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Abstract12

The El Niño-Southern Oscillation (ENSO) in the equatorial Pacific is the dominant mode13

of global air-sea CO2 flux interannual variability (IAV). Air-sea CO2 fluxes are driven14

by the difference between atmospheric and surface ocean pCO2, with variability of the15

latter driving flux variability. Previous studies found that models in Coupled Model In-16

tercomparison Project Phase 5 (CMIP5) failed to reproduce the observed ENSO-related17

pattern of CO2 fluxes and had weak pCO2 IAV, which were explained by both weak up-18

welling IAV and weak mean vertical DIC gradients. We assess whether the latest gen-19

eration of CMIP6 models can reproduce equatorial Pacific pCO2 IAV by validating mod-20

els against observations-based data products. We decompose pCO2 IAV into thermally21

and non-thermally driven anomalies to examine the balance between these competing22

anomalies, which explain the total pCO2 IAV. The majority of CMIP6 models under-23

estimate pCO2 IAV, while they overestimate SST IAV. Thermal and non-thermal pCO224

anomalies are not appropriately balanced in models, such that the resulting pCO2 IAV25

is too weak. We compare the relative strengths of the vertical transport of temperature26

and DIC and evaluate their contributions to thermal and non-thermal pCO2 anomalies.27

Model-to-observations-based product comparisons reveal that modeled mean vertical DIC28

gradients are biased weak relative to their mean vertical temperature gradients, but up-29

welling acting on these gradients is insufficient to explain the relative magnitudes of ther-30

mal and non-thermal pCO2 anomalies.31

Plain Language Summary32

To date, the global ocean has been responsible for absorbing over a third of car-33

bon dioxide (CO2) emissions, slowing down the growth of atmospheric CO2 levels which34

drives global warming. Of interest is the equatorial Pacific Ocean, which is the largest35

oceanic source of CO2 to the atmosphere with large fluctuations that are apparent in the36

record of global atmospheric CO2. To study the ocean’s ability to absorb future CO237

emissions, we need models of the Earth system that can accurately capture fluctuations38

in the equatorial Pacific. In this paper, we assess surface ocean CO2 fluctuations in the39

equatorial Pacific in the latest generation of models and we examine their deviations from40

observations. Compared to observations, models underestimate surface ocean CO2 fluc-41

tuations as a result of excessive cancellation between competing drivers of CO2 change.42

We find that the vertical gradient of carbon in models is too weak, which through ocean43

circulation, would contribute to weak surface CO2 fluctuations. However, this does not44

fully account for underestimations in surface CO2 fluctuations. Other processes have a45

significant role in excessively canceling surface CO2 concentrations and requires further46

research.47

1 Introduction48

Carbon dioxide (CO2) in the atmosphere is the main driver of anthropogenic ra-49

diative forcing via the greenhouse effect. Natural sinks in the ocean and land are damp-50

ing the atmospheric CO2 growth rate. The latest assessment of the global carbon bud-51

get averaged over recent decades (1960-2020) estimates the airborne fraction of atmo-52

spheric CO2 emissions to be about 45%, with the remainder of emissions partitioned among53

the ocean (25%) and land (30%) (Friedlingstein et al., 2022). However, uncertainties in54

quantifying aspects of the global carbon cycle result in an imbalance in the carbon bud-55

get, which is largely attributed to errors in land and ocean sink estimates (Friedlingstein56

et al., 2022). Constraining ocean interannual variability (IAV) will help to reduce un-57

certainty in land IAV.58

The equatorial Pacific is the largest natural oceanic source of CO2 to the atmosphere59

(Takahashi et al., 2009), as a result of wind-driven upwelling in the region; upwelling brings60

cool waters that are rich in dissolved inorganic carbon (DIC) to the surface, which in-61
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creases the partial pressure of CO2 in the surface ocean (pCO2). CO2 outgassing IAV62

in the equatorial Pacific is dominated by the El Niño-Southern Oscillation (ENSO), and63

is the dominant mode of global ocean sink IAV (Rödenbeck et al., 2014). ENSO mech-64

anisms of air-sea CO2 flux (FCO2) variability are well understood. During an ENSO warm65

phase (El Niño), slackening trade winds over the equator reduces upwelling and brings66

about warm sea surface temperature (SST) anomalies (Bjerknes, 1966). Warm SST anoma-67

lies increase pCO2 via reduced CO2 solubility. However, it is the reduction in surface DIC68

due to reduced upwelling that dominates the CO2 response (reduced CO2 outgassing)69

during an El Niño (McKinley et al., 2004). During an ENSO cold phase (La Niña), the70

opposite happens and CO2 outgassing is enhanced.71

In Coupled Model Intercomparison Project Phase 5 (CMIP5), atmosphere-ocean72

global climate models were coupled with biogeochemical processes for the first time in73

CMIP history, allowing for carbon cycling in models (Taylor et al., 2012; Emori et al.,74

2016). Studies have reported biases in simulated equatorial Pacific pCO2 and FCO2 IAV75

in CMIP5 models, where weak surface DIC variability was found to be a source of bias76

in some models (Dong et al., 2017; Jin et al., 2019). Given ongoing climate change, there77

is a need for Earth System Models (ESMs) to make accurate climate projections. The78

latest generation of ESMs from CMIP6 have demonstrated progress in representing the79

mean state of ocean biogeochemistry (Séférian et al., 2020). However, as in CMIP5, weak80

FCO2 IAV were also found in CMIP6 (Vaittinada Ayar et al., 2022). Identifying sources81

of model biases in FCO2 IAV for the contemporary period, where some data constraints82

exist, is a first step towards model improvements.83

Here, we assess equatorial Pacific pCO2 IAV in 18 CMIP6 models over recent decades,84

comparing amplitudes and spatial patterns of variability against state-of-the-art observations-85

based pCO2 products that span over five decades. We also compare the covariability of86

ENSO-related variables, such as SSTs, vertical velocity at 50m (w50), and thermocline87

depths with pCO2 anomalies across the CMIP6 subset through lagged correlations. To88

understand biases in pCO2 IAV, we decompose pCO2 IAV into thermally (SST) and non-89

thermally (DIC, alkalinity and salinity) driven components. Imbalances between these90

competing components provide insight on biases in the total pCO2 IAV.91

In the equatorial Pacific, surface DIC variability dominates pCO2 variability (Doney92

et al., 2009). Though there are several processes that drive DIC variability (FCO2, fresh-93

water fluxes, biology, vertical and horizontal transport), studies show that variability in94

the vertical transport of DIC is important to the overall budget of pCO2 variability in95

the equatorial Pacific Ocean (Liao et al., 2020). Including temperature-driven pCO2 vari-96

ability, Liao et al. (2020) showed that the vertical transport term contributed the largest97

amount in their full mixed-layer pCO2 budget decomposition (accounting for about 40%98

of the pCO2 response; FCO2 ∼ 20%; biology ∼ 18%; freshwater fluxes ∼ 11%; hori-99

