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Abstract 19 
Rating curves are commonly developed through direct observation, open channel flow models, 20 
or mechanical methods, each relying on in-situ measurement. As part of a U.S. effort to provide 21 
high resolution, continental scale, flood mapping, synthetic rating curves (SRCs) were developed 22 
across the National Hydrography Dataset (NHDPlusV2) to translate flows, like those generated 23 
by the NOAA National Water Model, into river depths. This approach uses Digital Elevation 24 
Models (DEM) to define the necessary cross-sectional properties for Manning’s equation. A 25 
significant limitation, alongside an opportunity for broad improvement, has been assigning 26 
suitable roughness without local information. We applied the DEM based methodology to 27 
generate SRCs at 7,270 locations with known USGS rating curves, and calibrated roughness to 28 
minimize the error between predicted and observed flow. Subsequently, we tested several 29 
approaches based on land cover, stream order, and the hydrographic network to estimate the 30 
optimized values in a manner that can be extended to ungauged catchments. Among these, a 31 
predictive Machine Learning (ML) model based on the NHDPlusV2 network attributes 32 
demonstrated superior ability  to estimate the optimized roughness with a Spearman correlation 33 
of 0.89. Sensitivity analysis showed improving accuracy of DEM and roughness is crucial for 34 
accurate estimation of the lower and mid/upper parts of SRC, respectively. Finally, we applied 35 
the predictive model over the NHDPlusV2, generating reach-level roughness estimates that can 36 
directly support national flood mapping efforts. The method is generalizable to any hydrofabric 37 
network that contains topology; however the generated values are dependent on the DEM and 38 
hydrofabric used. 39 
 40 

Plain Language Summary 41 
Synthetic rating curves (SRCs) have been developed for every river segment in the United States 42 
as part of the Continental Flood Inundation Mapping Framework (CFIM). A mathematical 43 
equation called the Manning's equation and a Digital Elevation Model (DEM) map are the 44 
baseline requirements for creating these SRCs. Studies have shown that with careful estimation 45 
of roughness, these SRCs can be used to create detailed, real-time flood maps when paired with 46 
streamflow simulations like those from the NOAA National Water Model. Normally, channel 47 
roughness is estimated  from field surveys, model calibration, or tables that ask about the channel 48 
and its surroundings. However, in practice, this approach is limited to surveyed locations. Here 49 
we used the DEM based SRC methodology to generate SRCs at 7,270 locations with known 50 
USGS rating curves. From these we identified the best roughness value that would minimize the 51 
error between predicted and observed flow. We tested several approaches for predicting these 52 
values including using land cover, stream order, and hydrographic properties of the National 53 
Hydrography Dataset (NHDPlusV2). The latter proved most capable at predicting roughness and 54 
was applied over the ~2.7 million NHDPlusV2 reaches. 55 

1 Introduction 56 
Stage-discharge relationships are pivotal in flood mapping and routing, providing 57 

essential insights into river behavior during flood events (Guerrero et al., 2012; Guven & Aytek, 58 
2009). Manning roughness coefficients, which signify channel and floodplain resistance to flow, 59 
are integral to refining these relationships (Mansanarez et al., 2019). Accurate estimation of 60 
Manning roughness is particularly crucial in ungagged locations, where streamflow data is scarce 61 



manuscript submitted to Water Resources Research 
 

 

Page  3 

(Karamouz & Mahani, 2021). By employing empirical relationships, remote sensing data, or land 62 
use analysis, hydrologists can estimate Manning roughness coefficients for such areas, 63 
improving flood mapping and routing accuracy (Zheng et al., 2018). This enhanced precision 64 
aids in better understanding flood dynamics and facilitates more effective flood risk 65 
management, ultimately reducing socio-economic impacts associated with floods. 66 

Stage-discharge relationships depend on the hydraulic characteristics of the stream 67 
channel, are known to vary over time, and are subject to numerous sources of uncertainty, 68 
including unstable control, non-uniform flow, and local stage variability (A. Hamilton & Moore, 69 
2012; S. Hamilton, 2008; McMahon & Peel, 2019; Muste et al., 2012; Westerberg et al., 2011). 70 
A rating curve represents a relationship between two variables, most commonly discharge (Q) 71 
and an elevation relative to a datum, more commonly referred to as stage (m). While there are 72 
many approaches for establishing rating curves, they broadly include empirical (direct and 73 
indirect measurements), mechanical, and theoretical methods. Direct empirical methods require 74 
streamflow measurements following an approach developed in the 1890s (Kean & Smith, 2005; 75 
Rojas et al., 2020). However, obtaining measurements can pose challenges  particularly during 76 
high flow events and maintenance requires considerable resources leading to an increasing 77 
number of defunded gauges (Kean & Smith, 2005). Indirect empirical methods employ a variety 78 
of flow models that require measured channel geometry, specified water surface elevations, and 79 
an empirical roughness value to characterize resistance to flow (Benson & Dalrymple, 1967). 80 
Roughness is known to vary with stage and is typically calibrated for a specific set of flow rates 81 
(Barnes, 1967; Jarrett, 1984; Kubrak et al., 2019; Limerinos, 1970; Marcus et al., 1992). 82 
However, since resistance cannot be assigned without prior knowledge, indirect methods have 83 
limited ability to generate complete, stage‐discharge relationships (Kean & Smith, 2005). 84 
Furthermore, even when calibrated, empirical roughness only captures friction, or skin 85 
resistance, while neglecting drag generated by the normal forces acting on a water volume (Kean 86 
& Smith, 2005). As a result, mechanical models have been used to estimate drag and friction 87 
explicitly using in-situ measurements of channel geometry, as well as the physical roughness of 88 
the bed, banks, floodplain, and vegetation density (Kean & Smith, 2005). These models have 89 
been shown to provide more accurate discharge estimates at a lower cost than many indirect 90 
methods (Kean & Smith, 2005, 2010). 91 

