction that utilizes the casein peptide was added to the GSMM:

Stoichiometric coefficients () in the reaction were approximated from fractions of amino acid in the casein protein of cow milk (Landi et al., 2021). The boundary of the flux through casein peptide utilization in each GSMM was set based on the proteolytic activity of each species (see SI, section 1).
[bookmark: _8qzeo5oaloy1]2.4.3 Dynamic flux balance analysis and proteome allocation constraint
To simulate the growth of bacteria and the production of target metabolites in time, dynamic FBA (dFBA) was adopted, as a combination of FBA and differential-equation-based dynamic system modeling (Henson & Hanly, 2014). The code of model implementation can be found in https://github.com/SizheQiu/MetaStLbCom. The intracellular metabolic fluxes of a species , were computed by parsimonious FBA, maximizing the growth rate ( while minimizing the total sum of individual fluxes ( for reaction i in species j), based on the assumption that the cell minimizes the use of enzyme catalyzed reactions due to the limited cellular recourse (Eqs. 1, 2), subject to mass conservation (Eq. 3), in which  represented the stoichiometric matrix. The concentration change of metabolites and biomass in the extracellular space was modeled by differential equations to account for biomass accumulation (Eq. 4) and exchange fluxes of the metabolite e from major species (Eq. 5). 
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Furthermore, proteome allocation was implemented to constrain reaction fluxes of the central carbon metabolism (Zeng & Yang, 2020); (Regueira et al., 2021). Proteome was divided into sectors of inflexible housekeeping (Q), anabolism (A), transportation (T), catabolism (C), and the free sector. The upper bound of all flexible sectors combined was assumed to be 50% of the total proteome (Eqs. 6, 7). The proteome cost on each reaction was computed as the ratio of the flux to the multiplicative product of enzyme activity, ,and saturation degree,  (Eq. 8). The saturation degrees, , were assumed to be 0.5, except for the lactose transporter: i.  , it was considered as fully saturated by abundant lactose in the milk environment; ii. , it was assumed to follow michaelis-menten kinetics when the concentration of lactose was low. The activities of the ribosome for the anabolism sector, , and acid exportation for lactic and acetic acids, , were collected from the literature (Schumacher, 2018); (Regueira et al., 2021). Other enzyme activity values were obtained from BRENDA Enzyme Database (Chang et al., 2021) (see SI, Table S5). For the uptake of amino acids, the flux was constrained by Michaelis Menten equation (), the  and michaelis-menten constant  were set based on average parameter values obtained from BRENDA and SABIO-RK (Wittig et al., 2018) (see SI, Table S5).
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The activity of lactose uptake incorporated inhibition by undissociated lactate (LacH), the product of glycolysis under anaerobic conditions. The exponential decay equation (Eq. 9) to model the inhibition of lactose transporter activity was adopted from Vereecken and Van Impe, 2002 (Vereecken & Van Impe, 2002) and Aghababaie et al., 2015 (Aghababaie et al., 2015). The minimal activity of lactose transport  was set to maintain the growth rate at the stationary phase when pH is around 4.5 (see SI, section 3). The concentration of undissociated lactate was computed using Henderson-Hasselbalch equation (Eq. 10), , and pH was approximated as a linear function of lactic acid concentration,  (see SI, Figure S1), with measured lactic acid concentrations and pH (section 2.2&2.3). Such inhibition coefficient, , was also applied to amino acid uptake rate and casein peptide utilization rate, and similarly, the minimal rate, , was set (see SI, section 3).
