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 4 

Identifying the observables that warn of volcanic eruptions is a major challenge in natural 5 

disasters management. An important, but under-investigated, observable is the diffuse 6 

heating of volcanic soils, which represents a major energy source at quiescent volcanism. 7 

However, it remains unclear whether diffuse heating, or surface warming, responds to pre-8 

eruptive processes and varies before eruption. Here we show that the last 9 

eruptions/explosions of seven different volcanoes were preceded by a systematic long-term 10 

(~years) warming of their flanks. This warming, found through a new statistical analysis of 11 

satellite-based long-wavelength (10.780–11.280 𝛍𝐦) infrared data, is a phenomenon that 12 

operates over large areas (from a few to hundreds of km2) of the volcanic edifices. 13 

Specifically, the median temperature of the target volcanoes increased with respect to the 14 

surroundings by up to ~1.5 ℃ for several years before magmatic, phreatic, and hydrothermal 15 

eruptions. This reflects heat flux increases of up to ~10 𝐖 𝐦𝟐⁄ , probably driven by the 16 

enhancement of subsurface hydrothermal activity. Surface warming is detected even before 17 

eruptions that were impossible to anticipate through other geophysical/geochemical methods 18 

(e.g., the 2014 phreatic eruption of Ontake, Japan; the 2015 magmatic eruption of Calbuco, 19 

Chile), thus opening new horizons to better constrain the thermal budget of volcanoes and 20 

improve eruption forecasts. 21 

 22 



 23 

Volcanoes are major emitters of the Earth’s internal heat. A large amount of heat is released 24 

diffusively through the soil1–5 (e.g., ~0.9 MW at Masaya, Nicaragua; ~3.6 MW at Pantelleria, Italy; 25 

~16.6 MW at Vesuvio, Italy; ~42.6 MW at Nisyros, Greece; ~100.8 MW at Campi Flegrei, Italy), 26 

which represents the dominant energy source during inter-eruptive periods. For example, Chiodini 27 

et al.6 found that diffuse heating at the Solfatara crater dominates the energy budget of Campi 28 

Flegrei caldera, and that is one order of magnitude greater than the elastic energy released during 29 

recent seismic and deformation episodes. Mannini et al.7 also reported that diffuse heating 30 

accounts for >90% of the total heat flux of Vulcano’s Fossa fumarole field (Italy). These studies 31 

stimulate the following questions: Does diffuse heating operate over large areas of volcanic 32 

edifices or is it only constrained to fumarolic fields? Is there a link between diffuse heating and 33 

the subsurface processes that drive eruptions? To what extent does diffuse heating vary before 34 

eruptions?  35 

 36 

Surface warming detection algorithm and case studies 37 

This work addresses the aforementioned questions by analyzing 16.5-year records (between 04-38 

July-2002 and 31-January-2019) of the thermal infrared radiance measured by the Moderate 39 

Resolution Imaging Spectroradiometers (MODIS) aboard NASA’s Terra and Aqua satellites. In 40 

particular, we examined day- and night-time scenes from MODIS Band 31 (10.780-11.280 μm), 41 

which captures surface radiance variations with minimal effects from atmospheric absorption and 42 

emission8. MODIS is well suited for our study because it provides global coverage with high 43 

temporal resolution (~2 observations per day at tropical latitudes); wide ground swaths with 44 

simultaneous information of large areas (~2,330 km at tropical latitudes); and spatial resolution of 45 



~1 km2 at nadir, sufficient to detect diffuse heating as long as it occurs over extensive areas. 46 

Ground-based measurements of soil temperature provide higher accuracy, but they are only 47 

available at a few volcanoes and are obtained over short time periods and/or over small areas 48 

(typically <1 km2) of the volcanic flanks9–14.  49 

 50 

Space-based thermal remote sensing of volcanoes has been performed using metrics detecting 51 

hotspots15–21, i.e., small-scale (~pixel size) locations that are hotter than their surroundings due to 52 

magma or fumarolic activity. In contrast, we aim to investigate large-scale (~volcanic edifice size) 53 

heat emissions (Fig. 1), which requires designing a statistical metric that tracks the thermal energy 54 

escaping from the volcanic flanks and that minimizes the effects of “outliers” in the data records 55 

due to cloud coverage, geolocation errors, pixel mosaicking, or overlap between scan lines8. These 56 

requirements are met by the median anomaly (𝛿𝑇̅̅̅̅ ), a new metric that captures the long-term 57 

(~years) variation of the lowest temperature of a volcanic edifice with respect to its surroundings 58 

(see Methods and Supplementary Methods).  59 

 60 

This study focuses on exploring the temporal evolution of 𝛿𝑇̅̅̅̅  for seven volcanoes that are 61 

representative of many volcanoes around the world, cover a broad range of behaviors and 62 

characteristics, and have erupted/exploded over the past two decades (Ontake, Japan; Ruapehu, 63 

New Zealand; Domuyo, Argentina; Calbuco, Chile; Redoubt, Alaska; Agung, Indonesia; and Pico 64 

do Fogo, Cape Verde). In particular, these volcanic systems cover different: (a) eruption type 65 

(hydrothermal, phreatic, or magmatic) and magnitude (Volcanic Explosivity Index or VEI=0-4); 66 

(b) evolution; (c) degree of hydrothermal activity at the surface; (d) levels of pre-eruptive unrest 67 



and post-eruptive behavior; (e) ground covers (permanent glaciers or snow, seasonal snow, crater 68 

lake, arid areas, forest and rainforest); (f) latitude (from ~8° to ~60°); and (g) origin (i.e., formed 69 

over crustal plate boundaries or forming islands over hotspots). The only requirement imposed in 70 

the choice of the volcanoes is that our statistical algorithm must be applicable. This implies that 71 

the volcanoes: (i) must have erupted only once or twice over the last two decades because our 72 

algorithm does not capture thermal processes occurring in short (<1 year) timescales; (ii) must not 73 

be located in very small islands because our algorithm requires sufficient number of pixels for the 74 

statistical analysis to be robust; (iii) must be significantly elevated with respect to the surroundings, 75 

so our algorithm can successfully identify scenes little affected by clouds. 76 

 77 

Pre-eruptive surface warming of volcanic flanks 78 

Our analysis reveals that the eruptions/explosions of our test cases occurred around the highest 79 

values of the median anomaly 𝛿𝑇̅̅̅̅ , and that they were preceded by a subtle but significant long-80 

term (>1 year) warming (~0.1 − 1.5 ℃) whose uncertainty is smaller (<40%) for large events 81 