zontal transport ∼ 10%; thermal and residual < 1%). This demonstrated importance100

of the vertical transport of DIC in the equatorial Pacific motivates our investigation of101

its variability in CMIP6. There is also reason to believe that models are biased in mean102

vertical gradients (Li & Xie, 2012; Farneti et al., 2022), which through upwelling, could103

contribute to biases in surface DIC variability.104

Our objectives are as follows: 1) compare equatorial Pacific pCO2 IAV in CMIP6105

models against observations-based data products, 2) understand why models underes-106

timate pCO2 IAV, and 3) identify sources of bias in the vertical transport of DIC in mod-107

els. Given biases in mean vertical gradients of DIC and temperature, we quantify the108

degree to which upwelling anomalies (acting on biased gradients) contribute to the rel-109

ative magnitudes of non-thermal and thermal pCO2 IAV, respectively. Such assessment110

is necessary to ground work on how future changes in the variability and mean state of111

the tropical Pacific atmosphere-ocean system will also impact variability and shifts in112

air-sea CO2 fluxes, with potential climate impact.113
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Table 1. The CMIP6 models in this assessment and their references. For information about

the ensemble members, see Table S1. Models in bold have a correct sign correlation between

pCO2 and vertical velocity and are assessed in all parts of this study.

Models Reference

ACCESS-ESM1-5 (Ziehn et al., 2019)
CanESM5 (Swart et al., 2019b)
CanESM5-CanOE (Swart et al., 2019a)
CESM2 (Danabasoglu, 2019b)
CESM2-FV2 (Danabasoglu, 2019a)
CESM2-WACCM (Danabasoglu, 2019d)
CESM2-WACCM-FV2 (Danabasoglu, 2019c)
CNRM-ESM2-1 (Seferian, 2018)
GFDL-CM4 (Guo et al., 2018)
IPSL-CM6A-LR (Boucher et al., 2021)
MIROC-ES2L (Hajima et al., 2019)
MRI-ESM2-0 (Yukimoto et al., 2019)
MPI-ESM1-2-LR (Wieners et al., 2019)
MPI-ESM1-2-HR (Jungclaus et al., 2019)
MPI-ESM-1-2-HAM (Neubauer et al., 2019)
NorESM2-LM (Seland et al., 2019)
NorESM2-MM (Bentsen et al., 2019)
UKESM1-0-LL (Byun, 2020)

2 Models, Data and Methods114

2.1 Models115

Outputs from historical simulations (1959-2014) from 18 CMIP6 models (Table 1)116

are from the Pangeo cloud (http://pangeo.io), which were originally downloaded from117

the Earth System Grid Federation’s online archives (http://esgf-node.llnl.gov/projects/118

cmip6). We apply a data pre-processing Python tool to clean and unify data inconsis-119

tencies before any analysis (Busecke & Abernathey, 2020). We assess 18 models which120

have monthly pCO2, FCO2, SST, near-surface wind speeds measured at 10m (u10), ocean121

temperatures (T), w50 and DIC data available. Vertical velocities are calculated using122

the three-dimensional continuity equation for models that only have horizontal circula-123

tion data. For analyses that involve multiple ensemble members, ensemble members are124

chosen only if they have outputs for all the variables named above. This ensures that125

the internal variability, unique to each run of a model (an ensemble member), is conserved126

across all output variables from a single run. For a list of the members that we use for127

each model, see Table S1.128

2.2 Observations-based Data Products129

We use five out of the six available monthly gridded observations-based pCO2 prod-130

ucts from SeaFlux (Fay et al., 2021) for FCO2 and surface ocean pCO2 estimates. These131

five products include JENA-MLS, MPI-SOMFFN, CMEMS-FFN, JMA-MLR and CSIR-132

ML6. We exclude a sixth product (NIES-FFNN) from our assessment as it was not able133

to recreate ENSO variability in pCO2, such as the strong 1997-98 El Niño event seen in134

the other products. For u10 data, we also use the three wind reanalysis products (CCMPv2,135

JRA55 and ERA5), used in SeaFlux to estimate fluxes.136
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DIC and total alkalinity (Alk) climatologies are from GLODAPv2 (Lauvset et al.,137

2021). GLODAPv2 is a mapped three-dimensional climatological data product of inor-138

ganic and carbon-related ocean variables. Observations of DIC and Alk are distributed139

in time too scarcely to allow determination of its time variation, so in GLODAPv2, the140

data have been averaged into a DIC climatology estimate. Monthly estimates of SST,141

ocean circulation and ocean temperature (1959-2014) are from a reanalysis product, ORAS5142

of the European Center for Medium Range Weather Forecasts (Zuo et al., 2019). Un-143

like DIC and Alk, time variations can be resolved for SST, ocean circulation and ocean144

temperature variables in observations-based data products. We calculate vertical veloc-145

ity using zonal and meridional ocean circulation data from ORAS5 via the vertical in-146

tegration of the continuity equation. SST observations from another dataset, HadISST147

(1959-2014; Rayner et al. (2003)), are a secondary source for SST comparisons against148

models.149

2.3 Methods150

Model outputs are regridded to the same 1◦×1◦ longitude-latitude grid before any151

analysis. We define a region of the equatorial Pacific (5◦N-5◦S) between 180◦E and 270◦E,152

which encompasses the Niño 3 and 3.4 regions, extending 10 degrees west of Niño 3.4,153

and refer to it as the Tropical Pacific Index (TPI) region. The Niño 3 and 3.4 regions154

are typically used to study the nature of ENSO variability over the equatorial Pacific Ocean,155

but here, the broader TPI region was chosen such that any longitudinal differences in156

the ENSO centers of action in models would be captured.157

To compare relative amplitudes of IAV across models and other datasets, we use158

one standard deviation (σ) of detrended and deseasonalized monthly anomalies. Mod-159

eled FCO2, pCO2 and u10 IAV are compared against SeaFlux IAV. Note that histori-160

cal simulations in CMIP6 models generate their own internal climate variability, and will161

not replicate the timings of historical events unless they are externally forced. Thus, when162

comparing SeaFlux IAV to model IAV, the temporal evolution is not expected to match.163

When calculating and comparing multi-year means between CMIP6 models and SeaFlux,164

data from the same time frame (1990 to 2014) are compared. This is done since multi-165

year means are sensitive to anthropogenic trends in CO2; the ocean sink is changing over166

time in both observations-based data products and historical simulations, such that multi-167

year means are sensitive to the time frame over which the average is taken. The 1990-168

2014 time frame is chosen for multi-year means, because temporal coverage begins in 1990169

for SeaFlux, and 2014 is the end year for CMIP6 historical simulations. Climatological170

monthly means taken over the study period are subtracted from monthly timeseries data171

to obtain deseasonalized monthly anomalies, and then, the data are detrended with the172

least squares method. In addition to model comparisons against SeaFlux, modeled SST173