While observations, empirical, and mechanical methods are ideal, the requirement for on-92 
site measurements limit their application at large scales. Assigning roughness values represents 93 
one of the most challenging processes to generalize and is one of the most sensitive parameters 94 
in streamflow calculations (Hutton et al., 2012). To provide continental flood forecasts (J 95 
Michael Johnson et al., 2019; J. Michael Johnson, Narock, et al., 2022; Maidment, 2016), and 96 
enhanced emergency response (Dallo et al., 2020; J Michael Johnson et al., 2018), Zheng et al. 97 
(2017) proposed a method to estimate reach-level synthetic ratings curves (SRC) from Digital 98 
Elevations Models (DEM) as part of the National Flood Interoperability Experiment (NFIE; 99 
Maidment, 2016). This theoretical rating curve method estimates the hydraulic characteristics 100 
from a Height Above Nearest Drainage (HAND) raster (Nobre et al., 2011; Rennó et al., 2008) 101 
and the National Hydrography Dataset (NHDPlusV2,  McKay et al., 2012), making the method 102 
extendable to ungauged basins. In the first iteration of the NFIE, and in the following 103 
Continental Flood Inundation Mapping framework (CFIM), a default global roughness of 0.05 104 
was used. (Zheng et al., 2017) found a global roughness for SRCs resulted in variable accuracy, 105 
but also that accurate depth estimates could be achieved for the studied Tar River Watershed by 106 
calibrating roughness to a stage-discharge relation produced from HEC-RAS modeling. (Zheng 107 
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et al., 2018) implemented the HAND approach using a LIDAR DEM, calling the approach 108 
‘GeoFlood’, finding it capable of capturing the Federal Emergency Management Agency 109 
(FEMA) flood plain coverage with 60–90% accuracy when adjusting the roughness to best align 110 
the SRC to a measured United States Geological Survey (USGS) rating curve. As part of that 111 
study, the authors highlighted an extreme sensitivity to even small variations in roughness. Other 112 
studies have carried out indirect evaluations of the skill of SRCs by comparing HAND-based 113 
inundation maps to remotely sensed flood products and aerial imagery in which the assignment 114 
of roughness was identified as a principal limiting factor in accurate flood prediction (Garousi-115 
Nejad et al., 2019; J Michael Johnson et al., 2019). Today, the CFIM approach is actively being 116 
developed as an open-source flood inundation mapping software (FIM) operated and maintained 117 
by the National Oceanic and Atmospheric Administration’s (NOAA) National Weather Service 118 
(NWS) (NOAA-OWP, 2021, p.). In FIM3, a stream order-based roughness is applied to move 119 
beyond default global roughness values. A study by (Qi & Liu, 2019) demonstrated the 120 
importance of considering land-use changes and its significant impact on alteration of roughness 121 
coefficient that results in drastic changes in estimated extreme flood peaks. 122 

Collectively, this emerging body of evidence recognizes that improved estimates of 123 
roughness are crucial for the success of the continental flood mapping framework. The objective 124 
of this work is to estimate a national set of reach-level empirical roughness values suitable for 125 
theoretical rating curves to enhance operational flood prediction and other hydroscience 126 
calculations reliant on estimated roughness. We propose a novel approach for more accurate 127 
estimation of roughness using a Machine Learning (ML) model trained on NHDPlusV2 network 128 
attributes and compare our results to widely accepted methods for estimating roughness in both 129 
academic literature and operational settings. By calculating the explicit spatial representation of 130 
roughness within the context of national scale FIM efforts, we directly address many of the 131 
shortcomings associated with the static parameterization of roughness, enabling us to more 132 
concretely isolate the various sources of error within the SRC. In the data section, we outline the 133 
datasets used. In the methods section, we describe the existing SRC calculation techniques; the 134 
methods used to optimize roughness to USGS rating curves, and to estimate roughness based on 135 
stream order, land cover, and the hydrofabric network. Lastly, we introduce performance metrics 136 
for evaluating model skill. The discussion examines SRC performance using the different 137 
roughness estimates; how different sections of the rating curves exhibit error; and the sensitivity 138 
of SRC generation to the input DEM, hydrofabric, and selected roughness. Finally, the 139 
conclusions highlight the implications of this work as well as the limitations of the provided data 140 
and opportunities for the continued use of the broader approach. 141 

2 Data 142 

2.1 Observed USGS Rating Curves  143 
The USGS measures rating curves on a 6–8-weeks schedule and disseminates the 144 

information Water Information System (NWIS: https://waterdata.usgs.gov/nwis/sw) (Beran & 145 
Piasecki, 2008; De Cicco et al., 2018). A sample of 7,270 active USGS rating curves were 146 
collected from NWIS, and recorded stage values were converted to depths by subtracting the 147 
reported zero-flow stage from all stage values. Normalizing depths to the zero-flow record 148 
allows us to estimate the local reference datum by assuming the zero-flow is referenced to the 149 
surveyor-defined channel bottom.  150 

https://waterdata.usgs.gov/nwis/sw
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For each rating curve, a natural cubic spline was fitted and used to estimate stage values 151 
for 25 evenly spaced intervals ranging from 0 to the maximum observed streamflow. Observed 152 
USGS rating curves are subject to random gage measurement errors and systematic errors 153 
resulting from cross section changes, scouring, bed fill and backwater effects (McMillan & 154 
Westerberg, 2015). However, we assume these relationships to be accurate at the scale of a 155 
continental study, and our goal is to approximate these recorded relationships. Future work can 156 
build on extensive studies like those carried out in Australia (McMahon & Peel, 2019) to 157 
characterize the uncertainty in the observed ratings. 158 

