References
1. Coronaviridae Study Group of the International Committee on Taxonomy
of V. The species Severe acute respiratory syndrome-related coronavirus:
classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol .
Apr 2020;5(4):536-544. doi:10.1038/s41564-020-0695-z
2. Rothe C, Schunk M, Sothmann P, et al. Transmission of 2019-nCoV
Infection from an Asymptomatic Contact in Germany. N Engl J Med .
Mar 5 2020;382(10):970-971. doi:10.1056/NEJMc2001468
3. Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically
ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a
single-centered, retrospective, observational study. Lancet Respir
Med . May 2020;8(5):475-481. doi:10.1016/S2213-2600(20)30079-5
4. Ren J, Pang W, Luo Y, et al. Impact of Allergic Rhinitis and Asthma
on COVID-19 Infection, Hospitalization, and Mortality. J Allergy
Clin Immunol Pract . Jan 2022;10(1):124-133.
doi:10.1016/j.jaip.2021.10.049
5. Murphy TR, Busse W, Holweg CTJ, et al. Patients with allergic asthma
have lower risk of severe COVID-19 outcomes than patients with
nonallergic asthma. BMC Pulm Med . Nov 14 2022;22(1):418.
doi:10.1186/s12890-022-02230-5
6. Zheng J, Haberland V, Baird D, et al. Phenome-wide Mendelian
randomization mapping the influence of the plasma proteome on complex
diseases. Nat Genet . Oct 2020;52(10):1122-1131.
doi:10.1038/s41588-020-0682-6
7. Baranova A, Cao H, Teng S, Zhang F. A phenome-wide investigation of
risk factors for severe COVID-19. J Med Virol . Jan
2023;95(1):e28264. doi:10.1002/jmv.28264
8. Baranova A, Cao H, Chen J, Zhang F. Causal Association and Shared
Genetics Between Asthma and COVID-19. Front Immunol .
2022;13:705379. doi:10.3389/fimmu.2022.705379
9. Glymour MM, Tchetgen Tchetgen EJ, Robins JM. Credible Mendelian
randomization studies: approaches for evaluating the instrumental
variable assumptions. Am J Epidemiol . Feb 15 2012;175(4):332-9.
doi:10.1093/aje/kwr323
10. Ferreira MA, Vonk JM, Baurecht H, et al. Shared genetic origin of
asthma, hay fever and eczema elucidates allergic disease biology.Nat Genet . Dec 2017;49(12):1752-1757. doi:10.1038/ng.3985
11. Bycroft C, Freeman C, Petkova D, et al. The UK Biobank resource with
deep phenotyping and genomic data. Nature . Oct
2018;562(7726):203-209. doi:10.1038/s41586-018-0579-z
12. Kurki MI, Karjalainen J, Palta P, et al. FinnGen: Unique genetic
insights from combining isolated population and national health register
data. 2022:2022.03.03.22271360. doi:10.1101/2022.03.03.22271360 %J
medRxiv
13. Initiative C-HG. The COVID-19 Host Genetics Initiative, a global
initiative to elucidate the role of host genetic factors in
susceptibility and severity of the SARS-CoV-2 virus pandemic. Eur
J Hum Genet . Jun 2020;28(6):715-718. doi:10.1038/s41431-020-0636-6
14. Gill D, Efstathiadou A, Cawood K, Tzoulaki I, Dehghan A. Education
protects against coronary heart disease and stroke independently of
cognitive function: evidence from Mendelian randomization. Int J
Epidemiol . Oct 1 2019;48(5):1468-1477. doi:10.1093/ije/dyz200
15. Palmer TM, Lawlor DA, Harbord RM, et al. Using multiple genetic
variants as instrumental variables for modifiable risk factors.