IAV and vertical DIC gradients IAV are also compared against observations-based data174

products.175

Spatial patterns of pCO2 IAV are compared and assessed by calculating its first176

empirical orthogonal function (EOF) after detrending and deseasonalizing. EOF anal-177

yses are done on individual ensemble members that retain full internal variability, and178

then averaged across ensemble members. The first principal components (PC1) and as-179

sociated EOFs are all shown for the La Niña state, as determined with reference to the180

sign of the TPI SST index. Model performances in reproducing IAV are assessed using181

spatial correlation coefficients (SCC) between each model and observations-based pCO2182

patterns of IAV.183

In order to examine the mechanisms of pCO2 variability in models, local correla-184

tions between pCO2 and SST anomalies within the tropical Pacific are calculated. Ar-185

eas of strong correlations indicate regions in models where upwelling dominates pCO2,186

which is consistent with the dominant ENSO signal. Lagged temporal correlations be-187
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tween pCO2, SST, w50 and thermocline depth (ztherm) anomalies are also done to inves-188

tigate the covariability of ENSO-related variables to pCO2 anomalies. We define the ztherm189

as the depth of the maximum vertical temperature gradient. Time lags between variables190

are based on the lags seen in the observations-based data products: pCO2 and SST are191

concurrently correlated, while w50 and ztherm anomalies lead pCO2 by up to 3 months.192

Three-month running means of w50 and ztherm anomalies are taken before correlating193

them to the pCO2 of the fourth month (e.g., the January-to-March mean of w50 anoma-194

lies are correlated to April’s pCO2 anomaly). pCO2 is long-lived in the ocean, such that195

the influence of w50 and ztherm variability on local pCO2 advects west due to mean cur-196

rents during the three months of lag. To account for some of the westward advection of197

pCO2 during the lag period, w50 and ztherm anomalies are calculated over a region 20◦198

east of the TPI box region before correlating with pCO2 anomalies over the TPI box re-199

gion.200

2.4 Thermal and Non-thermal pCO2 IAV201

Variability in DIC, alkalinity (Alk) and salinity (S) are the non-thermal drivers of202

pCO2 variability, while SST variability is the thermal driver. Thermal effects on pCO2203

typically oppose and dampen the non-thermal effects with ENSO (Sutton et al., 2014):204

for example, a reduction in upwelling brings less DIC to the surface which decreases sur-205

face pCO2; simultaneously, the warmer SST anomalies, as a result of weakened upwelling,206

drives surface pCO2 up via reduced solubility. We separate the non-thermally driven pCO2207

(pCO2,nonT ) from the thermally-driven counterpart (pCO2,T ) in order to explain mod-208

eled pCO2 IAV. For pCO2,nonT , temperature effects are removed by normalizing pCO2209

outputs to a long-term mean SST (Takahashi et al., 2002), following an empirical for-210

mulation determined by Takahashi et al. (1993):211

pCO2,nonT = pCO2 × e0.0423·(SST−SST), (1)

where SST is the multiyear mean of SST over time. The thermally driven component,212

pCO2,T , is computed using the following equation (Takahashi et al., 2002):213

pCO2,T = pCO2 × e0.0423·(SST−SST), (2)

where pCO2 is the multiyear mean of pCO2 during 1990-2014.214

2.5 Vertical Transport of DIC215

Temporal changes in pCO2 are a function of temporal changes in DIC, Alk, S and216

T, and can be expressed as the following linearly decomposed time derivative (Takahashi217

et al., 1993; Le Quéré et al., 2000; Liao et al., 2020):218

∂tpCO2 =
∂pCO2

∂DIC
∂tDIC +

∂pCO2

∂Alk
∂tAlk +

∂pCO2

∂S
∂tS︸ ︷︷ ︸

non−thermal

+
∂pCO2

∂T
∂tT︸ ︷︷ ︸

thermal

, (3)

where we use the notation ∂t to denote a partial derivative with respect to time.219

Temporal changes in DIC, Alk and S drive pCO2,nonT , while temporal changes in SST220

drive pCO2,T .221

In the tropical Pacific, DIC variability has been found to be the dominant driver222

of pCO2 variability, compared to Alk, S and T drivers (Doney et al., 2009; Le Quéré et223

al., 2000). Note that Liao et al. (2020) found that in some cases, alkalinity-driven effects224

on pCO2 can exceed DIC-driven effects, though DIC effects generally dominate in the225

equatorial Pacific. Other model studies confirm that DIC is the dominant term in the226

region (Jin et al., 2019; Long et al., 2013).227
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The time tendency of surface DIC (∂tDIC) is controlled by several processes includ-
ing horizontal and vertical ocean transport, FCO2, biological processes and freshwater
fluxes:

∂tDIC ≈ ∂tDICH + ∂tDICV + ∂tDICFCO2 + ∂tDICBio + ∂tDICFW (4)

In this study, we assess only the variability in vertical transport of DIC (∂tDICV ).228

Liao et al. (2020) showed that though other processes are non-negligible, vertical trans-229

port contributed the largest effect on pCO2 change. They also showed that the other pro-230

cesses are sensitive to changes in vertical transport: an increase in upwelling (increased231

surface DIC) drives an air-sea flux response, which damps surface DIC; upwelled nutrient-232

rich waters increase biological activity causing an increased uptake of DIC, which again233

damps surface DIC; and the horizontal transport of increased surface DIC results in a234

diverging transport, also damping.235

In order to quantify the contribution of the vertical transport of DIC (∂tDICV ) to236

pCO2,nonT variability (∂tpCO2,nonT ), we evaluate the former in the same units as the237

latter - in units of the time tendency of pCO2 (µatms−1) - and write ∂tDICV as w50∂zDIC.238

Using coefficients from Equation 3, we can get both terms into the same units:239

∂pCO2

∂DIC
w50∂zDIC [units :µatm s−1] (5)

∂tpCO2,nonT [units :µatm s−1] (6)

The coefficients used for the pCO2 dependence on DIC are approximated as fol-
lows (Lovenduski et al., 2007):

∂pCO2

∂DIC
≈ pCO2

DIC
· 3×Alk×DIC− 2×DIC

2

(2×DIC−Alk)(Alk−DIC)
, (7)

which can be expressed more simply as:

∂pCO2

∂DIC
≈ pCO2

DIC
· γDIC, (8)

where γDIC is the buffer factor (Sarmiento & Gruber, 2006).240

2.6 Reynolds’ Decomposition241

Using Reynolds’ decomposition, we can separate the mean and the time-varying
component:

w50 = w50 + w′
50, and (9)

∂zDIC = ∂zDIC + ∂zDIC′, (10)

where primes denote detrended monthly anomalies and overbars denote long-term means.
We can decompose the time varying vertical transport of DIC, γDIC(w50∂zDIC), into three
Reynolds’ terms:

γDIC(w50∂zDIC)′ = γDIC(w50∂zDIC′ + w′
50∂zDIC + w′

50∂zDIC′) (11)