2.2 Hydrofabric Data 159 
The medium-resolution National Hydrography Dataset Version 2 (NHDPlusV2: 1:100,000 scale) 160 
digitally mapped the surface water network of the continental United States (CONUS) into ~2.7 161 
million river segments with similar hydrologic characteristics (McKay et al., 2012) NHDPlusV2 162 
comprises the original NHD Flowline geometries, the 30-meter National Elevation Dataset, and 163 
"value-added attributes" (VAA's) that encompass pre-calculated network characteristics 164 
enhancing network analysis. While VAAs are precomputed for NHDPlusV2, they can be 165 
generated for any set of hydrofabric data with a topology (D. Blodgett et al., 2020, 2023; D. L. 166 
Blodgett & Johnson, 2022a). In this research, we aggregated VAA analysis attributes into single 167 
file, accessible as a HydroShare resource (J M Johnson, 2021). Methods for accessing the tabular 168 
VAA table were incorporated into the USGS nhdplusTools R package (D. L. Blodgett & 169 
Johnson, 2022b) to support this research. By segregating attribute data from geometry, we can 170 
more readily use this information in statistical and ML models. In future iterations of hydrofabric 171 
whether it be MERIT (Yamazaki et al., 2019), TDX-hydro (McCormack et al., 2022), the 172 
USGS/NOAA Reference Fabric (Bock et al., 2022), or the NOAA Next Generation Water 173 
Resource Modeling Framework hydrofabric (J. Michael Johnson, 2022), simular characteristics 174 
can be computed. 175 

2.3 Height Above Nearest Drainage Data 176 
The Height Above Nearest Drainage (HAND) is a normalized elevation dataset that describes the 177 
height of each cell above the nearest designated flow path (Nobre et al., 2011). In 2018, (Y. Y. 178 
Liu et al., 2018) generated a HAND dataset for the Continental United States (CONUS) using 179 
the 10-meter USGS National Elevation Dataset (NED), the NHDPlusV2, and the D∞ distance 180 
down calculation available in TauDEM (Tesfa et al., 2011). All HAND data, along with 181 
intermediate processing steps, are accessible on the University of Texas (UT) Corral server 182 
(https://web.corral.tacc.utexas.edu/nfiedata/). This dataset has been updated as part of the 183 
Continental Flood Inundation Mapping (CFIM) framework implemented at Oak Ridge National 184 
Laboratory (Y. Y. Liu et al., 2020) and was used in this research. 185 

3 Methods 186 
We employed the DEM-based SRC methodology to generate and validate roughness values 187 
based on  their capacity to replicate streamflow-depth relationships akin to recorded USGS rating 188 
curves. In this section, we outline the process of establishing reach level hydraulic properties 189 
(3.1), estimating roughness (3.2), comparing SRCs to observed values (3.3), and evaluating the 190 
sensitivity of the input parameters (3.4). 191 
 192 

https://web.corral.tacc.utexas.edu/nfiedata/
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3.1 Estimation of Reach Average Hydraulic Properties 193 
Manning’s equation (equation 1) characterizes open channel flow as a function of channel 194 
velocity, flow area, slope, and roughness (Chow, 1959; Farmer et al., 2019; Pavelsky, 2014). 195 
Originally developed for uniform flow conditions where the water-surface profile and energy 196 
gradient are parallel to the streambed, and the cross-sectional area, hydraulic radius, and depth 197 
remain constant throughout the reach. It can be assumed that equation 1 is equally valid for the 198 
nonuniform reaches typically found in floodplains (Jarrett, 1984). 199 
 200 

Q(y) = 	!(#)×	'(#)
!
"	×√)

*
	 	 	 	 	 	 	 	 (1)	201 

 202 
where: 203 

 Q(y)  = the discharge at depth y (m3/s),  204 
 A(y) = the cross-sectional area at depth y (m2) 205 
 R(y) = the hydraulic radius at depth y (m) 206 
 S      = the longitudinal slope (m/m) 207 
 n      = the Manning’s roughness coefficient  208 

 209 
The method proposed by Zheng, Tarborton et al. (2018) calculates cross-sectional area (A), 210 
hydraulic radius (R) and streambed slope (S) from HAND,  the hydrofabric information. It 211 
necessitates a user-defined roughness as illustrated in Figure 1. This iterative process is 212 
replicated for a predetermined set of stage (Y) values. 213 
 214 

 215 
 216 



manuscript submitted to Water Resources Research 
 

 

Page  7 

Figure 1: Process for creating stage-discharge relationships as defined in Zheng, Tarboton, et al., (2018). 217 
(a) The catchment boundary establishes contributing cells, and the flowpath length (L) and slope (S) are 218 
then defined by the hydrofabric. (b) The HAND raster stores the elevation above the nearest river cell in 219 
the contributing area. (c) The slope raster defines the effective bed surface area of each cell dependent on 220 
the raster resolution. (d) For a defined stage (e.g., Y=2), inundated cells (outlined in orange across panels) 221 
are determined as those where HAND ≤ Y. The volume and bed area of the inundated cells are then 222 
computed from (b) and (c). (e) Manning's Equation estimates a flow rate Q. (f) A collection of Y-Q 223 
relations defines an SRC. 224 

As illustrated in Figure 1a, possible contributing cells (all those that are “nearest a drainage”) are 225 
selected, in this case using the NHDPlusV2 catchment. The NHDPlus VAA attributes provide 226 
the stream length (L; m) and longitudinal slope (S; m/m), and the HAND raster provides the 227 
elevation difference between each grid cell and the nearest flow path. A slope raster (1c) contains 228 
the percent slope (cellSlope) of each grid cell, which can be used to estimate the effective ground 229 
surface or bed area (BA) at a given depth (Equation 2). 230 
 231 
𝐵𝐴 =	𝑐𝑒𝑙𝑙𝑟𝑒𝑠+	.1 +	𝑐𝑒𝑙𝑙𝑠𝑙𝑜𝑝𝑒+								 	 	 	 	 	 							 (2) 232 