(Fig. 2; Table 1). In addition, 𝛿𝑇̅̅̅̅  decreases right after small eruptions (VEI<3, or a few months 82 

after eruptions if they are large (VEI≥ 3). Right after large eruptions, 𝛿𝑇̅̅̅̅  increases quickly due to 83 

the materials deposited around the vent, which modify surface temperature and emissivity. Below, 84 

we describe the results obtained for each volcano.  85 

 86 

Ontake featured two unexpected events, a small (VEI=0) gas explosion in March 2007 and a large 87 

(VEI=3) phreatic eruption in September 2014 (which killed around 60 hikers22 and became the 88 

worst volcanic disaster in Japan since 1926) (Fig. 2a). The median anomaly 𝛿𝑇̅̅̅̅  increased by 89 

~0.20 ℃  between January 2004 and March 2007, when the small gas explosion occurred. After 90 



this explosion, 𝛿𝑇̅̅̅̅  decreased gradually at an average rate of ~0.14 ℃/year, until reaching the 91 

minimum value of the time series in mid-2012. Then, 𝛿𝑇̅̅̅̅  increased by 0.72 ± 0.21 ℃ for about 92 

two years (the fastest pre-eruptive warming of the test cases, together with Agung), reaching 𝛿𝑇̅̅̅̅ =93 

0.85 ± 0.15 ℃  by the time of the large 2014 phreatic eruption22. The ~2-year precursory warming 94 

of the 2014 eruption is apparently linked neither to long-term seismic and geodetic observations 95 

around the volcano22 nor to helium anomalies23. No other well-defined long-term warning sign has 96 

been detected so far for the 2014 eruption. 97 

 98 

Ruapehu featured two unheralded events, a small (VEI=1) gas explosion in October 2006 and a 99 

larger phreatomagmatic eruption (VEI=1) in September 2007 (in which a climber suffered serious 100 

injuries24) (Fig. 2b). The median anomaly 𝛿𝑇̅̅̅̅  increased by 0.65 ± 0.23 ℃ during, at least, the 3-101 

to-4 years preceding the 2006 explosion and the 2007 eruption. This pre-eruptive warming 102 

coincides with the enhancement of seismic attenuation25, and partially with the tidal modulation 103 

of the shallow seismicity26. Since the 2007 eruption, the thermal anomaly has remained at high 104 

levels (𝛿𝑇̅̅̅̅ ~0.6 − 0.8 ℃) compared to 2004 (𝛿𝑇̅̅̅̅ ~0.2 − 0.3 ℃), concomitant with several unrest 105 

episodes. It is worth highlighting a decrease of 𝛿𝑇̅̅̅̅  from the end of 2011 to mid-2015, coinciding 106 

in part with a sustained period of low lake temperatures (from mid-2012 to mid-2013); and a small 107 

upturn of ~0.15 ℃ between 2014-2017, coinciding with strong tremor levels, anomalous 108 

earthquakes, and high degassing rates and lake temperatures26.  109 

 110 

Domuyo has not presented major Holocene eruptions, although it is the second most energetic 111 

hydrothermal system on Earth (after Yellowstone) and minor unheralded hydrothermal explosions 112 

in February 2003, January 2007, and August 2012 were reported by local people and park 113 



rangers27,28 (Fig. 2c). The 2003 hydrothermal explosion occurred at the edge of the 𝛿𝑇̅̅̅̅  time series, 114 

so the pre-eruptive variation of the median anomaly cannot be assessed for that event. The 2007 115 

and 2012 events were preceded by 𝛿𝑇̅̅̅̅  increases in the range 0.15-0.95 ℃ since 2004 and up to 116 

~0.50 ℃ since 2009, respectively. The uncertainty band is wider at this volcano, although the 117 

minor explosions occurred at the highest levels of the median anomaly (0.93 ± 0.41 ℃ and 0.86 ±118 

0.42 ℃, respectively). From 2012 to late 2016, the median anomaly decreased at average rates of 119 

~0.25 ℃/year. Since then, 𝛿𝑇̅̅̅̅  has been increasing quickly at rates similar to those observed prior 120 

to the 2007 explosion.  121 

 122 

Calbuco featured a large but unheralded magmatic eruption29 (VEI=4) in April-May 2015 (Fig. 123 

2d). The median anomaly rose slowly by 0.32 ± 0.13 ℃ between 2008 and 2012; then, it remained 124 

roughly constant until the onset of the 2015 magmatic eruption. After the eruption, 𝛿𝑇̅̅̅̅  increased 125 

at much larger rates until reaching 𝛿𝑇̅̅̅̅ ~0.52 ℃ by the end of 2015; and since 2017, 𝛿𝑇̅̅̅̅  has been 126 

decreasing quickly. The pre-eruptive increase of 𝛿𝑇̅̅̅̅  suggests that the quick (<4 days) ascent of 127 

magma29,30 expelled during the 2015 event was indeed preceded by a much long-term build-up 128 

process (e.g., slow accumulation of magma or gases in the shallow crust) that initiated about seven 129 

years earlier leaving a detectable thermal signature at the surface. A subtle long-term slow build-130 

up to eruption may explain why no deformation was detected prior to the 2015 eruption29. 131 

 132 

Redoubt had a prominent (VEI=3) magmatic eruption31 in March 2009 (Fig. 2e). The median 133 

anomaly increased by 0.47 ± 0.17 ℃ from mid-2006 to the 2009 magmatic eruption (~0.17 134 