For models, we can compute all three Reynold’s terms. However, for observations-based242

data products, we can only compute the second Reynold’s term (w′
50∂zDIC) since grid-243

ded DIC data are only available as a climatology. Therefore, only the second Reynolds’244

terms are compared.245
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3 Results246

A large region of FCO2 outgassing can be seen in the equatorial Pacific Ocean, with247

the highest, (positive, red) values being in the eastern region in SeaFlux (Figure 1a). Com-248

paring mean fluxes, three models (MRI-ESM2-0, MPI-ESM-1-2-HAM and UKESM1-0-249

LL) are shown in Figure 1b. The models have similar patterns to SeaFlux to the first250

order, with a basin-wide outgassing feature seen over the equatorial Pacific region, and251

the largest values lying in the eastern region. Similar maps for all the CMIP6 models252

are available in Figure S1. Model mean fluxes in the equatorial Pacific are typically weaker253

than SeaFlux, with the exception of UKESM1-0-LL which has a mean magnitude closer254

to SeaFlux (the CESM2 family of models also have comparable mean FCO2 values, Fig-255

ure S1). The mean outgassing in the equatorial region is noticeably weaker in MRI-ESM2-256

0 than the other models, and the MPI models show a narrow band of near-zero flux at257

the equator in the middle of the broader equatorial outgassing pattern.

Figure 1. Multiyear mean maps of air-sea CO2 flux (FCO2 units: mol C m−2 yr−1) taken

over 1990-2014 for: a) the SeaFlux ensemble-average, and b) three CMIP6 models (one member

was chosen per model): MRI-ESM2-0, MPI-ESM-1-2-HAM and UKESM1-0-LL. Positive values

(red) represent fluxes from the ocean to the atmosphere. Similar maps for the remaining CMIP6

models are in Figure S1.

258
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3.1 pCO2 Interannual Variability and Multiyear Means259

The outgassing of CO2 in the equatorial Pacific Ocean (Figure 1) is modulated by260

ENSO variability, which dominates the variability of global oceanic FCO2 (Landschützer261

et al., 2016; McKinley et al., 2017; McKinley et al., 2004). Amplitudes of FCO2 IAV (σFCO′
2
)262

in the TPI region in CMIP6 differ from SeaFlux observations-based data products (Fig-263

ure 2a). The majority of CMIP6 models underestimate FCO2 IAV relative to SeaFlux264

over the TPI region with the exception of CESM2, CESM2-FV2, CNRM-ESM2-1 and265

MIROC-ES2L, which have members with FCO2 IAV amplitudes that overlap with SeaFlux.266

FCO2 is a function of surface ocean and atmospheric pCO2, and in the parame-267

terization used in the models and data products, has a quadratic relationship to near-268

surface wind speeds, u10 (Wanninkhof, 2014). To investigate the underestimation of FCO2269

seen in CMIP6, we assess their amplitudes of pCO2 and u10 IAV: σpCO′
2
and σu′

10
, re-270

spectively (see Figure 2b, c). Similar to the FCO2 IAV estimates, the majority of CMIP6271

models underestimate pCO2 IAV relative to SeaFlux. Meanwhile, u10 IAV is overesti-272

mated across the majority of models, with the exception of the CanESM5 models, the273

MPI models, and some smaller underestimation discrepancies from the GFDL-CM4 and274

MRI-ESM2-0 models, relative to three wind reanalysis data products. The underesti-275

mation in modeled pCO2 IAV appears to be compensated by the overestimation in u10276

IAV. In the MPI models, pCO2 IAV is within range of data products, but FCO2 is low277

due to low u10 IAV.278

ENSO-driven variability has a concomitant effect on SST variability in the equa-279

torial Pacific via the upwelling of cool waters. Figure 2d shows that the majority of CMIP6280

models overestimate SST IAV in the TPI region, relative to ORAS5 and HadISST es-281

timates. Models that underestimate pCO2 IAV also overestimate SST IAV, with the ex-282

ception of the CanESM5 models which underestimate both SST and pCO2 IAV. Mod-283

els also tend to overestimate u10 variance (Figures 2c, d). This is consistent with the cou-284

pling of wind speeds and SST variability via the Bjerknes feedback, where they amplify285

each other’s anomalies.286

Multiyear mean maps of pCO2, averaged over 1990 to 2014, are plotted for SeaFlux287

and five of the CMIP6 models (Figure 3; Figure S2: all models). A spatial correlation288

coefficient (SCC) over the TPI region is calculated between each model and SeaFlux to289

quantify the model skill at reproducing the mean pCO2 pattern. Note that a high SCC290

score does not indicate that the magnitude of the mean maps are similar. Generally, the291

majority of models produce the high pCO2 equatorial structure seen in SeaFlux, with292

a third of models having an SCC score above 0.8 (Figure S2). The largest pCO2 values293

are seen off coastal Peru and Panama in SeaFlux, with exaggerated coastal values seen294

in some of the models (ACCESS-ESM1-5, MRI-ESM2-0, and UKESM1-0-LL). Unlike295

SeaFlux, the high pCO2 equatorial structure extends almost all the way across the basin296

in the majority of models, except for the NorESM2 models. Similar to the FCO2 mul-297

tiyear mean maps, the MPI models show mean pCO2 structures that exhibit an equa-298

torial band of low pCO2 that splits up the general high pCO2 structure seen in SeaFlux299

and the other models.300

3.2 Spatial Patterns of pCO2 IAV301

The EOF1 of SeaFlux (Figure 4: top left) explains 41% of the total variance in302

pCO2 IAV in the tropical Pacific, with a pattern that resembles that of ENSO variabil-303

ity of FCO2 (McKinley et al., 2004; Resplandy et al., 2015). Its corresponding first prin-304

cipal component (PC1) is highly correlated with ORAS5 SST anomalies in the TPI re-305

gion (r = −0.82, see Figure S3 for PC1 results), which indicates ENSO-driven variabil-306

ity in the tropical Pacific Ocean in the observations-based products.307
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Figure 2. Comparison of IAV amplitudes in models (one standard deviation over the 1959-

2014 period), and in observations-based data products (one standard deviation over the 1990-

2014 period) in the Tropical Pacific Index (TPI) region (5◦N-5◦S, 180◦E-270◦E). Top-left: FCO2

IAV (units: mol C m−2 yr−1); top-right: pCO2 IAV (units: µatm); bottom-left: u10 IAV (units:

m s−1); bottom-right: SST IAV (units: ◦C). Boxplots represent the spread in IAV amplitudes

within a model’s ensemble members. For models where fewer than three members were avail-

able, the spread is shown without a boxplot. observations-based data products are represented

as the filled circles and the grey shaded regions indicate the range of IAV amplitudes within the

observations-based data products.
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Figure 3. Tropical Pacific pCO2 multi-year means from 1990-2014 (units: µatm) from the

SeaFlux ensemble average (top left) and five CMIP6 models (other panels). Boxes in the SeaFlux

and ACCESS-ESM1-5 panels mark the TPI region. The number (r) on the top right of each

model’s map is the SCC between the model and SeaFlux in the TPI region. Model multi-year

means are evaluated using a single ensemble member per model. Similar maps for all CMIP6

models are in Figure S2.