 233 
For any defined stage (Y; meters), the HAND raster can be used to identify inundated cells 234 
where the HAND value is less than Y (1d). At each of these cells, a water volume (V) can be 235 
calculated as the depth of ponded water multiplied by the cell area (Equation 3).  236 
 237 
𝑉(𝑦) = 	 𝑐𝑒𝑙𝑙𝑟𝑒𝑠+	 ×	(𝑌 − 𝐻𝐴𝑁𝐷)			 	 	 	 	 	 											(3) 238 

    239 
For all inundated cells, the total bed area (∑BA) and volume (∑V(y)) can approximate the cross-240 
sectional area (Equation 4), wetted perimeter (Equation 5), and hydraulic radius (Equation 6) 241 
needed in Manning’s Equation (Figure 1e). 242 
 243 
where: 244 
 245 
𝐴(𝑦) = 	∑ ,(#)

-
           (4) 246 

 247 
𝑊𝑃(𝑦) = 	∑ .!(#)

-
	          (5) 248 

 249 
𝑅(𝑦) = 	 !(#)

/0(#)
           (6) 250 

Iterating this calculation over a defined set of depths using a defined single value or stage-251 
varying roughness yields a streamflow-depth table resembling a rating curve (Figure 1f). 252 

3.2 Estimating the Roughness Terms 253 
In various hydrology subfields, roughness is often estimated based on stream order or 254 

land cover characteristics. Models such as WRF-Hydro assign roughness as a function of 255 
Strahler stream order for overland flow calculation and Muskingum-Cunge hydrograph routing 256 
(Gochis et al., 2016a). In 2016, Li introduced the NHDPlus Inundation Modeler V4.0, which 257 
relies on a separate stream order-based approach (Li, 2016). In both lumped and distributed 258 
hydrologic models, land cover datasets are frequently used to assign roughness through 259 
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reclassification tables, with similar methodologies applied in dam breach analysis and other 2D 260 
hydrologic and hydraulic models (Janssen, 2016; Kalyanapu et al., 2009; Z. Liu et al., 2019). 261 

Furthermore studies have demonstrated that a stage-varying composite roughness (N), 262 
based on defined in-channel and overbank regions may outperform a single roughness value 263 
(Boulomytis et al., 2017; Kubrak et al., 2019; Nguyen & Fenton, 2005). The composite approach 264 
has been shown to reduce error in hydraulic models by as much as 70% for surveyed reaches 265 
(Tuozzolo et al., 2019). Although there are multiple ways to define a composite roughness, 266 
(Tullis, 2012) found Horton’s equation (Equation 7: Chow, 1959) to yield the most consistent 267 
results across disparate channel types. 268 
 269 

𝑁 =	 (0#$(*%)
%.'1	0()(*!)%.')

!
"

0*(*+,
!
"

                      (7) 270 

Where:  271 
N = composite roughness value,  272 

n1 = in-channel n 273 
n2 = overbank n  274 

Pch = wetted channel perimeter (m) 275 
Pob = wetted overbank perimeter (m) 276 

Ptotal = total wetted perimeter (m). 277 
 278 
In locations where a USGS rating curve is available, we can determine an optimized roughness 279 
by minimizing the error between observed and simulated flows. In locations without a known 280 
rating curve, we can build on prior methodologies and assign single value and composite 281 
roughness values based on stream order or land cover. Additionally, we introduce a ML 282 
approach that leverages the VAAs of the hydrographic network to estimate roughness based on 283 
patterns found in the optimization exercise. Within these approaches, multiple variants are tested, 284 
resulting in eleven unique methods that are described below. 285 

3.2.1 Optimization 286 
Optimized roughness values aim to minimize the error between simulated and observed 287 

discharge  for given depths. By fitting the roughness term alone, it is assumed (tested in 3.4) that 288 
uncertainty in other inputs (DEM and hydrofabric) are minimal. To define a single roughness for 289 
each NHDPlusV2 catchment, we solved equation 1 using a nonlinear least squares regression 290 
model (NLS) based on the Gauss-Newton algorithm with 50 maximum iterations, a convergence 291 
tolerance of 1e-09, a lower bound of 0.01, an upper bound of 0.40, and an initial guess of 0.05 (J. 292 
M. Johnson et al., 2024; J. Michael Johnson, Coll, et al., 2022). Considering the DEM and 293 
hydrofabric data as static, the roughness value (n) is the only term in Manning's equation that can 294 
be adjusted via calibration . The lower and upper bounds were selected based on literature-driven 295 
values for reasonable floodplain roughness, with the initial guess derived from the CFIM 296 
precedent. In all cases, the NLS solver converged, and varying the initial guess had no 297 
discernible impact on the estimation in a sample of 500 basins. 298 

A composite roughness was defined for each catchment by treating all cells with a 299 
HAND value of 0 as in-channel, and the remaining as out-of-channel. Both n1 and n2 were 300 
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estimated using a NLS model with bounds of (0.01 and 0.20), and (0.01 and 0.40), respectively, 301 
with an initial guess of 0.05 for each. A final constraint ensured that n1 was less than n2 in each 302 
solution. Multiple starting values were tested in a selected subset of basins with no notable 303 
differences in the results. Combined, the single value and composite optimized results provide a 304 
validation dataset used throughout this research.  305 