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[bookmark: _hsu853gsemtx]3. Results
[bookmark: _c7gffwmcq5ki]3.1 Metagenomic analysis of the yogurt starter culture
Taxonomic classification by different tools on assembled metagenomes of three samples of the yogurt starter showed that Streptococcus thermophilus (ST) and Lactobacillus delbrueckii subsp. bulgaricus (LB) were two major species that contributed to more than 95% of the overall taxonomy abundance. The genomic abundance ratio of ST and LB in the microbial community was approximately 100:1 (Figure 2A).  Detailed taxonomic profiles computed by mOTUs and KRAKEN-2.0 can be found in SI, Table S3. The finalized metagenome assembled genomes (MAGs), obtained through binning, bin refinement and reassembly, showed high completeness, low contamination and good continuity (see SI, Figure S2). In MAGs of ST and LB from three parallel samples, 2499 and 1801 non-redundant protein-coding genes were identified (Figure 2B), and functionally annotated. KEGG pathway annotation indicated that ST’s genome contained a higher amount of genes for amino acid metabolism compared to LB (Figure 2C). In the carbohydrate-active enzyme annotation, more carbohydrate-active enzymes were identified in ST's genome, and a significant enrichment of CBM41(Carbohydrate-Binding Module Family 41) was observed (Figure 2D), which was a module of approximately 100 residues found primarily in bacterial pullulanases (Lammerts van Bueren et al., 2004).
[image: ]
Figure 2. Results of metagenomic analysis. (A)Taxonomic classification and genomic abundance. (B) Pan-genome of identified protein-coding genes from three parallel samples. (C) KEGG pathway and (D) carbohydrate active enzyme annotations for both species. ST: Streptococcus thermophilus; LB: Lactobacillus delbrueckii subsp. bulgaricus; s1-s3: yogurt starter sample 1 to 3.
[bookmark: _l6sn5syljc07]3.2 Reconstruction of genome-scale metabolic models with proteome allocation constraints for the yogurt starter culture
Two individual GSMMs for the dominant species in the yogurt starter culture, i.e., ST and LB, were reconstructed (see Section 2.4.2). In reconstructed GSMMs, reactions assigned with gene-protein-reaction relations were around 60% in both models. About 25% gap-filled reactions, without genomic basis, were added into the model for a complete metabolic network and the rest were boundary reactions for metabolite exchange (Figure 3A). Classical FBA without additional constraints can only predict an untightened solution space of metabolic fluxes, but fails to account for metabolic capacities of enzymes (Sánchez et al., 2017) and global regulation of proteome sectors (Zeng & Yang, 2020) as described in section 2.4.3. Therefore, in this study, proteome allocation constraints were integrated in classical FBA to explain lactic acid production of LABs that is energetically less favorable than acetic acid production. To implement proteome allocation constraints, enzyme activities of reactions in central carbon metabolism were mapped to the reconstructed metabolic network (full names of reactions can be found in SI, Table S4), and the proteome cost for producing 1 unit of flux of lactic acid and acetic acid from pyruvate could be computed. The proteome cost of lactic acid production per unit flux is , same for ST and LB. For acetic acid, the proteome cost is  in ST but gets much larger in LB due to the lack of pyruvate formate lyase (PFL), (see SI, Table S6). In short, the proteome cost of lactic acid production in LABs is much smaller than that of acetic acid production, though the latter pathway has a higher energy (ATP) yield.

[image: ]
Figure 3. Properties of reconstructed GSMMs of the yogurt starter culture. (A) Status of metabolic reaction curation. (B) Enzyme activities mapped to the central carbon metabolic network (full names of reactions can be found in SI), only ST has pyruvate formate lyase (PFL) reaction. ST: Streptococcus thermophilus; LB: Lactobacillus delbrueckii subsp. Bulgaricus.

To check the validity of reconstructed GSMMs, FBA with proteome allocation constraints was performed for ST and LB on complete CDM (Rau et al., 2022) and MPL medium (Chervaux et al., 2000) (Figure 4A,B). The predicted lactic acid yield ratio from lactose consumed (mol lactate/mol lactose) were 1.6919 for ST and 1.9305 for LB, which was consistent with the experimental measurement (see SI, Table S1) as well as with previous works (Özcan et al., 2021)(Ghasemi et al., 2009)(Özcan et al., 2021); (Rau et al., 2022)(Ghasemi et al., 2009). The predicted growth rate of ST on complete CDM was 1.2 , close to 0.98  measured in Rau et al., 2022 (Rau et al., 2022). The growth rate of LB on MPL medium was fixed at 0.7  to estimate the upper bound of amino acid uptake rate (see SI, section 3). Due to the lack of pyruvate formate lyase (PFL) (Figure 3B), LB was predicted to have no ability to produce formic acid as well as a much smaller yield of acetic acid compared with ST. Apart from predicting the formation of lactic, acetic and formic acids, proteome-constrained FBA also predicted the secretion fluxes for various flavor compounds, including 4-hydroxy-benzyl alcohol (4hba) and succinic acid (succ) for ST, and 2-methylbutanoic acid (2mba), 2-methylpropanoic acid (2mpa), 3-methylbutanoic acid (3mba) and 2-oxobutanoate (2obut) for LB (Figure 4A, B). 