℃/year on average); about one year after the event, 𝛿𝑇̅̅̅̅  started to decrease at accelerated rates for 135 

about five years. Since 2014, 𝛿𝑇̅̅̅̅  has remained at low levels (≲ 0.3 ℃), slightly above the values 136 



found years before the 2009 eruption. Interestingly, 𝛿𝑇̅̅̅̅  began to increase ~1 year earlier than other 137 

precursory signals31 (e.g., sulfur odors, increased gas emissions, deep seismicity, deformation, 138 

glacier melting). 139 

 140 

Agung featured a large magmatic eruptive phase (VEI=3) between November 2017 and June 2019 141 

(Fig. 2f). The median anomaly 𝛿𝑇̅̅̅̅  rose by 1.42 ± 0.27 ℃ between 2013 and the onset of the 142 

eruption in 2017 (~0.35 ℃/year on average), thus revealing that thermal unrest initiated several 143 

years before other pre-eruptive signals were detected (e.g., seismic activity increased ~3 months 144 

before the eruption32). The eruption occurred at the edge of the 𝛿𝑇̅̅̅̅  time series, and thus the post-145 

eruptive evolution of the median anomaly cannot be assessed in this case. Interestingly, 𝛿𝑇̅̅̅̅  values 146 

around 2003-2004 are comparable to those prior to the 2017-2019 event, although the previous 147 

documented eruption occurred more than 50 years ago. This may reflect a previously undetected 148 

eruption at the beginning of the century, a failed eruption, or other processes such as large fires in 149 

the volcanic flanks. In fact, large fires were proposed to be responsible for several hotspots 150 

detected from space33 in 2001 and 2002.  151 

 152 

Pico do Fogo is a hotspot volcano that erupted magma (VEI=3) between November 2014 and 153 

February 2015 (Fig. 2g), and has been found to release diffuse magmatic CO2 over extensive 154 

areas34,35. The onset of this eruption, which displaced more than 1,000 people and destroyed 155 

hundreds of buildings and hectares of agricultural land36, was preceded by an increase of the 156 

median anomaly of 0.82 ± 0.23 ℃ since mid-2010 (~0.20 ℃/year on average). Similar to other 157 

volcanoes, 𝛿𝑇̅̅̅̅  increased quickly after the eruption and decreased a few months afterwards; in 158 

addition, thermal unrest initiated much earlier than other warning signs were detected (e.g., 159 



increasing diffuse CO2 was detected only a few months before the event36). Interestingly, our 160 

analysis also reveals a less prominent but significant thermal unrest between 2004 and 2008. 161 

However, there is limited information between the 1995 and the 2014-2015 eruptions to assess 162 

whether this thermal unrest was concomitant to other geophysical/geochemical warning signs or 163 

whether it culminated in some kind of undetected activity at the surface.  164 

 165 

Heat flux and enhancement of hydrothermal activity 166 

Below, we discuss four possible explanations for the pre-eruptive surface warming detected in the 167 

target volcanoes. First, the variations of the median anomaly (𝛿𝑇̅̅̅̅ ) are spurious signals produced 168 

by noise (see Methods). This is not realistic because the probability of obtaining the observed 169 

amplitudes of 𝛿𝑇̅̅̅̅  by chance is 3.3% at most (for Domuyo), and is below 0.01% for Ontake and 170 

Redoubt (Fig. 2f). This means that our results represent actual thermal variations beyond the 2-171 

sigma confidence level, reaching much higher confidence levels for most of the volcanoes. Second, 172 

the pre-eruptive variations of 𝛿𝑇̅̅̅̅  are dominated by atmospheric/weather phenomena, the stability 173 

of the MODIS sensors, and/or fires. Although these processes may play a significant role (e.g., 174 

fires may be responsible for the high thermal emissions detected at Agung volcano at the beginning 175 

of the XXI century33), the systematic increase of 𝛿𝑇̅̅̅̅  prior to eruption or during volcanic unrest 176 

suggest that it is dominated by subsurface volcanic processes. Third, the pre-eruptive variations of 177 

𝛿𝑇̅̅̅̅  reflect the emergence of volcano-related hotspots (i.e., lava domes or fumaroles). This is not 178 

feasible because gradual long-term median temperature variations reflect gradual shifts of the 179 

temperature distribution of the volcanic flanks. The emergence of volcano-related hotspots can 180 

produce step variations of the median of the temperature distribution but not gradual long-term 181 

changes, unless they emerge gradually over the large areas explored, which is not realistic. Fourth, 182 



the pre-eruptive thermal variations observed in the target volcanoes reflect the diffuse supply of 183 

heat to the surface, which slightly warms up the soil and snow cover37 over extensive (~edifice 184 

size) areas (Fig. 1). Diffuse heating is the only physically realistic explanation for our results.  185 

 186 

We theorize that the large-scale surface warming of volcanoes reflects the enhancement of 187 

subsurface hydrothermal activity (Fig. 1). In particular, the gas exsolved in shallow magma 188 

reservoirs rises via permeable flow through the crust, and dissipates heat through interaction with 189 

the host rock and through boiling in underground aquifers6. The water vapor from boiling aquifers 190 

and from magma (mixed with other magmatic gases, e.g., CO2) rises towards the surface, and 191 

eventually condenses beneath the soil when the proper thermodynamic conditions are reached9. 192 

The condensation of H2O releases latent heat that is then transported to the surface through 193 

conductive heat transfer in the uppermost part of the soil1,6,10. The pre-eruptive variation of heat 194 

flux supplied to the surface between two instants 𝑡 and 𝑡0, ∆Φ𝑑(𝑡; 𝑡0), can be estimated from a 195 

heat balance model using the median anomaly (Supplementary Methods): 196 

 197 

∆Φ𝑑(𝑡; 𝑡0) ≈ 4𝜎𝜀𝑇3[𝛿𝑇̅̅̅̅ (𝑡) − 𝛿𝑇̅̅̅̅ (𝑡0)]       ,         (1) 198 

 199 

where 𝜎 = 5.67 ∙ 10−8  W m2K4⁄  is the Stefan-Boltzmann constant; 𝜀 is the time-averaged median 200 

surface emissivity of the area analyzed (and for the central wavelength of the band used in this 201 

study; ~11 μm); and 𝑇 is the time-averaged median brightness temperature of the regional 202 

background. For example, for the unheralded 2014 Ontake (𝑇 = 274 ± 24 ℃, 𝛿𝑇̅̅̅̅ (𝑡) − 𝛿𝑇̅̅̅̅ (𝑡0) =203 