Figure 4. The first EOFs (units: µatm) of detrended pCO2 anomalies in SeaFlux, averaged

across the ensemble (top left), and 5 CMIP6 models (other panels). Model EOF patterns are

calculated individually for each ensemble member before averaging over the ensemble. The per-

centage of the total variance in the tropical Pacific explained by EOF1 is given in parentheses

above each panel. The number (r) on the top right of each model’s panel is the SCC over the

TPI region between each model’s EOF1 and SeaFlux’s EOF1. The TPI region is shown by the

box in the top-left panel. Similar maps for all CMIP6 models are in Figure S4. The correspond-

ing PC1 timeseries are shown in Figure S3.
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In CMIP6, few models have an EOF1 that resembles the ENSO pattern seen in SeaFlux308

(Figure 4; Figure S4: all models). Further, models that have a realistic spatial pattern309

have too little variance in the first EOF mode. For example, MIROC-ES2L has an EOF1310

pattern most similar to SeaFlux (SCC = 0.79), and explains 30% of the total pCO2 vari-311

ance. The CESM2 models, CNRM-ESM2-1 and UKESM1-0-LL reveal almost two-centers312

of action – near the coastlines on either side of the tropical Pacific - for pCO2 variance.313

The weak correlation over the TPI region between SeaFlux and CNRM-ESM2-1 (SCC314

= −0.04) is because the positive pCO2 variance in the model’s EOF1 is shifted slightly315

south of the equator. MPI models show a “negative” EOF1 pattern, revealing pCO2 vari-316

ability that is opposite to what is expected from ENSO variability - i.e. the pCO2 and317

SST variability in its TPI region are positively correlated, in contrast to the negative cor-318

relation in SeaFlux.319

Models that reproduce a realistic multiyear mean pCO2 map (Figure 3), with re-320

spect to SeaFlux, do not necessarily have a realistic ENSO pattern of variability (Fig-321

ure 4). Nevertheless, the relationship between PC1 and TPI SST anomalies do tend to322

be strong, with a median correlation of r = −0.73 (Figure S3). This is consistent with323

the ENSO signal where upwelling dominates pCO2 variability (Feely et al., 2006; Sut-324

ton et al., 2014).325

Figure 5 compares maps of the local correlation coefficient between pCO2 and SST326

anomalies in models for the tropical Pacific. These correlations reveal the relative mag-327

nitude of pCO2,T and pCO2,nonT components of pCO2 variability, since the dominance328

of either component will result in a correlation coefficient that is either positive (ther-329

mally dominant) or negative (non-thermally dominant). The strong, negative correla-330

tion pattern (blue areas) over the equatorial Pacific, seen in SeaFlux (Figure 5: top left),331

indicates variability in upwelling of water that is both cool and DIC-rich with ENSO os-332

cillations. Areas of positive correlations (red areas) indicate pCO2 variability that is ther-333

mally driven; warmer SSTs drive higher pCO2 levels. The negative pCO2-SST relation-334

ship covers a broad region in SeaFlux that spans the basin, with the strongest negative335

correlations at the equator. Compared to SeaFlux, MIROC-ES2L shows a pattern that336

covers a similar longitudinal span, however, the intensity of the negative correlations are337

not as strong, and does not extend as far north. NorESM2-MM shows stronger corre-338

lations; however, its negative pattern does not cover the same longitudinal span as seen339

in SeaFlux. The lack of the negative pCO2-to-SST extension to the west, common to most340

of the CMIP6 models, indicates that the ENSO-CO2 co-variability lies more east in mod-341

els than in SeaFlux. CNRM-ESM2-1, UKESM1-0-LL and ACCESS-ESM1-5 have a pos-342

itive correlation zone within the Niño 3.4 region; CESM2 also has an anomalous posi-343

tive correlation zone that lies more towards the east (Figure S5).344

3.3 Thermal and Non-thermal pCO2 IAV345

For SeaFlux and the CMIP6 models, detrended pCO2 monthly anomalies decom-346

posed into thermally (pCO2,T ) and non-thermally (pCO2,nonT ) driven anomalies (Equa-347

tion 1, 2) indicate the relative magnitudes of thermally and non-thermally driven pCO2348

variability (Figure 6: IPSL-CM6A-LR; S6: other models).349

In SeaFlux, pCO2,T (pCO2,nonT ) anomalies are strongly, positively (negatively) cor-350

related with SST anomalies, with correlation coefficients greater than 0.98. The total351

pCO2 anomaly (Figure 6, bold black line) is strongly negatively correlated (r = −0.92)352

with TPI SST anomalies, due to the non-thermal component being dominant over the353

thermal component (σpCO′
2,nonT

> σpCO′
2,T

).354

In contrast, in IPSL-CM6A-LR (Figure 6: right), the non-thermal and thermal com-355

ponents have similar amplitudes but opposite sign (σpCO′
2,nonT

∼ σpCO′
2,T

). This results356

in the total pCO2 anomaly having almost no correlation (r = −0.03) with SST anoma-357

lies. pCO2,T variability almost completely counteracts pCO2,nonT variability, resulting358

–12–



manuscript submitted to JGR: Biogeosciences

Figure 5. Correlation maps of detrended, pCO2 and SST monthly anomalies over the tropical

Pacific region. Time periods used: 1990-2014 for SeaFlux and ORAS5 (top-left), and 1959-2014

for models (other panels). Model correlation maps were calculated individually for each ensemble

member before averaging over the ensemble. For the observations-based map, the mean across

SeaFlux pCO2 products was first taken before correlating with ORAS5 SSTs. Maps for all mod-

els are in Figure S5

Figure 6. Timeseries of thermal, non-thermal and total pCO2 anomalies from an ensemble

average of the SeaFlux products (left) and from a single member of IPSL-CM6A-LR (right);

(top, red) pCO2,T anomalies; (middle, blue) pCO2,nonT anomalies; (bottom, black) net pCO2

anomalies (units: µatm). All panels are overlaid with the TPI region’s SST anomalies (units:
◦C; the SST y-axis is located on the right side of each panel). The bottom-left number in each

panel is the IAV amplitude (σ) of each timeseries, and the bottom-right number is the correlation

coefficient (r) of the pCO2 anomalies with the SST anomalies.
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Figure 7. a) Amplitudes of pCO2,T IAV (x-axis) versus pCO2,nonT IAV (y-axis) averaged

over the TPI region (units: µatm). Model ensemble means are represented by the filled circles,

while the unfilled diamond represents the observations-based data products. Box plots around

the figure show the distribution among models for pCO2,T and pCO2,nonT IAV amplitudes. b)