2012;21(3):223-242. doi:10.1177/0962280210394459
16. Burgess S, Small DS, Thompson SG. A review of instrumental variable
estimators for Mendelian randomization. Stat Methods Med Res . Oct
2017;26(5):2333-2355. doi:10.1177/0962280215597579
17. Li R, Chen Y, Zhao A, et al. Exploring genetic association of
insomnia with allergic disease and asthma: a bidirectional Mendelian
randomization study. Respir Res . Apr 7 2022;23(1):84.
doi:10.1186/s12931-022-02009-6
18. Bowden J, Davey Smith G, Burgess S. Mendelian randomization with
invalid instruments: effect estimation and bias detection through Egger
regression. Int J Epidemiol . Apr 2015;44(2):512-25.
doi:10.1093/ije/dyv080
19. Bowden J, Davey Smith G, Haycock PC, Burgess S. Consistent
Estimation in Mendelian Randomization with Some Invalid Instruments
Using a Weighted Median Estimator. Genet Epidemiol . May
2016;40(4):304-14. doi:10.1002/gepi.21965
20. Hartwig FP, Davey Smith G, Bowden J. Robust inference in summary
data Mendelian randomization via the zero modal pleiotropy assumption.Int J Epidemiol . Dec 1 2017;46(6):1985-1998.
doi:10.1093/ije/dyx102
21. Bowden J, Del Greco MF, Minelli C, et al. Improving the accuracy of
two-sample summary-data Mendelian randomization: moving beyond the NOME
assumption. Int J Epidemiol . Jun 1 2019;48(3):728-742.
doi:10.1093/ije/dyy258
22. Verbanck M, Chen CY, Neale B, Do R. Detection of widespread
horizontal pleiotropy in causal relationships inferred from Mendelian
randomization between complex traits and diseases. Nat Genet . May
2018;50(5):693-698. doi:10.1038/s41588-018-0099-7
23. Rees JMB, Wood AM, Dudbridge F, Burgess S. Robust methods in
Mendelian randomization via penalization of heterogeneous causal
estimates. PLoS One . 2019;14(9):e0222362.
doi:10.1371/journal.pone.0222362
24. Yang Z, Schooling CM, Kwok MK. Credible Mendelian Randomization
Studies in the Presence of Selection Bias Using Control Exposures.Front Genet . 2021;12:729326. doi:10.3389/fgene.2021.729326
25. Cho Y, Haycock PC, Sanderson E, et al. Exploiting horizontal
pleiotropy to search for causal pathways within a Mendelian
randomization framework. Nat Commun . Feb 21 2020;11(1):1010.
doi:10.1038/s41467-020-14452-4
26. Jackson DJ, Busse WW, Bacharier LB, et al. Association of
respiratory allergy, asthma, and expression of the SARS-CoV-2 receptor
ACE2. J Allergy Clin Immunol . Jul 2020;146(1):203-206 e3.
doi:10.1016/j.jaci.2020.04.009
27. Choi HG, Kim SY, Joo YH, Cho HJ, Kim SW, Jeon YJ. Incidence of
Asthma, Atopic Dermatitis, and Allergic Rhinitis in Korean Adults before
and during the COVID-19 Pandemic Using Data from the Korea National
Health and Nutrition Examination Survey. Int J Environ Res Public
Health . Nov 1 2022;19(21)doi:10.3390/ijerph192114274
28. Marko M, Pawliczak R. Can we safely use systemic treatment in atopic
dermatitis during the COVID-19 pandemic? Overview of selected
conventional and biologic systemic therapies. Expert Rev Clin
Immunol . Jun 2021;17(6):619-627. doi:10.1080/1744666X.2021.1919511
29. Guttman-Yassky E, Lowes MA, Fuentes-Duculan J, et al. Major
differences in inflammatory dendritic cells and their products
distinguish atopic dermatitis from psoriasis. J Allergy Clin
Immunol . May 2007;119(5):1210-7. doi:10.1016/j.jaci.2007.03.006
30. Fan R, Leasure AC, Damsky W, Cohen JM. Association between atopic
dermatitis and COVID-19 infection: A case-control study in the All of Us
research program. JAAD Int . Mar 2022;6:77-81.
doi:10.1016/j.jdin.2021.12.007
31. Zhang J, Loman L, Kamphuis E, Schuttelaar MLA, Lifelines Corona
Research I. Impact of the COVID-19 pandemic on adults with
moderate-to-severe atopic dermatitis in the Dutch general population.JAAD Int . Mar 2022;6:86-93. doi:10.1016/j.jdin.2021.12.006
32. Wu JJ, Martin A, Liu J, et al. The risk of COVID-19 infection in
patients with atopic dermatitis: A retrospective cohort study. J
Am Acad Dermatol . Jan 2022;86(1):243-245.
doi:10.1016/j.jaad.2021.09.061
33. Nguyen C, Yale K, Casale F, et al. SARS-CoV-2 infection in patients
with atopic dermatitis: a cross-sectional study. Br J Dermatol .