0.72 ± 0.21 ℃, 𝜀 = 0.95 ± 0.05) and 2015 Calbuco (𝑇 = 278 ± 18 ℃, 𝛿𝑇̅̅̅̅ (𝑡) − 𝛿𝑇̅̅̅̅ (𝑡0) =204 



0.32 ± 0.13 ℃, 𝜀 = 0.95 ± 0.05) eruptions, we obtain pre-eruptive increases of heat flux of 205 

∆Φ𝑑(𝑡; 𝑡0) = 3.2 ± 1.3 W m2⁄  and ∆Φ𝑑(𝑡; 𝑡0) = 1.50 ± 0.69 W m2⁄ , respectively, whereas it 206 

reaches values of ∆Φ𝑑(𝑡; 𝑡0) = 7.42 ± 2.37 W m2⁄  for Agung (𝑇 = 289 ± 24 ℃, 𝛿𝑇̅̅̅̅ (𝑡) −207 

𝛿𝑇̅̅̅̅ (𝑡0) = 1.42 ± 0.27 ℃, 𝜀 = 0.95 ± 0.05) (Table 1; Supplementary Table 1). Interestingly, the 208 

pre-eruptive increase of heat flux appears to be independent of the type of eruption (i.e., gas-209 

dominated eruptions or magma-dominated); this supports the idea that large-scale diffuse heating 210 

reflects the ascent of magmatic gas to the surface and its interaction with hydrothermal systems. 211 

 212 

This work demonstrates that diffuse heating is a large-scale phenomenon operating over extensive 213 

areas of volcanic edifices (similar to diffuse degassing34,38,39), is an early indicator of volcanic 214 

reactivation, increases prior to different types of eruption, and can be tracked with a simple 215 

satellite-based remote sensing method. These findings open new horizons to explore the thermal 216 

budget of volcanoes and better forecast eruptions that are very difficult to anticipate through other 217 

geophysical methods (e.g., gas-driven events). Diffuse heating is probably controlled by the 218 

increasing supply of hot gases to the shallow crust, which enhances underground hydrothermal 219 

activity40, subsoil steam condensation, and the transport of heat towards the surface1,9. In turn, the 220 

supply of gases from depth may be controlled by the ascent of magma to the surface, magma 221 

reservoir dynamics, and crust permeability25,26. Future work will pay special attention to the 222 

thermal evolution of Domuyo (Argentina), which shows ongoing warming; will apply our method 223 

to other sub-aerial volcanoes around the world; will explore the limitations to track diffuse heating 224 

in frequently-erupting volcanoes (e.g., Etna, Italy); and will focus on understanding the link 225 

between large-scale diffuse heating, heat emissions in fumarolic fields (i.e., hotspots), soil and 226 

plume degassing, and ground deformation. 227 



METHODS 228 

1) Data retrieval 229 

Data from 04-July-2002 to 31-January-2019 are retrieved from the MODIS instruments aboard the 230 

Terra and Aqua satellites, launched in December 1999 and May 2002, respectively. MODIS 231 

products are a major component of the NASA’s Earth Observing System, and their strengths 232 

include global coverage, high sampling rate (from ~1 to ~4 swaths per day per satellite, depending 233 

on latitude), high radiometric resolution, suitable dynamic range, and accurate calibration8. In 234 

particular, we investigate the thermal evolution of volcanic surfaces by using two products 235 

(https://earthdata.nasa.gov/): MODIS Terra/Aqua Calibrated Radiances 5-Min Level-1B Swath 236 

1km V006 (MOD021KM/MYD021KM) and MODIS Terra/Aqua Geolocation Fields 5-Min 237 

Level-1A Swath 1km V006 (MOD03/MYD03). The Level-1B Radiance product provides accurate 238 

values of radiance, which have little or no long-term drift41, are radiometrically calibrated, and are 239 

corrected for instrumental effects; the Level-1A Geolocation product provides the geographical 240 

coordinates of each pixel of the Level-1B scenes. Altogether, we analyze >200,000 MODIS scenes 241 

(26,277 for Ontake; 28,539 for Ruapehu; 27,429 for Domuyo; 30,338 for Calbuco; 46,896 for 242 

Redoubt; 21,242 for Agung; and 22,004 for Pico do Fogo), which correspond to >30 TB of 243 

memory. MODIS acquires radiance at spatial resolution of ~1 km2 at nadir in 16 thermal bands 244 

of the electromagnetic spectrum, but this study focuses only on band 31 (10.780-11.280 μm) 245 

because is more sensitive to surface temperature variations8. Note that we do not explore the 246 

thermal evolution of the ground with Land Surface Temperature (LST) products42 because we 247 

want to use data with little previous processing.  248 

 249 



2) Data Analysis 250 

We implement a new statistical strategy to capture the long-term (~years) brightness temperature 251 

evolution of the coldest areas (~20 km2 on average) of volcanic flanks; this is used as a proxy for 252 

the radiant changes in the volcanic edifices as a whole. This approach contrasts with previous 253 

algorithms aiming to detect the emergence of hotspots15–20 (i.e., pixels that are hotter than the 254 

surrounding pixels) associated with magma exposure at the surface or fumarolic activity. Our 255 

algorithm consists of six main steps (Supplementary Fig. 1). 256 

 257 

2.1) Choice of exploration areas 258 

We choose latitude-longitude quadrangles (0.30° latitude by 0.48° longitude) centered at the 259 

geographical coordinates of the volcanoes under study (as provided by the Smithsonian 260 

Institution’s Global Volcanism Program database; https://volcano.si.edu/). These quadrangles 261 

cover the volcanic edifices and their surroundings, and represent surface areas 𝐴𝑡 on the order of 262 

~900 − 1,500 km2 and number of pixels at nadir in the range 𝑁 ≈  900 − 1,500, depending on 263 

the latitude of the volcanoes (Supplementary Fig. 1a, 1b). In addition, we choose an auxiliary 264 

subarea 𝐴𝑎𝑢𝑥 < 𝐴𝑡 covering part of the volcanic edifices only, and that ranges from ~50 km2 to 265 