3.2.2 Stream Order-Based Estimation 306 
Previous studies (Cosgrove et al., 2020; Gochis et al., 2016b; Li, 2016) have used stream order 307 
as a proxy for roughness. We aim to evaluate how these approximation tables compare to the 308 
mean and median single value optimized derived from the USGS rating curves. Table 2 presents 309 
these values alongside those used in Li (2016) and the WRF-Hydro/National Water Model 310 
version 2.0 RouteLink file. In the National Water Model implementation of WRF-Hydro, both an 311 
in-channel roughness (n) and a compound channel roughness (nCC) are associated with each 312 
flowline feature of NHDPlus. 313 
 314 
Table 1. Roughness values used for the Stream order approximations 315 

Order Mean Optimized Median Optimized Li-Assignment WRF-Hydro n WRF-Hydro nCC 
Source 

  
Li (2016) Gochis (2016) Gochis (2016) 

1 0.196 0.187 0.14 0.060 0.12 
2 0.181 0.169 0.12 0.060 0.12 
3 0.157 0.134 0.09 0.055 0.11 
4 0.128 0.103 0.09 0.055 0.11 
5 0.107 0.079 0.07 0.050 0.10 
6 0.088 0.057 0.06 0.050 0.10 
7 0.083 0.051 0.03 0.045 0.09 
8 0.067 0.043 0.03 0.045 0.09 
9 0.047 0.029 0.03 0.040 0.08 
10 0.043 0.037 0.03 0.040 0.08 

 316 

3.2.3 Land Cover Estimation 317 
Land cover information can provide a spatially heterogeneous perspective of the 318 

landscape, yet it is prone  to sampling and resampling error as well as scale-related classification 319 
uncertainties (J Michael Johnson & Clarke, 2021; Kim et al., 2024). Foster and Maxwell (2019) 320 
identified that vegetation-defined heterogeneity influenced behavior and determined n values in 321 
the stream network, but grid resolution did not reveal a clear scaling relationship. Hence, we are 322 
interested in both single flood plain values, akin to those used in flood mapping studies, 323 
and  stage-varying roughness values. 324 

The 2019 National Land Cover Database (NLCD) underwent reclassification using 325 
roughness values proposed by  Kalyanapu et al. (2009) and extended by Liu et al. (2019). A 326 
single floodplain roughness was calculated for each reach by averaging all cells submerged by 327 
the maximum stage in the rating curve. Furthermore, a stage-varying roughness was generated 328 
by calculating the average land cover roughness using only the inundated cells at each stage. 329 
 330 
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3.2.4 Hydrofabric Gradient Boosted Machines (GBM) 331 
Roughness is dependent on a variety of channel characteristics, making it a suitable 332 

candidate for exploration with predictive ML models. After evaluating multiple options, a 333 
Gradient Boosted Machine (GBM) algorithm was selected. GBMs are known to enhance model 334 
generalizability (Friedman, 2001)but due to lack of inherent regularization, and highly complex 335 
decision boundaries they tend to focus on difficult-to-fit data points and result in overfitting. 336 
However, adjusting its hyperparameters and applying early stopping can mitigate this issue. In 337 
contrast to supervised single predictive models or those based on ensemble averages (e.g., 338 
random forests), GBMs sequentially add new models to an ensemble and update a trained base 339 
learner with each iteration.  340 

Fitting GBMs necessitates several hyperparameters, including the number of trees (T); an 341 
interaction depth (K); a learning rate (𝛌); and subsampling controls (p).  The interaction depth 342 
(K) determines the number of splits in each tree and the pace at which the algorithm proceeds 343 
down the gradient descent. Smaller learning rates (𝛌) reduce the likelihood of overfitting but 344 
prolong the convergence time. While these parameters confer flexibility to GBM models, they 345 
demand intensive tuning to select appropriate values. Hence, a grid of potential hyperparameters 346 
for this problem was defined as follows (Equation 8): 347 
 348 

 349 

ℎ𝑦𝑝𝑒𝑟𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 = 	

⎩
⎪
⎨

⎪
⎧

k = 1,2, … ,15
T = 500, 1000, … ,5000… 	10000, 15000, … , 40000	

λ = 	0.001, 0.005, 0.01, … , 0.1
R	 = 	5, 10, 15		

p = 0.3 ⎭
⎪
⎬

⎪
⎫

   (8) 350 

To identify the variables that most accurately predict roughness, we defined a training dataset 351 
using a stratified random sampling method, selecting 500 or 80% of the gauged locations from 352 
each HUC2 from the Watershed Boundary Dataset. Developing a GBM approach involves a 353 
three-step process.  354 

Step 1: 355 
Initially, a series of 16,065 GBMs were fitted for each hyperparameter combination (Equation 8), 356 
using all numeric variables from the NHDPlusV2 VAA as predictors. For each model, 357 
the relative influence of each predictor was computed in addition to the number of times it was 358 
selected for splitting, weighted by the squared improvement provided at each split. These results 359 
were averaged over all trees (Friedman, 2001), and those with the highest relative influence were 360 
paired with a subjective evaluation of how easily they could be computed for general hydrofabric 361 
networks, yielding the final set of 5 core predictors:  362 
 363 

i. Drainage Area: Drainage area (km2) of the single flowpath catchment 364 
ii. Flowpath Length:  Flowline length in kilometers 365 

iii. Arbolate Sum: The cumulative length of the upstream drainage network (mainstem and 366 
tributaries) from the outlet of the catchment 367 

iv. Path Length: The distance from the flowline outlet to the end of the network along the 368 
mainstem path 369 

v. Slope: A unitless fraction (cm/cm) of the flow path slope derived from the 30m NED 370 
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Step 2: 371 
Using only these five predictors, a new set of 16,065 GBMs was trained for all hyperparameter 372 
combinations, and the combination producing the minimal RMSE was selected to train a final 373 
model.  That model used the following: 374 
 375 

i. k = 12 376 
ii. T = 40,000 377 

iii. λ = 0.025 378 
iv. R = 10 379 
v. p  =0.3 380 

Upon completion, the predicted roughness values generated with this model had an RMSE of 381 
0.045, and a nRMSE of 26.4%, when compared to the single value optimized roughness values. 382 