The predicted responses to the change in the presence of methionine and formic acid by ST and LB show their essential nutrient requirement for cellular growth and potential metabolic interactions (Figure 4C, D). The growth rate of ST increases with the increasing concentrations of methionine (Figure 4C), whereas other amino acids have little impact on ST’s growth rate (see SI, Figure S4), suggesting that the GSMM of ST predicts that ST in the starter culture is auxotrophic for methionine and prototrophic for all other 19 essential amino acids. On the other hand, the GSMM of LB shows its auxotrophy for numerous amino acids (see SI, Figure S5), which is consistent with the finding in previous studies that Lactobacillus species developed proteolytic ability to compensate for their amino acid auxotrophy (Raveschot et al., 2018). In the in silico milk environment that has no purine (adenine, guanine and xanthine) to mimic the nutrient composition of actual reconstituted milk used for yogurt fermentation,LB’s growth is promoted by the increase of the concentration of formic acid (Figure 4D). In contrast, formic acid had little influence on LB’s growth when the purine was supplied, validating the previous findings that formic acid was required by LB to synthesize DNA/RNA materials in the environment with a low level of purine (Suzuki et al., 1986). Succinctly, the potential metabolic interactions of ST/LB community in the yogurt starter culture inferred by the GSMMs reconstructed in this study can be summarized as the following: ST provides formic acid for LB to synthesize DNA/RNA materials, and LB utilizes casein protein to supply methionine to ST; they both consume lactose and produce lactic acid, which in turn inhibits their growth (Vereecken & Van Impe, 2002) (Figure 4E).
The addition of proteome constraints allows the model to account for the metabolic switch from acetic acid production to lactic acid production in ST when its growth rate increases with the increase of carbon source concentration, which has been demonstrated in Regueira et al. 2021 with a generic LAB-GSMM that can response to the change of glucose concentration (Regueira et al., 2021) (Figure 4F,G). The proteome costs allocated to acetate and lactate productions are computed as the proteome cost of pyruvate formate lyase (PFL), pyruvate dehydrogenase (PDH), phosphotransacetylase (PTAr) and acetate kinase (ACKr), and that of LDH (Figure 4H). In general, only two moles of lactic acid can be produced from the fermentation of one mole of lactose. The predicted ratio of acetic acid produced to lactose consumed sometimes exceeds 2, which was resulted from the metabolism of other nutrients in the in-silico culture medium (see SI, Figure S6). With LB’s GSMM, proteome constrained FBA could not demonstrate growth rate triggered metabolic switch from acetic acid production to lactic acid production due to the much larger protein requirement of converting pyruvate to acetyl-CoA by solely PDH in LB (Figure 3B) and the biosynthetic requirement of fatty acids (see SI, Figure S7). When the uptake of lactose provides enough carbon flux that exceeds the biosynthetic requirement of fatty acid, a surplus flux will be predicted to go through acetic acid production (see SI, Figure S7).
[image: ]
Figure 4. Model predictions of the metabolic fluxes on the chemically defined medium. (A, B) Predicted uptake and secretion fluxes of ST on complete CDM (A) and LB on MPL medium (B). (C, D) Assessment of ST’s requirement of methionine ( (Özcan et al., 2021); (Kaiser et al., 2015)) (C) and LB’s requirement of formic acid ( (Schmidt & Beitz, 2022)) (D). (E) Potential metabolic interactions of ST/LB co-culture. (F-H) Predicted growth rates (F), fluxes through acetic/lactic acid productions (G) and proteome costs allocated those pathways (H) of ST in response to the increase of lactose concentration ( (Poolman et al., 1995)).