~800 km2 depending on topography (Supplementary Table 1). The auxiliary subarea is used only 266 

to automatically detect useless scenes and discard them. 267 

 268 

2.2) Automatic discarding of useless scenes 269 

We calculate different statistical estimators in the target areas 𝐴𝑡 using the MODIS scenes. These 270 

estimators are the median spectral radiance of the 𝑀 pixels with lowest spectral radiance (𝐿𝑐,𝑀) 271 

https://volcano.si.edu/


and the median spectral radiance of the 𝐾 pixels with largest spectral radiance (𝐿ℎ,𝐾). The median 272 

is chosen as the statistical estimator because it minimizes the outlier effects (e.g., due to cloud 273 

coverage, pixel mosaicking, geolocation errors, and overlap of scan lines8). In cloud-free scenes, 274 

the 𝑀 pixels with lowest spectral radiance and the pixel with median spectral radiance 𝐿𝑐,𝑀 fall 275 

into the subarea 𝐴𝑎𝑢𝑥 (Supplementary Fig. 1c), whereas the 𝐾 pixels with largest spectral radiance 276 

and the pixel with median spectral radiance 𝐿ℎ,𝐾 fall outside the subarea 𝐴𝑎𝑢𝑥 (Fig. 1d). This is so 277 

because the highest levels of the volcanoes are colder (and thus emit less radiance) due to altitude. 278 

𝐿𝑐,𝑀 is therefore a good estimator of the median spectral radiance of the coldest areas of the 279 

volcanic flanks, whereas 𝐿ℎ,𝐾 is a good estimator of the median spectral radiance of the regional 280 

background. In contrast, in scenes that are very contaminated by clouds, the pixel with median 281 

spectral radiance 𝐿𝑐,𝑀 does not fall into the subarea 𝐴𝑎𝑢𝑥 and/or the pixel with median spectral 282 

radiance 𝐿ℎ,𝐾 falls into the subarea 𝐴𝑎𝑢𝑥; when this happens, the scene is discarded 283 

(Supplementary Fig. 1e). It is worth noting that our algorithm always performs the same analysis, 284 

and thus our criterion allows us to discard scenes with high levels of cloudiness, but also scenes 285 

captured during post-eruptive periods (if hot magmatic products cover large areas of the volcanic 286 

flanks) and during days with temperature inversion (i.e., if the mountain is warmer than the 287 

surroundings due to atmospheric conditions). Our approach therefore allows us to automatically 288 

identify useless scenes, discard them, and thus maximally reduce the level of noise. 289 

 290 

In particular, we use 𝑀 = 11 pixels (~18 − 22 km2, on average, for the target volcanoes), 𝐾 =291 

𝑁 − 101 pixels (with 𝑁 the total number of pixels within the target area 𝐴𝑡), and a subarea 𝐴𝑎𝑢𝑥 292 

depending on the topography of each volcano (Supplementary Table 1). This yields a percentage 293 

of scenes discarded between ~29% for Domuyo and ~84% for Calbuco. In the worst-case scenario 294 



(Calbuco), this implies 4,956 useful scenes for the 16.5-year period analyzed and thus 300 useful 295 

scenes per year on average. The use of slightly different values for 𝑀 (= 21, 31), 𝐾 (= 𝑁 − 51,296 

𝑁 − 201), and 𝐴𝑎𝑢𝑥 (±10%) do not alter our overall results (Supplementary Fig. 2).  297 

 298 

2.3) Contrast between coldest areas and regional background  299 

For the scenes that are not discarded, we convert the statistical estimators 𝐿𝑐,𝑀 and 𝐿ℎ,𝐾 to 300 

brightness temperature for simplicity (𝑇𝑐,𝑀 and 𝑇ℎ,𝐾, respectively) using the Planck’s function: 301 

𝑇𝑥 =
𝐶2

𝜆 𝑙𝑛 (1 +
𝐶1

𝜆5𝐿𝑥
)

         ,     (𝑀1) 302 

where 𝐿𝑥 represents 𝐿𝑐,𝑀 or 𝐿ℎ,𝐾; 𝑇𝑥 represents the brightness temperatures 𝑇𝑐,𝑀 or 𝑇ℎ,𝐾; 𝐶1 =303 

1.19 ∙ 10−16 m2 W; 𝐶2 = 1.44 ∙ 10−2 m K; and 𝜆 is the central wavelength of band 31 304 

(11.03 μm). Then, we calculate the difference ∆𝑇𝑀,𝐾 = 𝑇𝑐,𝑀 − 𝑇ℎ,𝐾 (Supplementary Fig. 1f). This 305 

pursues the following goals: (a) to highlight any variation of brightness temperature occurring in 306 

the coldest parts of the volcanic flanks and not occurring in the area surrounding the volcano; (b) 307 

to minimize any local/regional atmospheric effect, as well as the possible artifacts of jointly 308 

combining daytime/nighttime scenes; and (c) to minimize the possible artifacts associated with the 309 

use of different sensors (MODIS/Terra and MODIS/Aqua). 310 

 311 

2.4) Daily median brightness temperature difference  312 

We compute the daily median brightness temperature difference (∆𝑇̅̅̅̅
𝑀,𝐾(𝑡), where 𝑡 is time), i.e., 313 

the daily median of the statistical estimator ∆𝑇𝑀,𝐾 (Supplementary Fig. 1g). This approach pursues 314 



the following goals: (a) to produce a regular and continuous sampling rate (i.e., 1 sample/day), 315 

which facilitates signal processing; and (b) to minimize possible outliers associated with 316 

daytime/nighttime scenes. We use daytime and nighttime scenes to increase the sample population, 317 

and thus yield a more reliable statistical analysis (although the patterns obtained are essentially the 318 

same when using only daytime or nighttime scenes; see Supplementary Figure 3). The resulting 319 

time series (∆𝑇̅̅̅̅
𝑀,𝐾(𝑡)) contains a seasonal component, noise, and gaps (produced by the discarding 320 

of useless scenes; section 2.2) that are filled through linear interpolation. In the worst-case scenario 321 

