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Text S1: Review of the SIMHYD model

The SIMHYD model is lumped conceptual hydrological model that works at daily time-

step (Chiew et al., 2002). It is widely applied for various hydrological studies, including

hypothesis testing (Vaze et al., 2010), the understanding impact of land-use change on

catchment hydrology (Siriwardena et al., 2006), analysis of climate change impact on

runoff (Mpelasoka & Chiew, 2009; Chiew et al., 2010), runoff predictions in ungauged

catchments (F. Li et al., 2014), analyzing grid-based regionalization in data-sparse region

(H. Li & Zhang, 2017). The model consists of seven parameters and requires daily precip-

itation and potential evapotranspiration (PET) as input. Additionally, two parameters
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(DELAY and X) for the Muskingum routing method (McCarthy, 1938) are used. The

interception store in the SIMHYD model first intercepts the precipitation (RAIN). The

maximum interception (IMAX) (Eq. 1) is the minimum of interception store capacity

(INSC) and potential evapotranspiration. Thus, interception (INT) (Eq. 2) will be the

minimum of maximum interception and precipitation. The infiltration function handles

the precipitation excess of interception. The precipitation that reaches the ground (Eq.

3) that exceeds the infiltration capacity becomes part of streamflow as infiltration excess

runoff (IRUN) (Eq. 5). The soil moisture function governed the infiltrated water. It is

divided into three parts saturation excess runoff (SRUN) (Eq. 6), soil moisture (SMF)

(Eq. 8) in soil moisture store (SMS), and groundwater store (GW) through recharge

(REC). The SRUN and REC are linearly dependent on the ratio of SMS and SMSC. The

evapotranspiration (ETS) (Eq. 10) from soil moisture store is also a function of the ratio

of SMS and soil moisture store capacity (SMSC), but it is limited to the potential rate

(POT) (Eq. 9). The actual evapotranspiration (ET) is calculated with the sum of ETS

and INT (Zhang et al., 2009). The excess of SMSC joins the GW as a recharge. The

baseflow (GD) (Eq. 11) is derived from GW through a linear relationship. The SRUN and

IRUN together form direct runoff (DR) (Eq. 12). The GD and DR collectively generate

the runoff (Eq. 13). Later this runoff is routed using the Muskingum routing method

(Eq. 14 - 17), and the final streamflow (Q) is obtained.

IMAX = min{INSC, PET} (1)

INT = min{IMAX,RAIN} (2)

INR = RAIN − INT (3)

RMO = min{COEFF ∗ e−SQ∗SMS/SMSC , INR} (4)
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IRUN = INR−RMO (5)

SRUN = SUB ∗RMO ∗ SMS/SMSC (6)

REC = CRAK ∗ (RMO − SRUN) ∗ SMS/SMSC (7)

SMF = RMO − SRUN −REC (8)

POT = PET − INT (9)

ETS = min{10 ∗ SMS/SMSC,POT} (10)

GD = K ∗GW (11)

DR = SRUN + IRUN (12)

RUNOFF = GD +DR (13)

Ot = C1 ∗ It + C2 ∗ It−∆t + C3 ∗Ot−∆t (14)

C1 =
0.5 ∗∆t−DELAY ∗ x

(1− x) ∗DELAY + 0.5 ∗∆t
(15)

C2 =
DELAY ∗ x+ 0.5 ∗∆t

(1− x) ∗DELAY + 0.5 ∗∆t
(16)

C3 =
−0.5 ∗∆t+ (1− x) ∗DELAY

(1− x) ∗DELAY + 0.5 ∗∆t
(17)

Where Ot and It are the inflow and outflow at time t. The DELAY and x are the

storage constant and dimensionless weighing factor respectively, two parameters used in

the Muskingum routing method and C1, C2 and C3 are routing coefficients. The DELAY

depicts approximate time taken required for flow travel in the given reach of the river

(O’Sullivan et al., 2012).

Text S2: Review of the LSTM model: The Long Short Term Memory (LSTM)

(Hochreiter & Schmidhuber, 1997) is applied widely in time series modeling due to its
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ability to learn long-term information. It has been applied successfully in various hydro-

logical studies, including post-processing of physics-based model outputs (Frame et al.,

2021), prediction of extreme events (Frame et al., 2022), leverage synergy when multiple

datasets are used for given variable (Kratzert et al., 2021), flood forecasting (Nevo et al.,

2022; Feng et al., 2020), improvement in the streamflow predictions of ungauged basins

(Kratzert et al., 2019), streamflow prediction for multiple timescales (Gauch et al., 2021).

The LSTM is a special type of Recurrent Neural Network (RNN) in which the vanishing

or exploding gradient issue of RNN is solved by incorporating gates and memory cells.