Ratios of pCO2,nonT to pCO2,T IAV amplitudes in models (circles) and in the observations-based

data products (diamond). Each scatter point represents the ensemble average for models and

SeaFlux. The overlaid rectangle is magnified to see the models better.

in a weak total pCO2 anomaly in IPSL-CM6A-LR. pCO2 components in other CMIP6359

models are also plotted (Figure S6). A summary plot of the relative amplitudes of the360

thermal and non-thermal components is shown in Figure 7.361

Figure 7a compares the amplitudes of pCO2,T and pCO2,nonT anomalies across CMIP6362

models’ ensemble means. σpCO2,T is 14.4 µatm for SeaFlux-ORAS5, and modeled val-363

ues range from 11.5 to 25.3 µatm, with the multi-model median variance slightly higher364

than SeaFlux-ORAS5. On the other hand, σpCO2,nonT for SeaFlux-ORAS5 is 23.5 µatm,365

while modeled σpCO2,nonT ranges from 5.40 to 31.1µatm with a multi-model median vari-366

ance lower than that of SeaFlux-ORAS5. Figure 7b compares the ratios of σpCO2,nonT : σpCO2,T367

in models against the ratio found in the observations-based data products; SeaFlux-ORAS5368

has a ratio of 1.63, while the models all have smaller ratios, ranging from 1.44 (ACCESS-369

ESM1-5) to 0.44 (MPI-ESM1-2-HR). As such, compared to SeaFlux, modeled σpCO2,nonT370

variability are not appropriately balanced against σpCO2,T. Models with a more dom-371

inant non-thermal component, i.e. σpCO2,nonT : σpCO2,T ratios closer to SeaFlux-ORAS5,372

have total pCO2 anomalies that are more negatively correlated with TPI SST anoma-373

lies (Figure S6).374
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3.4 pCO2 Correlations with Other Variables375

We evaluate the co-variability of ENSO-related variables with pCO2 in order to bet-376

ter understand the controls on pCO2,T and pCO2,nonT in models versus observations-377

based data products. Reduced upwelling brings less cool, DIC-rich water to the surface,378

resulting in warmer SSTs and reduced surface ocean pCO2. The winds that drive up-379

welling also force thermocline anomalies; thus, ztherm anomalies are positive (deeper) in380

the TPI region when the trades relax and upwelling weakens.381

Correlations of SST, ztherm, and w50 anomalies with pCO2 anomalies in the TPI382

region for SeaFlux are consistent with ENSO-driven variability as described above (Fig-383

ure 8a), indicating that the observations-based products have realistic relationships be-384

tween these variables and pCO2, in particular with SST. For CMIP6, there is a large spread385

in correlations with pCO2. NorESM2-MM and MIROC-ES2L have correlations similar386

to those seen in the observations-based data products. Models with incorrect correla-387

tion signs imply a lack of realistic relationships between these physical variables and pCO2.388

For example, IPSL-CM6A-LR, and the MPI models have incorrect correlation signs be-389

tween pCO2 and the variables considered here. Models with the weakest pCO2,nonT vari-390

ances (Figure 7a) tend to be the same models with weak or wrong-sign correlations, or391

did poorly in other areas throughout this assessment (Figures 3-5). On the other hand,392

models with the strongest pCO2,nonT variances had non-thermal:thermal ratios closest393

to SeaFlux-ORAS5 (Figure 7). We leave out models that have incorrect correlation signs394

(negative) for pCO2 and w50 anomalies (Figure 8) when looking at the vertical trans-395

port of DIC, since these models do not have realistic pCO2-upwelling relationships.396

3.5 Vertical Ocean Transport of DIC397

Despite having higher pCO2,nonT variances in the better performing models, the398

balances between the non-thermal and thermal components of pCO2 variability are still399

not the same as seen in SeaFlux-ORAS5 (Figure 7b). The balance between these com-400

ponents are such that for a given magnitude of pCO2,T IAV, the relative magnitude of401

pCO2,nonT IAV in models are insufficient to produce the total pCO2 IAV seen in SeaFlux.402

This motivates the rest of this assessment where we take a closer look at the vertical trans-403

port of DIC and its contribution to pCO2,nonT variability.404

In Figure 9a, timeseries for each term in the Reynolds’ decomposition (Equation 11)405

of the vertical transport of DIC in a single model (CESM2) are plotted against the time-406

tendency of pCO2,nonT . Figure 9b shows what can be obtained from data, which is just407

the second Reynolds term involving the climatological vertical DIC gradient and vari-408

able upwelling (Equation 11, second term on right). With Reynolds’ decomposition, we409

are able to isolate in models the contributions from variability in the vertical DIC gra-410

dient (Figure 9a: first panel) and the contributions from upwelling variability (Figure 9a:411

second panel) to the time-tendency of pCO2,nonT , ∂tpCO
′
2,nonT. The non-linear term (Fig-412

ure 9a: third panel) is small. The fourth panel in Figure 9a compares the total anomaly413

of the vertical ocean transport of DIC against ∂tpCO
′
2,nonT. In CESM2, the first two Reynolds414

terms are roughly the same in magnitude, with standard deviations 2.65 and 2.77 times415

larger than the standard deviation of ∂tpCO2,nonT. The non-linear term is approximately416

the same magnitude as ∂tpCO2,nonT. The total anomaly (Figure 9a: fourth panel) has417

a standard deviation five times larger than the standard deviation of ∂tpCO
′
2,nonT, and418

has a positive correlation of r = 0.70. The magnitude of the total anomaly in vertical419

DIC transport means that it is important to pCO2,nonT variability, and also that there420

must be strong damping terms. A summary of the Reynolds’ terms in other models is421

in Table S2. Other models have similar results as CESM2 in that the total anomaly of422

vertical transport of DIC is significant in magnitude relative to the magnitude of pCO2,nonT423

variability. Values of their relative magnitudes, σratio, range from 2.94 to 5.55 (Table S2),424
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Figure 8. a) Observed timeseries of pCO2 (units: µatm), SST (units: ◦C), ztherm (units: m),

and w50 anomalies (units: ms−1) from SeaFlux and ORAS5. A 3-month running mean of w50

anomalies is also shown (fourth panel). b) Correlations of pCO2 to SST, ztherm, and w50 monthly

anomalies over the TPI region. Correlation coefficients for the observations-based data products

are marked by the clear diamonds, and the 18 CMIP6 models are marked by filled circles. The

model correlation coefficients shown are ensemble means. The grey shading indicates the 95%

confidence threshold for the correlations.
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Figure 9. a) Timeseries of the first (blue), second (orange) and third (green) Reynolds’ terms

from Equation 11, and the full variability is shown in the bottom panel (red) for one member

from CESM2 (units: µatm s−1). The time-tendency of pCO2,nonT is shown in every panel (black

line). σratio = σ(Reynolds’ term)/ σ∂tpCO ′
2,nonT is annotated in every panel. The correlation

coefficient (r) between the timeseries are also shown. For the other models, a summary of this

information can be found in Table S2. b) timeseries of the second Reynolds’ term computed from

observations-based data products.