(Calbuco), we find 55% gaps in ∆𝑇̅̅̅̅
𝑀,𝐾(𝑡), with the largest gap of 20 days, and 165 days per year 322 

(on average) with useful data (Supplementary Table S1). Although the large number of daily gaps 323 

hinders the detection of short-term (~days) anomalies, the number of valid scenes per year is 324 

suitable to detect long-term (~years) trends. 325 

 326 

2.5) Low-pass filtering     327 

After interpolation, the time series ∆𝑇̅̅̅̅
𝑀,𝐾(𝑡) contains a well-defined seasonal component and 328 

noise; our aim is to bring out whether ∆𝑇̅̅̅̅
𝑀,𝐾(𝑡) also contains hidden long-term (~years) trends 329 

(Supplementary Fig. 1h). To this outcome, we have designed an efficient low-pass filtering 330 

technique through >100,000 Monte Carlo experiments with synthetic time series ∆𝑇̅̅̅̅
𝑆𝑌𝑁(𝑡). The 331 

details of our numerical experiments are provided below:  332 

1. We generate synthetic time series (∆𝑇̅̅̅̅
𝑆𝑌𝑁(𝑡)) combining a long-term trend (∆𝑇𝑆𝑌𝑁

𝑡𝑟𝑒𝑛𝑑(𝑡)), a 333 

seasonal component (𝐴𝑠𝑠𝑖𝑛 (
2𝜋𝑡

365
)), and a zero-mean Gaussian noise (ℜ(0, 𝜎𝑑)) with standard 334 

deviation 𝜎𝑑: 335 

 336 



∆𝑇̅̅̅̅
𝑆𝑌𝑁(𝑡) = ∆𝑇𝑆𝑌𝑁

𝑡𝑟𝑒𝑛𝑑(𝑡) + 𝐴𝑠𝑠𝑖𝑛 (
2𝜋𝑡

365
) + ℜ(0, 𝜎𝑑)       .   (𝑀2) 337 

 338 

We use 𝐴𝑠 = 𝜎𝑑 = 100 and ∆𝑇𝑆𝑌𝑁
𝑡𝑟𝑒𝑛𝑑(𝑡) = 𝛼𝑖𝑚𝑝𝑐𝑜𝑠(2𝜋(𝑡 − 𝜏𝑖𝑚𝑝) 𝑇𝑖𝑚𝑝⁄ ), where 𝛼𝑖𝑚𝑝, 𝑇𝑖𝑚𝑝, 339 

and 𝜏𝑖𝑚𝑝 are an imposed amplitude, period, and time lag, respectively (Supplementary Fig. 4a-340 

4d).  341 

2. For a given combination of 𝛼𝑖𝑚𝑝, 𝑇𝑖𝑚𝑝, and 𝜏𝑖𝑚𝑝, we filter the resulting time series ∆𝑇̅̅̅̅
𝑆𝑌𝑁(𝑡) 342 

through 480 different low-pass filtering methods (i.e., 24 filtering techniques that are applied 343 

iteratively up to 𝑘 = 20 times; Supplementary Table 2) aiming to retrieve the imposed trend 344 

∆𝑇𝑆𝑌𝑁
𝑡𝑟𝑒𝑛𝑑(𝑡). Iterative filtering methods are commonly used to improve the performance of noise 345 

reduction techniques43. The filtering methods explored include a combination of trailing moving 346 

mean, trailing moving median, MODWT (maximal overlap discrete wavelet transform), DWT 347 

(discrete wavelet transform), and Savitzky-Golay filters. The goodness of every denoising 348 

technique is assessed by computing the sinusoidal curve that best fits the filtered time series (with 349 

the non-linear least squares method), and then by calculating the coefficient of determination 𝑅2, 350 

amplitude 𝛼𝑟𝑒𝑡, period 𝑇𝑟𝑒𝑡, and time lag 𝜏𝑟𝑒𝑡 of the best fit curve. The values of 𝑅2, 𝛼𝑟𝑒𝑡, 𝑇𝑟𝑒𝑡, 351 

and 𝜏𝑟𝑒𝑡 are retrieved for 100 computer-generated synthetic time series ∆𝑇̅̅̅̅
𝑆𝑌𝑁(𝑡) with the same 352 

imposed values of 𝛼𝑖𝑚𝑝, 𝑇𝑖𝑚𝑝, and 𝜏𝑖𝑚𝑝, which are then used to calculate the mean coefficient of 353 

determination (𝑅2̅̅̅̅ ), mean retrieved amplitude (𝛼̅𝑟𝑒𝑡), mean retrieved period (𝑇̅𝑟𝑒𝑡), mean retrieved 354 

time lag (𝜏𝑟̅𝑒𝑡), and their uncertainties (standard deviation). Finally, the values of 𝑅2̅̅̅̅ , 𝛼̅𝑟𝑒𝑡, 𝑇̅𝑟𝑒𝑡, 355 

𝜏𝑟̅𝑒𝑡, and their uncertainties are calculated for different combinations of imposed amplitude, 356 

period, and time lag in the range 𝛼𝑖𝑚𝑝 = 2 − 90, 𝑇𝑖𝑚𝑝 = 5 − 20 years, 𝜏𝑖𝑚𝑝 = 0. Under this 357 



configuration, the signal-to-noise ratio (𝑆𝑁𝑅; defined here as the variance of ∆𝑇𝑆𝑌𝑁
𝑡𝑟𝑒𝑛𝑑(𝑡) over the 358 

variance of ∆𝑇̅̅̅̅
𝑆𝑌𝑁(𝑡)) varies in the range 𝑆𝑁𝑅 ≈ 10−4 − 0.2.  359 

 360 

3. We assess which of the 480 low-pass filtering methods are the most appropriate to retrieve the 361 

imposed long-term (~years) trends (i.e., ∆𝑇𝑆𝑌𝑁
𝑡𝑟𝑒𝑛𝑑(𝑡)) from the time series ∆𝑇̅̅̅̅

𝑆𝑌𝑁(𝑡). Our numerical 362 

experiments reveal that one of the most suitable methods is Technique 11 with 𝑘 = 10 iterations 363 