Step 3: 383 
Using the model trained in step 2, we predicted roughness across the NHDPlusV2 network. 384 
Similarly, any river segment with a known drainage area, flowpath length, arbolate sum, path 385 
length, and slope can serve as input to develop a predicted single value roughness. It is critical to 386 
note that the predicted values are unique to the input NHDPlusV2 dataset; extrapolation or 387 
conflation to a different network would likely provide poor results.  Nonetheless, new data can 388 
be generated from the model provided a network topology is known 389 

3.3 Synthetic Rating Curve Comparison 390 
This optimized roughness (n), a standard default value (0.05), a stream order based, land cover 391 
based, and GBM approaches produce eleven synthetic (and one observed) rating curve at each of 392 
the 7, 270 gauged locations. For clarity, these methods are summarized in Table 2. 393 
 394 
Table 2: Methods and approaches for assigning roughness for rating curves 395 

# Category Name Description 
1 observed USGS 25 evenly distributed Q-Y points built from a cubic spline fit to 

the observed USGS rating curve  
2 default global-roughness Roughness of 0.05 assigned to all reaches 
3 optimized single-value Single roughness, fit to the observed rating curve using a non-

linear solver with a lower and upper bound of 0.01 and 0.4. 
4 optimized composite  Composite roughness using Horton’s method where n1 and n2 

were fit to the observed rating curve using a non-linear solver 
with a lower and upper bound of {0.01, 0.01} and {0.2, 0.4}. 

5 stream order Li-assignment Roughness assigned by stream order based on Li, 2016 
6 stream order wrf-N Roughness assigned by stream order from the ‘Manning’s 

roughness’ (n) in the NWM v2.1 RouteLink file 
7 stream order wrf-Ncc Roughness assigned by stream order from the ‘Compound 

Channel Manning’s n’ (nCC) in the NWM v2.0 RouteLink file 
8 stream order mean-optimized Roughness assigned by stream order based on mean values from 

the calibrated method 
9 stream order median-optimized Roughness assigned by stream order based on median values 

from the calibrated method 
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10 land cover single-value Single value assigned via a reclassified land cover map using 
those values submerged by maximum RC stage 

11 land cover stage-varying Stage varying values assigned via a reclassified land cover map 
using cells submerged by the current RC stage 

12 hydrofabric GBM Values assigned based on output of trained GBM model using 
the NHDPlus VAA attributes as predictor variables 

 396 
To assess SRC accuracy, the simulated discharge values produced with each roughness, using 397 
the USGS rating curve stage values, were compared to the USGS discharge values using the root 398 
mean squared error normalized to the mean of observed discharge (nRMSE; see Equation 9).   399 
 400 

𝑛𝑅𝑀𝑆𝐸 = 100	 × @("234#	"562)7&&&&&&&&&&&&&&&&&&&&

"562&&&&&&&        (9) 401 

       402 
where:  403 

Qobs = observed discharge 404 
Qsrc = simulated discharge. 405 

 406 
nRMSE was calculated for the entire rating curve as well as the lower, middle, and upper 407 
sections. While defining “good” and “bad” nRMSE is subjective, a cut off of 30% nRMSE has 408 
been used to determine whether a site displays reasonable performance in prior research 409 
(Gleason & Smith, 2014; Yoon et al., 2016). For readability throughout the text, we adopt this 410 
shorthand and describe errors of 30% or less as reasonable, and errors of 100% or more as 411 
extreme. 412 

3.4 Parameter Sensitivity  413 
One open question about SRCs is how sensitive the results are to input data including the DEM, 414 
hydrofabric, and roughness. To decompose the SRC into its primary components, Manning’s 415 
Equation can be rewritten by substituting equations 4, 5, 6 into equation 1, and rearranging such 416 
that:  417 
 418 
𝑄(𝑦) = 𝑉	 × '

(
	× '

)
	× √𝑆                   (10) 419 

 420 
Where 421 

𝑉 = 	 *+,(-)
8
9

./(-)
7
9
  422 

 423 
To understand the role of each of the input dataset in streamflow estimation, we want to perform 424 
sensitivity analyses with respect to the four uncertain parameters - V, n, L, and S - by 425 
implementing a separate sensitivity analysis at stages 1, 2, 3 … 25 using a factorial design. 426 

To build the factorial design for sensitivity analysis, we need to establish reasonable 427 
range bands for each of these variables that are adjustable to each site. The volume factors are 428 
driven by the DEM which is most easily influenced by the vertical accuracy as highlighted in 429 
case studies leveraging LIDAR (Zheng et al., 2018). The 10m NED has a documented vertical 430 
accuracy of 3.04 meters (Gesch et al., 2014) so we elected a test set of 0.5, 1 and 2 meters in the 431 
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positive and negative directions basin wide. These were implemented by adjusting the HAND 432 
values throughout a given catchment prior to estimating volume and bed area.  433 

To test roughness, we allow roughness to range from 0%, 10%, 25%, 50%, 100% and 434 
200% error from the optimized single-value estimates while enforcing the lower and upper limits 435 
of 0.01 and 0.40. Length is a byproduct of the hydrofabric resolution and higher resolution data 436 
inputs like the NHD High-Resolution will likely increase reach length as more detail is captured. 437 
Following research aligning multi-scalar flowline data from the EPA River Reach, Medium 438 
Resolution NHDPlus and High Resolution NHD through the identification of common 439 
mainstems (D. Blodgett et al., 2020), a high-level comparison revealed a range of variability 440 
which we reduced to 0%, 5%, 10% and 15% percent of the NHDPlusV2 flowline values in the 441 
positive and negative direction.  442 