Sep 2021;185(3):640-641. doi:10.1111/bjd.20435
34. Rakita U, Kaundinya T, Guraya A, et al. Atopic dermatitis is not
associated with SARS-CoV-2 outcomes. Arch Dermatol Res . Dec
2022;314(10):999-1002. doi:10.1007/s00403-021-02276-1
35. Ungar B, Glickman JW, Golant AK, et al. COVID-19 Symptoms Are
Attenuated in Moderate-to-Severe Atopic Dermatitis Patients Treated with
Dupilumab. J Allergy Clin Immunol Pract . Jan 2022;10(1):134-142.
doi:10.1016/j.jaip.2021.10.050
36. Kridin K, Schonmann Y, Solomon A, et al. Risk of COVID-19 and its
complications in patients with atopic dermatitis undergoing dupilumab
treatment-a population-based cohort study. Immunol Res . Feb
2022;70(1):106-113. doi:10.1007/s12026-021-09234-z
37. Eichenfield LF, Bieber T, Beck LA, et al. Infections in Dupilumab
Clinical Trials in Atopic Dermatitis: A Comprehensive Pooled Analysis.Am J Clin Dermatol . Jun 2019;20(3):443-456.
doi:10.1007/s40257-019-00445-7
38. Kridin K, Schonmann Y, Tzur Bitan D, Damiani G, Weinstein O, Cohen
AD. The Burden of Coronavirus Disease 2019 and Its Complications in
Patients With Atopic Dermatitis-A Nested Case-Control Study.Dermatitis . Oct 1 2021;32(1S):S45-S52.
doi:10.1097/DER.0000000000000772
39. Liu S, Cao Y, Du T, Zhi Y. Prevalence of Comorbid Asthma and Related
Outcomes in COVID-19: A Systematic Review and Meta-Analysis. J
Allergy Clin Immunol Pract . Feb 2021;9(2):693-701.
doi:10.1016/j.jaip.2020.11.054
40. Bartha I, Bernaola M, Escudero C, Rodriguez Del Rio P, Bazire R,
Ibanez Sandin MD. COVID-19 and childhood asthma: Analysis of a pediatric
referral hospital. Pediatr Allergy Immunol . Mar
2022;33(3):e13757. doi:10.1111/pai.13757
41. Licari A, Votto M, Brambilla I, et al. Allergy and asthma in
children and adolescents during the COVID outbreak: What we know and how
we could prevent allergy and asthma flares. Allergy . Sep
2020;75(9):2402-2405. doi:10.1111/all.14369
42. Harwood R, Yan H, Talawila Da Camara N, et al. Which children and
young people are at higher risk of severe disease and death after
hospitalisation with SARS-CoV-2 infection in children and young people:
A systematic review and individual patient meta-analysis.EClinicalMedicine . Feb 2022;44:101287.
doi:10.1016/j.eclinm.2022.101287
43. Matsumoto N, Kadowaki T, Takanaga S, Ikeda M, Yorifuji T. Impact of
COVID-19 pandemic-associated reduction in respiratory viral infections
on childhood asthma onset in Japan. J Allergy Clin Immunol Pract .
Dec 2022;10(12):3306-3308 e2. doi:10.1016/j.jaip.2022.09.024
44. Lee KH, Yon DK, Suh DI. Prevalence of allergic diseases among Korean
adolescents during the COVID-19 pandemic: comparison with pre-COVID-19
11-year trends. Eur Rev Med Pharmacol Sci . Apr
2022;26(7):2556-2568. doi:10.26355/eurrev_202204_28492