[bookmark: _6egz1p3mf9kw]3.3 Dynamic simulation of growth kinetics and metabolism of ST/LB co-culture
The dynamic simulation of yogurt fermentation was performed using the reference settings of initial conditions and validated by the reference experimental data, both of which were obtained from the work of Oliveira et al. (R. P. de S. Oliveira et al., 2012). The initial condition settings at t=0 can be found in supplementary information (see SI, section 3). The accuracy of the simulation was assessed and demonstrated by R-squared values, which were all around 0.8 (Figure 5A-D). 
Overall, the model, without parameter re-calibration using the reference experimental data, adequately captured the initiation of the exponential growth phase and the transition to the stationary phase for both ST and LB, as well as the protocooperation between two species (Figure 5A, B). The accumulation of formic acid (produced by ST) initiated the exponential growth of LB by activating its synthesis of purine, whose natural concentration was too low to support the growth of LB in the milk environment. In return, the activation of growth and metabolism of LB with strong proteolytic activity enhanced the growth of ST by supplementing methionine, which was also limited in the milk environment (Figure 5E, F). With the accumulation of lactic acid, the growth of ST and LB was progressively inhibited. Finally, their growth was halted, which was shown by the stationary phase (Figure 5A-C).
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Figure 5. Dynamic simulation results of ST/LB co-culture (). Comparison between simulated and experimental growth kinetics of ST, R2=0.79 (A), and LB, R2=0.86 (B). Comparison between simulated and experimental concentration profiles of lactic acid, R2=0.78 (C), and lactose, R2=0.85 (D). Simulated concentration profiles of formic acid, acetic acid (E), and methionine (F).
[bookmark: _p6onuco6v5b2]3.4 Prediction of the impact of different initial ST/LB inoculation ratios on the fermentation behavior
Perturbations on the initial inoculation ratio of ST and LB of the yogurt starter culture was conducted to investigate its impact on the fermentation behavior. The total initial biomass concentration of the co-culture was fixed at 0.18 gDW/L, same as the initial condition setting in section 3.3. The simulated growth curves of ST and LB from different initial ST/LB inoculation ratios demonstrate the mutual dependence of ST and LB in the co-culture (Figure 6A). When the initial ST:LB inoculation ratio is modulated to increase from 1 to 10, the proteolytic activity of the microbial community becomes weaker due to the decrease of the initial biomass concentration of LB, and correspondingly, the growth of ST is also reduced due to lowered supply of methionine; When the initial ST:LB inoculation ratio is set to decrease from 1 to 0.1, the lowered productivity of formic acid from ST makes LB enter the exponential phase slower than that of the case with initial ST:LB = 1 (Figure 6A). In addition, the simulation shows that, given a certain range of initial ST:LB ratios (in this case, 0.1~10), ST will eventually become the dominant species (Figure 6B), which agrees with the previous study on the rods (LB) to cocci (ST) ratio of cheese fermentation (Yun et al., 1995).
The predicted average acidification rates (lactic acid concentration/total fermentation time) in 5 hours by different starter culture compositions rank as follows: ST:LB = 1 > ST:LB = 2 > ST:LB = 5 > ST:LB = 10 > ST:LB = 0.1 > ST:LB = 100 > ST:LB = 0.01 (Figure 6C, D). At the early stage of yogurt fermentation (0-3hr), starter cultures with the initial ST:LB ratio larger than 1 have more than twice lactic acid production rates, in contrast to starter cultures with the initial ST:LB ratio lower than 1; Later (3-5hr), the lactic acid production rate of the starter culture with initial ST:LB = 0.1 catches up (Figure 6D). To sum up, initial ST:LB = 1 is predicted to be optimal for lactic acid production in 5 hours if the initial total biomass is fixed at 0.18 gDW/L, and the acidification will generally be faster initially when ST is the dominant species in the co-culture. Based on predicted acidification kinetics, the starter culture composition can be designed for targeted acidification patterns, for example, ST:LB ratio = 0.1 is suitable for slow acidification first but fast acidification later.   