Slope is a product of the hydrofabric and underlying DEM. While the HAND and Slope 443 
rasters are based on the 10m NED, the NHDPlus flowline slope is an attribute derived from the 444 
30m NED. A random sample of 100 flowlines from this study were used to extract transects 445 
from the 10m NED. The difference between the smoothed slopes of these transects (5 point 446 
rolling mean) and the listed slope attributes of the NHDPlus were represented as a 0%, 25%, 447 
50% and 75% error in each direction of the recorded values.  448 

Using these possible variations, 363 randomly sampled sites were evaluated to ensure 449 
accuracy at the 95% confidence level. The results of the design were analyzed with an Analysis 450 
of Variance (ANOVA) method to deduce the main effects and two factor interactions using the 451 
multisensi R package (Bidot et al., 2018). Upon completion, the results were averaged across 452 
locations. 453 

4 Results 454 
A total of 81,070 synthetic rating curves (SRCs) were computed for comparison. Section 455 

4.1 describes the performance of each roughness method, section 4.2 addresses errors exhibited 456 
in each section of the rating curve, section 4.3 addresses the skill of the GBM model, and section 457 
4.4 looks at the sensitivity of the SRCs to the roughness, DEM, and hydrofabric inputs used in 458 
Manning's equation. 459 

4.1 Synthetic Rating Curve Performance Analysis  460 
Figure 2A illustrates the percentage of locations achieving reasonable and extreme error 461 

for each roughness method, alongside the Spearman Correlation compared to the optimized 462 
single value roughness. In the outlined section of the table, the 25th, 50th, and 75th quartile (Q1, 463 
Q2, Q3) nRMSE for the complete rating curve, and the mean nRMSE for each section of the 464 
rating curve are displayed. These statistics are derived solely from sites producing nRMSE < 465 
100% for that method. 466 

The two optimized approaches provide the least error across all metrics but are confined 467 
to gaged locations. SRCs generated with an optimized composite roughness offer marginal 468 
improvement over those with an optimized single value, and occasionally exhibit degraded 469 
performance. This implies that a composite view, particularly when considering locations where 470 
HAND = 0 as in channel, is not critical to SRC roughness estimation. The optimized single value 471 
approach achieved reasonable error in ~80% of the tested locations, suggesting models 472 
potential  accuracy across a broad spectrum of locations. Nonetheless, the remaining 20% 473 
highlight areas where the HAND-based SRC model may be incomplete or other sources of 474 
uncertainty contribute to the error. 475 
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Amongst methods extendable to ungaged basins, the GBM method demonstrates superior 476 
results and notably reduced  error compared to stream order and land cover approaches. Notably, 477 
it generates nearly four times as many SRCs with reasonable error as other nonsite optimized 478 
methods. The correlation with the optimized single value is also double compared to the next 479 
closest method. 480 

All four stream order methods exhibit similar performance metrics and offer marginal 481 
improvement over the global default. Stream order information primarily reduces the number of 482 
sites with extreme error (nRMSE > 100%). This is done best by the mean optimized stream order 483 
values. This performance improvement over a global default value emphasizes that roughness is 484 
a local phenomenon, and the thematic assignment is too generalized to provide significant 485 
performance gains. The two land cover methods demonstrate identical performance, with neither 486 
land cover method offering an improvement over the stream order methods, and added 487 
substantial computational burden.  488 

Finally, a default global roughness of 0.05 achieves nRMSE ≤30% in just 10% of the 489 
locations emphasizing the need for a spatially heterogeneous approach and the value in seeking a 490 
more sophisticated approach. To visualize these statistical patterns spatially, Figure 2B maps the 491 
nRMSE from the best performing method for each approach. While the magnitudes of error in 492 
the optimized and GBM methods differ, the maps highlight regions of the country where large 493 
errors persist across all methods. Prominent examples include the gulf coast of Florida, the 494 
eastern seaboard, the Atlanta metro region, and to a lesser extent, the lower Mississippi 495 
floodplain.  496 
 497 
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 498 
 499 
Figure 2: (a) Synthetic rating curve accuracy across methods. Quartile error values and the percentage of 500 
sites with reasonable and extreme errors are listed. The methods are sorted by the Q2 criteria, and darker 501 
hues represent better performance and are applied column-wise. (b) The nRMSE from each method is 502 
mapped. 503 

Across all methods, there is consistently more error in the lower section of the rating 504 
curve compared to the middle and upper portions. SRCs developed with a global default and 505 
mean optimized stream order have the highest mean nRMSE across all sections of the curve. The 506 
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single value optimized and hydrofabric GBM approaches both reduce the mean nRMSE in each 507 
section; however, the error remains higher by a factor of 2+ in the lower third. This pattern may 508 
have to do with (1) lack of bathymetric representation in HAND data  for in-channel flows, (2) 509 
the datum adjustment applied to achieve a zero-flow USGS rating curve, or (3) that at smaller 510 
flows/depths, small errors are more impactful  than the errors at higher flows/depths. 511 
Nonetheless, estimated SRCs demonstrate greater accuracy at the higher end of the rating curve, 512 
which holds promise for flood mapping studies and other use cases. Moreover, this staggered 513 
performance suggests the potential to optimize n for various sections of the rating curve based on 514 
flow which could be provided by the National Water Model. While a composite n was not found 515 
to be a valuable addition, a stage-varying n might offer improvements.  516 