(Supplementary Table 2), i.e., the combination of 10 MODWT filters (at level 10 and using 364 

symlets-8 wavelets, Donoho and Johnstone’s universal soft thresholding, and level-dependent 365 

estimation of the noise) + 1 trailing moving median filter (of order 2 years) (Supplementary Fig. 366 

5–8). For a vast combination of 𝛼𝑖𝑚𝑝 and 𝑇𝑖𝑚𝑝, this method provides the highest values of the 367 

coefficient of determination, produces mean retrieved amplitudes (𝛼̅𝑟𝑒𝑡) and periods (𝑇̅𝑟𝑒𝑡) that are 368 

compatible with the imposed values, and generates a mean time lag (𝜏𝑟̅𝑒𝑡) on the order of ~1 year 369 

in the filtered signal that can be easily corrected. The filtering process, however, has several 370 

limitations that need to be taken into account: (a) if the signal-to-noise ratio is too low, our filtering 371 

process is not able to accurately retrieve hidden long-term trends from the ∆𝑇̅̅̅̅
𝑆𝑌𝑁(𝑡) time series. 372 

For example, for 𝑇𝑖𝑚𝑝 = 15 years, it is met that 𝑅2̅̅̅̅ ≳ 0.85, 𝑇̅𝑟𝑒𝑡 ≈ 𝑇𝑖𝑚𝑝, 𝛼̅𝑟𝑒𝑡 ≈ 𝛼𝑖𝑚𝑝, and 𝜏𝑟̅𝑒𝑡 ≈373 

1 year when 𝑆𝑁𝑅 ≳ 0.001 only (Supplementary Fig. 9a-9d). (b) For decreasing values of the 374 

imposed periods 𝑇𝑖𝑚𝑝, our method yields 𝛼̅𝑟𝑒𝑡 < 𝛼𝑖𝑚𝑝 and  𝜏𝑟̅𝑒𝑡 < 1 year. For example, for 375 

𝑇𝑖𝑚𝑝 = 7 years, it is met that 𝑅2̅̅̅̅ ≳ 0.85 and 𝑇̅𝑟𝑒𝑡 ≈ 𝑇𝑖𝑚𝑝 when 𝑆𝑁𝑅 ≳ 0.004, although 𝛼̅𝑟𝑒𝑡 ≈376 

0.8 𝛼𝑖𝑚𝑝 and 𝜏𝑟̅𝑒𝑡~320 days (Supplementary Fig. 9e-9h). (c) For imposed periods 𝑇𝑖𝑚𝑝 ≲ 6 − 7 377 

years, our filtering method cannot accurately retrieve long-term trends, independently of the 378 

signal-to-noise ratio (Supplementary Fig. 9i-9l). (d) When our filtering process is applied to a 379 



synthetic signal without an imposed trend (or with very low signal-to-noise ratio), a spurious trend 380 

can be retrieved (Supplementary Fig. 4e-4f). In subsection 2.6, we present a methodology to 381 

discern between actual hidden long-term trends and spurious signals associated with high levels 382 

of noise.  383 

 384 

4. We apply the efficient low-pass filtering technique (Technique 11 with 𝑘 = 10 iterations) to the 385 

daily median brightness temperature difference (∆𝑇̅̅̅̅
𝑀,𝐾(𝑡)) obtained for the seven target volcanoes. 386 

This yields the so-called median anomaly or 𝛿𝑇̅̅̅̅ , which is then 1-year time-shifted to account for 387 

the delay produced by the filtering process (Supplementary Fig. 1h). Note that 𝛿𝑇̅̅̅̅ < 0 (because 388 

𝑇𝑐,𝑀 < 𝑇ℎ,𝐾), has units of temperature, captures the long-term (~years) variations of median 389 

brightness temperature of the coldest parts of volcanoes with respect to the regional background, 390 

and its amplitude of variation must be considered a minimum estimate because part of it may be 391 

missed during the filtering process (see Methods and Supplementary Fig. 9g, 9k). It is also worth 392 

highlighting that 𝛿𝑇̅̅̅̅  is calculated using brightness temperature as measurement variable instead of 393 

real temperatures, whose calculation is more complex because it requires taking into account the 394 

pixel emissivity. However, the error that this produces in the calculation of pre-eruptive surface 395 

warming is negligible (Supplementary Methods; Supplementary Fig. 10). 396 

 397 

2.6) Uncertainty analysis 398 

Allocating uncertainties is crucial to assess the significance of the variations of the median 399 

anomaly time series (𝛿𝑇̅̅̅̅ (𝑡)). The major source of uncertainty in 𝛿𝑇̅̅̅̅ (𝑡), associated with the 400 

filtering process, is assessed through Monte Carlo experiments (shaded bands of Fig. 2a-2d): 401 



1. We generate synthetic time series with a bootstrapping method (commonly used in seismic data 402 

processing25) consisting of resampling the daily median brightness temperature difference time 403 

series ∆𝑇̅̅̅̅
𝑀,𝐾(𝑡). In particular, each element j of the synthetic time series is selected randomly from 404 

the elements j-1, j, j+1 of ∆𝑇̅̅̅̅
𝑀,𝐾(𝑡) (the values of the first and last elements of the synthetic time 405 

series are chosen to be equal to the values of the second and penultimate values, respectively). 406 

This technique yields synthetic time series with the same mean and standard deviation as ∆𝑇̅̅̅̅
𝑀,𝐾(𝑡).  407 

2. We apply the best denoising technique designed in section 2.5 to the aforementioned synthetic 408 

time series. The result yields 𝛿𝑇̅̅̅̅ ∗(𝑡), which is then compared with 𝛿𝑇̅̅̅̅ (𝑡) by calculating the 409 

difference between each data point of the time series.  410 

3. We repeat 1,000 times the steps 1-to-2. This provides 1,000 values of the difference 𝛿𝑇̅̅̅̅ (𝑡) −411 

𝛿𝑇̅̅̅̅ ∗(𝑡) for each data point j, which is then used to determine the y-axis uncertainty of 𝛿𝑇̅̅̅̅ (𝑡) at the 412 