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Figure 6. Predicted growth kinetics of ST/LB co-culture and lactic acid production with different initial ST:LB inoculation ratios. (A) Biomass concentration profiles of ST and LB. (B) Bacterial community composition dynamics: the change of ST/LB ratio in time. (C) Lactic acid concentration profiles for different initial ST/LB inoculation ratios. (D) The assessment of acidification rate for different initial ST/LB inoculation ratios with lactic acid levels at early stage (T=3hr), and later stage (T=5hr). 
[bookmark: _6b8cripzwdls]4.Discussion
Overall, this work presented the reconstruction of GSMMs for the yogurt starter culture, i.e., the co-culture of ST and LB, based on metagenomic analysis and provided a dynamic community-level modeling approach for simulating the microbial growth and metabolism during the yogurt fermentation process. Although community-level FBA has already been used in a few scenarios to simulate growth and metabolism (Sieuwerts, 2009); (Branco dos Santos et al., 2013); (Khandelwal et al., 2013), the integration of the proteome allocation constraint and dFBA as proposed in this study was a relatively novel method. The proteome allocation constraint materializes the process of redistribution of proteome resources to each cellular pathway at different growth stages and tightens the solution space of fluxes by setting a global constraint on the metabolic capacity. Also, this model introduced feed-back inhibition function on the enzyme activity, previously used in modeling growth kinetics of LABs (Vereecken & Van Impe, 2002), and effectively simulated the product inhibition by undissociated lactic acid on the growth of LABs. The proposed dynamic model quantitatively demonstrated the metabolic mutual dependence of ST and LB in the milk environment (Sieuwerts, 2009); (R. P. de S. Oliveira et al., 2012), and provided confirmation of such ecological interaction with data-driven modeling.
	Although the model showed good predictive accuracy in bacterial growth and metabolism (section 3.2&3.3), it had limitations in mainly three aspects: (1) MAG-derived GSMMs of ST and LB lacked accurate strain-specific biomass compositions and growth associated ATP requirements; (2) the model could not yet predict fluxes through the biosynthesis of important flavor compounds (e.g. methyl ketones, lactones, etc.) and the probiotic exopolysaccharide that often produced in the actual process of yogurt fermentation; (3) no mechanistic representation of regulatory activities was included in the current model. For instance, acidification by ST was previously found to be stimulated by formic acid, casitone, pyruvic acid, folic acid, and polysorbate 20 (Sieuwerts et al., 2010). Mono-culture of dominant ST and LB strains separated from the starter culture will be needed for approximating the growth associated ATP requirement from the carbon source utilized (Teusink et al., 2006), and gas chromatography/mass spectrometry or HPLC can be used to quantify major components in cellular biomass, i.e. protein, DNA, RNA, lipids and glycogen (Long & Antoniewicz, 2014); (Simensen et al., 2022). To resolve the first two limitations, the proposed next step is to further refine the established GSMMs by manually adding in the biosynthetic pathways of flavor and probiotic compounds of interests and implement dynamic regulatory FBA (rFBA) (Liu & Bockmayr, 2020) with meta-transcriptome profiling. For the current model, the failure to predict active fluxes towards the formation of diacetyl and acetoin was not caused by the lack of pathway reconstruction, but the lack of a constraint to divert the downstream metabolic flux to those biomass-independent products.
Despite that several limitations remain to be overcome, the genome-scale metabolic reconstructions and the community-level dynamic modeling framework for the classical yogurt starter culture of ST and LB presented in this work was shown to have the potential to offer an efficient tool to guide engineering decisions in the food industry, which could be used to address issues such as the optimal initial biomass ratio of ST and LB to maximize the rate of acidification or possibly other process targets (e.g. flavor formation). Furthermore, the two-species model can be expanded by including GSMMs of other probiotic bacteria, e.g., bifidobacterium (Lamoureux et al., 2002), to simulate the fermentation dynamics of more complex starter cultures. 
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