which together with strong correlations, means that variability in the vertical transport425

of DIC is an important source of pCO2,nonT variability.426

Across the models, the first two Reynolds’ terms, w50∂zDIC′ and w′
50∂zDIC, are427

the largest terms (Table S2), which suggests that the variability in both upwelling and428

vertical DIC gradients are similarly important to pCO2,nonT variability. In MIROC-ES2L,429

the non-linear term is almost the same amplitude as the first two terms. For observations-430

based data products, the second Reynolds term (w′
50∂zDIC) has a standard deviation431

four times bigger than the standard deviation of the observations-based ∂tpCO
′
2,nonT (Fig-432

ure 9b). Compared to the observations-based data products, the w′
50∂zDIC term is weak433

in models (Table S2, second column), except for UKESM1-0-LL. This could be due to434

either a weak vertical gradient of climatological DIC, or weak upwelling variability, or435

a combination of both.436

A time-averaged vertical velocity section from ORAS5 (Figure S7a) reveals that437

the depth at which upwelling occurs is within the upper 100m, with a maxima between438

50 to 75m at 220◦E. We compare upwelling variability in models versus ORAS5 in Fig-439

ure 10a at 50m. We find that the range of upwelling variability across models is com-440

parable and inclusive of the upwelling variability seen in ORAS5. In contrast, Figure 10b441

compares the vertical gradient of climatological DIC at 50 m to GLODAPv2. All the mod-442

els have weaker gradients. We repeat this comparison at 80 m (Figure S8) and confirm443

that it is robust. Modeled vertical gradients of climatological DIC are biased weak, caus-444

ing the second Reynolds term (w′
50∂zDIC) in models to be weaker than the observations-445

based estimate (Figure 9; Table S2). To summarize, the second Reynold’s term (w′
50∂zDIC)446

is an important term in the overall variability of the vertical transport of DIC, which is447
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Figure 10. a) Amplitudes (units: ms−1) of upwelling IAV across models (filled circles are

one member per model) versus ORAS5 (diamond). b) Amplitudes (units: mmolm−4) of vertical

gradients of climatological DIC across models versus GLODAPv2. The boxplots represent the

CMIP6 models.

important to the variability in pCO2,nonT , and thus pCO2 variability. Underestimations448

in w′
50∂zDIC may result in an underestimation in pCO2 variability.449

Alongside modeled mean vertical DIC gradients, we plot the mean vertical tem-450

perature gradients (∂zT) at 50m depth to compare the relative strengths of gradients451

in models, and to identify model biases from observations-based data products (Figure 11a).452

Vertical temperature gradients are negative since ocean temperatures decrease with depth.453

The spread in strengths of modeled temperature gradients encompasses that seen in ORAS5,454

though the majority of models have weaker temperature gradients. The percentage dif-455

ference between ORAS5 and the models’ median temperature gradient is about 21%. For456

the vertical gradient of climatological DIC, all models underestimate it compared to GLO-457

DAPv2, and the ensemble median has a percentage difference of about 39%. While the458

models tend to underestimate both the vertical gradients of climatological DIC and tem-459

perature, the climatological DIC gradients are more weakly biased, which for a given up-460

welling will tend to result in weaker pCO2,nonT variability relative to pCO2,T .461

Figure 11b compares the influence of w′
50∂zT against the influence of w′

50∂zDIC462

on pCO2 using the coefficients from Equation 7. Contributions from w′
50∂zDIC to pCO2463

in models are about 6 times greater than the thermal contributions. The vertical DIC464

term is much bigger than the vertical T term, but the asscoiated pCO2,nonT variability465

is not proportionally bigger than pCO2,T variability. Thus, weak vertical gradients can-466

not fully explain the pCO2,nonT , pCO2,T differences. Daily pCO2 variability (σpCO2)467

in the TPI region in SeaFlux is 0.35 µatm day−1, and values in models range from 0.29468

to 0.46 µatm day−1 (not shown). These values of daily TPI pCO2 variability are on the469

same order of magnitude as the w′
50∂zDIC contributions to pCO2 (Figure 11b: y-axis).470

In observations, and in some models, w′
50∂zDIC contributions to pCO2 are greater than471

the daily pCO2 variability in the TPI region. In observations, and in some models, w′
50∂zDIC472

contributions to pCO2 are larger than daily pCO2 variability in the TPI region. This473
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Figure 11. a) The relative strength of vertical mean temperature gradients (x-axis, units:
◦Cm−1) against vertical climatological DIC gradients (y-axis, units: mmolm−4) in 12 CMIP6

models (filled circles represent a single ensemble member) and in ORAS5 versus GLODAPv2

data (clear diamond). The boxplots represent the distribution in gradients among models, ex-

cluding observations-based data products (clear diamonds). b) The vertical transport of the

climatological vertical temperature gradient versus the DIC gradient, converted into units of

µatm day−1.

means that significant damping of pCO2 must be happening in order for it to be under-474

estimated, despite the large contribution from the vertical transport of DIC.475

4 Discussion476

The majority (15) of the 18 CMIP6 models underestimate pCO2 IAV, while they477

overestimate SST IAV. FCO2 IAV is also underestimated by the majority of CMIP6 mod-478

els. Previous studies of historical simulations from the earlier CMIP5 found that FCO2479

IAV were also underestimated in models (Dong et al., 2016, 2017). Results from another480

CMIP6 study also find that most models simulate weak FCO2 anomalies while overes-481

timating SST IAV (Vaittinada Ayar et al., 2022).482

We find that the correlations between pCO2 and other ENSO-related variables vary.483

Most models have correlations weaker than observed over the TPI region, a few are con-484

sistent with observations, and another few are opposite to observed. Weak ENSO-driven485

relationships were also noted in previous CMIP5 studies (Dong et al., 2017; Jin et al.,486

2019). Dong et al. (2016) also found that 12 models out of the 18 CMIP5 subset failed487

to show ENSO characteristics in FCO2 variability. They also found that models differed488

among themselves the most in regions with strong vertical movement, such as the trop-489

ical Pacific.490

Modeled pCO2,nonT variance in CMIP6 is not appropriately balanced with pCO2,T491

variability. Weak pCO2,nonT anomalies are insufficient to counteract the pCO2,T anoma-492
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lies resulting in total pCO2 anomalies that are too weak. In the equatorial Pacific, Jin493

et al. (2019) found pCO2 biases in two CMIP5 models that resulted from weak DIC con-494

tributions to pCO2. Weak DIC contributions were found to be mainly caused by weak495

vertical gradients of climatological DIC and weak upwelling anomalies, which both limit496

the vertical transport of DIC (Jin et al., 2019). We find that upwelling anomalies in CMIP6497

are comparable to ORAS5 (Figure 10a).498

Changes in the vertical transport of DIC affects surface DIC variability, which is499

known to be the dominant driver of pCO2 variability in the surface equatorial Pacific500