The flow of information to the memory cells is controlled by gates. The wi, wf , wc, wo,

Ui, Uf , Uc, and Uo denotes weights associated with the layers and bi, bf , bc, bo depicts the

biases. The forget gate decides the amount of information retained by the cell state. The

process of storing new information in the cell state is carried out in two parts, includes

information that can be updated in the cell state is decided by the input gate, and the

tanh layer generates a new candidate value that is further added to the state then the

cell state gets updated. Later, the output gate controls the passage of information from

the cell state to the new hidden state, which is obtained by multiplying a tanh function

of the cell state by the output from the output gate.

ft = σ(Wfxt + Ufht−1 + bf ) (18)

it = σ(Wixt + Uiht−1 + bi) (19)

C̃t = tanh(Wcxt + Ucht−1 + bc) (20)

Ct = ft × Ct−1 + it × C̃t (21)

ot = σ(Woxt + Uoht−1 + bo) (22)
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ht = ot × tanh(Ct) (23)

Text S3: Performance evaluation metrics: The model performance is evaluated

with Nash-Sutcliffe Efficiency (NSE) (Nash & Sutcliffe, 1970), Root Mean Square Error

(RMSE), and Percent Bias (PBIAS) widely applied in the field of hydrology (Swain &

Patra, 2017; Paul et al., 2019; Wagena et al., 2020). The value of NSE (Eq. 24) ranges

from −∞ to 1.0. When NSE is 1, it shows that both simulated and observed data

perfectly match each other. The RMSE (Eq. 25) is used to measure the error in the

model predictions where its value ranges from 0 to ∞. The PBIAS shows model behavior

in estimating the average magnitude of model output. Its optimal value is 0 while having

a range of −∞ to ∞. The positive and negative values of PBIAS show underestimation

and overestimation of average modeled output, respectively.

NSE = 1−
∑n

i=1(Oi − Si)
2∑n

i=1(Oi − Ō)2
(24)

where Si, Oi, and Ō are model output, observed data, and mean of observed data, respec-

tively.

RMSE =

√∑n
i=1(Oi − Si)2

n
(25)

PBIAS =

∑n
i=1(Oi − Si)∑n

i=1 Oi

× 100 (26)
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Figure S1. LSTM structure details
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Table S2. SIMHYD model parameters for semi-distributed without reservoir model case.
Catchment Subcatchment INSC COEFF SQ SMSC SUB CRAK K DELAY (days) x

Anandpur
Champua - Anandpur 1.283 106.799 0.545 439.362 0.266 0.932 0.076 0.871 0.149

Champua 1.283 106.799 0.545 439.362 0.266 0.932 0.076 0.500 0.0004

Kantamal
Kesinga - Kantamal 1.327 134.364 1.624 499.388 0.702 0.955 0.038 0.619 0.188

Kesinga 1.327 134.364 1.624 499.388 0.702 0.955 0.038 1.185 0.087

Keesara
Madhira - Keesara 1.154 188.348 1.729 355.487 0.363 0.546 0.007 0.999 0.105

Madhira 1.154 188.348 1.729 355.487 0.363 0.546 0.007 0.543 0.006

Table S3. SIMHYD model parameters for semi-distributed with reservoir model case.
Catchment Subcatchment INSC COEFF SQ SMSC SUB CRAK K DELAY (days) x kr

Brady
d/s of Brady reservoir 1.777 251.159 0.574 276.010 0.011 0.005 0.25 1.289 0.438 -

Brady reservoir 1.777 251.159 0.574 276.010 0.011 0.005 0.25 0.228 0.462 0.014

Canyon
d/s of Canyon lake 0.841 347.774 1.093 118.446 0.050 0.359 0.003 0.040 0.207 -

Canyon lake 0.841 347.774 1.093 118.446 0.050 0.359 0.003 1.435 0.359 0.011

Table S4. PIML model hyperparameters for lumped model case.

Catchment Variable Dropout rate Epochs Units Batch size Model

Anandpur
ETt 0.2 600 100 32 ML - 1
Qt 0.2 200 60 32 ML - 2

Kantamal
ETt 0.1 800 90 64 ML - 1
Qt 0.3 300 60 32 ML - 2

Keesara
ETt 0.1 1000 90 64 ML - 1
Qt 0.4 600 100 64 ML - 2

Table S5. ML model hyperparameters for prediction of streamflow in lumped model case.

Catchment Variable Dropout rate Epochs Units Batch size
Anandpur Qt 0.1 400 90 128
Kantamal Qt 0.3 500 10 32
Keesara Qt 0.1 400 90 128

Table S6. PIML model hyperparameters for semi-distributed without reservoir model case.

Catchment Subcatchment Variable Dropout rate Epochs Units Batch size Model

Anandpur
Champua - Anandpur

ETd/st 0.3 600 80 32 ML - 2
Qd/st 0.3 900 100 360 ML – 3

Champua
ETu/st 0.4 1000 50 32 ML - 1
Qu/st 0.3 900 100 360 ML – 3

Kantamal
Kesinga - Kantamal

ETd/st 0.1 800 90 32 ML - 2
Qd/st 0.4 300 70 360 ML – 3

Kesinga
ETu/st 0.4 1000 40 64 ML - 1
Qu/st 0.4 300 70 360 ML – 3

Keesara
Madhira - Keesara

ETd/st 0.1 900 100 32 ML - 2
Qd/st 0.2 800 90 360 ML – 3

Madhira
ETu/st 0.3 600 100 32 ML - 1
Qu/st 0.2 800 90 360 ML – 3
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Table S7. PIML model hyperparameters for semi-distributed with reservoir model case.

Catchment Subcatchment Variable Dropout rate Epochs Units Batch size Model

Brady

d/s of Brady reservoir
ETd/st 0.1 1000 90 32 ML – 2
Qd/st 0.3 900 80 256 ML – 5

Brady reservoir
ETu/st 0.2 900 40 32 ML – 1

Rt 0.4 300 10 256 ML – 3
St 0.4 100 90 360 ML – 4

Canyon

d/s of Canyon lake
ETd/st 0.1 500 40 32 ML – 2
Qd/st 0.2 200 90 32 ML – 5

Canyon lake
ETu/st 0.4 200 100 64 ML – 1

Rt 0.2 1000 90 32 ML – 3
St 0.2 900 90 360 ML – 4
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