95% confidence interval (Supplementary Fig. 1g). Note that this approach also captures the 413 

uncertainty associated with the time lag produced by the filtering process.   414 

4. For simplicity, we rescale 𝛿𝑇̅̅̅̅  (with its uncertainty), so it is always ≥ 0.  415 

 416 

On the other hand, a spurious trend may appear in the filtered time series as consequence of the 417 

high levels of noise (see section 2.5 and Supplementary Fig. 4e-4f). The probability that the 418 

observed trends are spurious is assessed in terms of the maximum amplitude of variation of 𝛿𝑇̅̅̅̅  419 

(Fig. 2f): 420 

1. We design a synthetic time series composed of a zero-mean Gaussian noise with the same 421 

standard deviation as the daily median brightness temperature difference time series (∆𝑇̅̅̅̅
𝑀,𝐾(𝑡)).  422 



2. We apply the best denoising technique designed in section 2.5 to the aforementioned synthetic 423 

signal.  424 

3. We repeat 10,000 times the steps 1-to-2. This is used to calculate the probability of obtaining 425 

by chance a spurious trend with the same amplitude or larger than the amplitude of the median 426 

anomaly time series 𝛿𝑇̅̅̅̅ .  427 

 428 

 429 

 430 

Data availability. Data (MODIS Terra/Aqua Calibrated Radiances 5-Min Level-1B Swath 1km 431 

V006 and MODIS Terra/Aqua Geolocation Fields 5-Min Level-1A Swath 1km V006) are 432 

available fully, openly, and without restrictions at https://earthdata.nasa.gov/.  433 

Code availability. Two Matlab scripts for data processing and analysis are available (contact the 434 

corresponding author for further details). 435 

 436 

 437 

 438 

 439 

 440 

 441 

https://earthdata.nasa.gov/
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FIGURES AND TABLES 585 

 586 

Figure 1. Fundamentals of large-scale (~volcanic edifice size) diffuse heating. Diffuse heating is 587 

the manifestation of underground magmatic-hydrothermal fluid interaction, and is controlled by 588 

the supply of hot magmatic gases from depth. In particular, magmatic gases escape from shallow 589 

reservoirs through the crust via permeable flow (grey arrows) and produce the boiling of 590 

underground aquifers (blue circles). Water vapor rising from the boiling aquifers (and from 591 

magma) condenses beneath the soil (red line), thus releasing latent heat that is transported via 592 

conduction to the surface6,9 (red arrows). This heat increases soil temperature and radiance.  593 



 594 

Figure 2. Diffuse heating time series obtained for the target volcanoes. (a-g) Results for Ontake, 595 

Ruapehu, Domuyo, Calbuco, Redoubt, Agung, and Pico do Fodo. The solid red line is the median 596 

anomaly 𝛿𝑇̅̅̅̅ ; the shaded bands represent its uncertainty (95% confidence interval); and the black 597 

vertical lines represent the onset of magmatic, phreatic, and hydrothermal eruptions. The dashed 598 

line of Domuyo (set at August 1, 2012) depicts a hydrothermal explosion that occurred during the 599 

2012 austral winter, although the precise date is not well documented. (h) Probability of obtaining 600 

the observed amplitudes by chance. 601 

 602 
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 604 



Table 1. Changes of diffuse heat flux calculated from the median anomaly. 605 

Volcano Eruption start date Type of eruption 
𝛅𝐓̅̅ ̅̅ (𝐭) − 𝛅𝐓̅̅ ̅̅ (𝐭𝟎)  

(℃) *1 

∆𝚽𝐝(𝐭; 𝐭𝟎)  

(𝐖 𝐦𝟐⁄ ) *2 

Ontake 
2007 March 24 (± 7 days)  Gas explosion (VEI=0) 0.20 (0.02 − 0.38) 0.88 (0.05 − 1.71) 

2014 September 27 Phreatic (VEI=3) 0.72 (0.51 − 0.93) 3.2 (1.9 − 4.5) 

Ruapehu 
2006 October 4 –  

2007 September 25 *3 
Gas explosion –phreatomagmatic (VEI=1) 0.65 (0.42 − 0.88) *4 2.9 (1.7 − 4.1) *4 

Domuyo 
2007 January 17 Hydrothermal explosion (VEI=0) 0.55 (0.15 − 0.95) *4 2.5 (0.5 − 4.5) *4 

2012 austral winter Hydrothermal explosion (VEI=0) 0.10 (0 − 0.50) 0.4 (0 − 2.1) *5 

Calbuco 2015 April 22 Magmatic (VEI=4) 0.32 (0.19 − 0.45) 1.50 (0.81 − 2.19) 

Redoubt 2009 March 15 Magmatic (VEI=3) 0.47 (0.30 − 0.64) 1.89 (1.07 − 2.71) 

Agung 2017 November 21 Magmatic (VEI=3) 1.42 (1.15 − 1.69) 7.42 (5.05 − 9.79) 

Pico do Fogo 2014 November 23 Magmatic (VEI=3) 0.82 (0.59 − 1.05) 4.38 (3.01 − 5.75) 
 606 
*1Pre-eruptive warming, i.e., median anomaly difference between the onset of an eruption (δT̅̅̅̅ (t)) and the onset of the 607 
pre-eruptive warming phase (δT̅̅̅̅ (t0)). *2Pre-eruptive increase of diffuse heat flux; this is calculated with equation (1) 608 
using: a realistic range for the time-averaged median surface emissivity (ε = 0.95 ± 0.05) and the time-averaged 609 
median brightness temperature of the regional background (T) calculated from the radiance data (see Supplementary 610 
Table 1). Numbers in parentheses represent the 95% confidence interval, calculated from the uncertainty band in Fig. 611 
2 and the general rule of error propagation. *3Our method does not allow us to distinguish different events occurring 612 
over such a short time. *4These are minimum estimates because the eruptions did occur at the beginning of the time 613 
series and thus part of the pre-eruptive increase may have been missed. *5This is calculated by setting the 2012 614 
hydrothermal explosion at August 1, 2012 (Fig. 2c); the explosion occurred during the 2012 austral winter, although 615 
the precise date is not well documented.  616 
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