Ocean (McKinley et al., 2004; Liao et al., 2020). We find model pCO2 anomalies due to501

variability in the vertical transport of DIC are larger than their pCO2,nonT anomalies502

by a factor of 3 to almost 6 times (see Table S2: last column) but are positively corre-503

lated. This suggests that variability in the vertical transport of DIC is an important source504

of pCO2,nonT variability in models. At the same time, w′
50∂zDIC contributions to pCO2505

are comparable in magnitude to daily pCO2 variability in the TPI region (Figure S9b).506

Together, these findings indicate that w′
50∂zDIC contributions to pCO2 variability are507

significantly damped by other processes.508

The vertical gradient of climatological DIC is consistently weak across all the mod-509

els relative to observations-based data products (Figure 10), which is consistent with prior510

model results from CMIP5 (Jin et al., 2019). Vertical gradients of climatological tem-511

perature are not as weak. The imbalance in the relative strengths of these vertical gra-512

dients, for a given upwelling anomaly, contributes towards weaker non-thermal pCO2 vari-513

ability, relative to the thermal.514

While the relative strengths of mean vertical gradients, through upwelling, can re-515

sult in weaker σpCO2,nonT :σpCO2,T ratios, we do not find a linear scaling between the516

relative strengths in mean vertical gradients and the ratios of σpCO2,nonT : σpCO2,T across517

the models (Figure S9). A linear scaling would indicate that biases in the relative strengths518

of the mean vertical gradients proportionally bias the pCO2 ratios. Thus, we find the519

relative strengths of mean vertical gradients alone do not determine the imbalance in pCO2520

ratios. A more complete assessment that includes the other processes that contribute to521

pCO2 variability will be necessary to understand the causes of insufficient pCO2,nonT522

variability.523

Other processes that contribute to equatorial Pacific DIC variability that can dampen524

pCO2,nonT variability, include the horizontal transport of DIC, biological processes, fresh-525

water fluxes and air-sea CO2 fluxes. For example, when DIC is bought to the surface via526

upwelling, though pCO2 increases, the instantaneous air-sea CO2 flux response damp-527

ens surface DIC concentrations (Liao et al., 2020). The biological response also damps528

surface DIC concentrations; upwelling of nutrient-rich waters enhances biologically-driven529

uptake of DIC (Chavez et al., 1999). Freshwater fluxes (rainfall) also dilute surface DIC530

concentrations, and westward horizontal transport along the equator removes DIC from531

the upwelling region (Doney et al., 2009).532

Aside from DIC, other ocean biogeochemical variables influence surface pCO2,nonT ,533

such as alkalinity. Vaittinada Ayar et al. (2022) find that models with strong alkalinity534

biases have weak surface DIC biases (i.e. weak surface DIC variability), which leads to535

a reduction in pCO2,nonT variability. They find that for some models (CanESM5, GFDL-536

CM4 and MRI-ESM2-0), pCO2,nonT variability is weak enough that pCOT variability537

can dominate total pCO2 anomalies. However, an alkalinity bias alone does not explain538

all the models that underestimate pCO2,nonT , relative to pCO2,T , as we analyze here.539

For example, Vaittinada Ayar et al. (2022) shows that IPSL-CM6A-LR doesn’t have a540

strong alkalinity bias, however, we find that its pCO2,nonT :pCO2,T variance ratio is weaker541

than the ratio in MRI-ESM2-0 (Figure 7b), which is a model they show with a strong542

alkalinity bias.543
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Vaittinada Ayar et al. (2022) proposed that models without a strong alkalinity bias544

may be better predictors of future ENSO-CO2 flux dynamics. However, we find that these545

models underestimate equatorial Pacific pCO2 IAV and ENSO-related covariability. For546

example, IPSL-CM6A-LR did not have realistic correlations between pCO2 and SST,547

ztherm or w50 anomalies (Figure 8b). We propose that a wide range of variables need to548

be considered when selecting models for analysis of future trends. While this study looks549

at ENSO-driven pCO2 IAV, it has relevance for trends. Trends in SSTs, thermocline depths550

and upwelling in response to rising atmospheric CO2 involve many of the same coupled551

dynamics that drive ENSO variability (Seager et al., 2019; Cane et al., 1997; Clement552

et al., 1996). CMIP6 models cannot reproduce the observed trends in the tropical Pa-553

cific physical state and hence it is possible that they are also misrepresenting the trends554

in pCO2 and air-sea CO2 fluxes, with potential influence on the airborne fraction of an-555

thropogenic CO2. Validating ENSO-driven pCO2 variability in models is a necessary first556

step to examining the tropical Pacific’s coupled climate-carbon response to anthropogenic557

climate change.558

5 Conclusions559

In the equatorial Pacific, weak ENSO-related pCO2 variability in CMIP6 models560

is explained by an imbalance between pCO2,nonT and pCO2,T anomalies, whereby pCO2,nonT561

variability is insufficient to counteract strong pCO2,T variability. Strong pCO2,T vari-562

ability in CMIP6 is driven by excessive SST variance. Variability in the vertical trans-563

port of DIC does matter to pCO2,nonT variability in that upwelling anomalies acting on564

weak vertical DIC gradients can lead to weaker surface DIC variability. However, this565

alone does not explain the relative magnitudes of pCO2,nonT and pCO2,T anomalies. To566

guide model development, assessments of other processes that drive DIC variability will567

help to identify the causes of significant damping of pCO2,nonT variability that ultimately568

leads to weak pCO2 variability in models.569
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6 Open Research570

CMIP6 model output data are available at: http://esgf-node.llnl.gov/projects/571

cmip6. Information on installing and using the CMIP6 data pre-processing Python pack-572

age (Busecke & Abernathey, 2020) can be accessed here: https://cmip6-preprocessing573

.readthedocs.io/en/latest/.574

SeaFlux products (including wind speed products) are available on Zenodo: https://575

doi.org/10.5281/zenodo.5482547. GLODAPv2.2021 data, archived at NOAA-NCEI576

at https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov577

.noaa.nodc:0237935, can also be downloaded from the GLODAP website: https://578

www.glodap.info/. The ECMWF-ORAS5 data set can be downloaded from the Inte-579

grated Climate Data Center portal at http://icdc.cen.uni-hamburg.de/thredds/catalog/580

ftpthredds/EASYInit/oras5/catalog.html and https://www.cen.uni-hamburg.de/581

icdc/data/ocean/easy-init-ocean/ecmwf-oras5-backward-extension.html for 1979-582

2018 and 1958-1978, respectively. HadISST data were obtained from https://www.metoffice583

.gov.uk/hadobs/hadisst/ and are © British Crown Copyright, Met Office (2022), pro-584

vided under a Non-Commercial Government Licence http://www.nationalarchives585

.gov.uk/doc/non-commercial-government-licence/version/2/.586
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