4.2 Model and Optimized Skill 517 
The error for the single-value optimized method provides the best possible result given 518 

the current DEM, hydrofabric, and roughness bounded to the range of {0.01, 0.4}. Taking the 519 
DEM and hydrofabric data as static, the only term in Manning's equation that can be calibrated is 520 
the roughness value. The roughness value serves as a proxy for representing the ratio of water 521 
volume to discharge. Very large n values represent situations where a very strong resistance to 522 
flow is used to reduce discharge when HAND volumes are large for a given stage, but the actual 523 
SRC derived discharge is low. Very low values of n represent the opposite situation where 524 
calculated water volumes based on HAND properties are low but the required discharge is quite 525 
large. This observation may suggest a need to represent channel bathymetry to accommodate 526 
excess HAND water volumes. This section focuses on comparisons between the single optimized 527 
value and GBM approaches, particularly the cases where the imposed lower and upper limits 528 
were reached – likely to address issues in other inputs to Manning's equation. 529 

The error for the single-value optimized method provides the best possible result given 530 
the current DEM, hydrofabric, and roughness bounded to the range of {0.01, 0.4. Figure 3A 531 
shows the difference in roughness between the optimized and GBM approach. Sites with an 532 
absolute value of DN < 0.01 have been removed from the map. In this Figure, sites that appear 533 
red indicate that the N value of the GBM based on network attributes is greater than the 534 
optimized n value; conversely, sites that are blue indicate the opposite. On the East coast, we 535 
observe a landscape where the GBM tends to show greater roughness compared to the optimized 536 
values while in the southeast, the GBM tends to show lower N. The rest of the country indicates 537 
a more mixed approach, with a slight tendency for the GBM to predict n lower than the 538 
optimized approach (blue). 539 

Next, we categorized the skill of the rating curve (by the nRMSE < 30% threshold) and 540 
whether the roughness pushed toward the upper limit (>0.35), the lower limit (<0.05), or was 541 
within a fair range (0.05≤ n ≤0.35). In total, this yielded six categories that were used to classify 542 
the GBM and optimized-based SRCs. Figure 3B shows the confusion matrix of these divided 543 
into four color-coded quadrants while Figure 3C shows categorical classification. The first 544 
column (green and orange box) represents the total number of sites that were well-served by the 545 
site-by-site optimization. In total, 77.9% of the locations achieved reasonable error, and 54.2% 546 
did so without stretching the roughness value toward the imposed limits. For those that did push 547 
roughness towards an imposed limit, the bulk stretched towards the low value. This highlights 548 
the tendency of the GBM model to favor lower roughness and a broader notion that HAND 549 
volumes tend to under-predict the actual volume flowing through the river channel. The first row 550 
(green and black box) represents the total number of sites that were well-served by the GBM 551 



manuscript submitted to Water Resources Research 
 

 

Page  17 

model. In total, 62.1% of the sites were able to achieve reasonable error, with ~15% stretching 552 
the roughness value toward the imposed limits. 553 

Starting in the upper left, the green section shows that 62.1% of sites achieve a 554 
reasonable nRMSE in both the single-value optimization and GBM. 46.8% of these did so with 555 
an in-range roughness, while  ~15% pushed the upper and lower limits. Specifically, there is a 556 
strong preference to push the optimization roughness towards the lower limit of 0.01.Moving 557 
counterclockwise, the black box is empty, highlighting that the GBM cannot find solutions 558 
where the optimization failed. The red box represents situations where both the optimization and 559 
GBM methods were unable to find a solution. The  implicit concern is that the errors in the input 560 
data are larger than what roughness adjustments alone can correct in ~22% of the tested 561 
locations. 562 
   In total, 17.8% of sites produced bad optimizations with the same pattern for both site-563 
based optimized and GBM methods. For example if a site had a bad nRMSE with a low n, the 564 
GBM produced the same which is encouraging for the skill of the GBM, but suggests future 565 
work might look to eliminate these sites in the model training. In the remaining 4.2% percent, the 566 
GBM took on a low or high optimized n, and brought it into the expected range without 567 
improving the performance.  568 
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 569 
 570 
Figure 3: (a) The difference in roughness produced by the GBM and Optimized roughness values are 571 
mapped. Red (negative values) indicate locations where the GBM prediction produces higher values than 572 
the optimized approach. Blue (positive values) indicate locations where the GBM prediction produces 573 
roughness lower than the optimized approach. Sites where the difference was less the +-.01 where 574 
excluded (b) The GBM and single site optimized results were categorized by the skill of the rating curve 575 
(by the nRMSE < 30% threshold), and whether the roughness pushed toward the upper limit (>0.35), the 576 
lower limit (<0.05), or was within the range (0.05  ≤ N ≤ 0.35). (c) The percent of sites, per stream order, 577 
that fall into each classification. Darker hues represent larger percentages. The horizontal line after order 578 
4 represented a break in SRC creation performance identified in prior research. 579 

4.3 Parameter Sensitivity 580 

In this section we investigate the sensitivity of SRCs to the primary inputs using factorial 581 
design and ANOVA decomposition, which include the (1) DEM, (2) hydrofabric, and (3) 582 
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roughness. Figure 4 shows the sensitivity indices of the main effects and first-order interactions 583 
at each point in the rating curve normalized to 1.  584 

 585 
Figure 4: Evolution of the main effects and the first-order interaction sensitivity indices of the SRC 586 
variables averaged over 363 randomly selected locations. 587 

In the lower third of the rating curve, there is more sensitivity to the DEM (V), interaction terms, 588 
and residual effects. This suggests that SRCs perform worse in the lower third of the rating curve 589 
largely because they are more easily influenced by multiple factors. Starting around the middle 590 
of the rating curve, proportional sensitivity starts to stabilize with ~15% being contributed by the 591 
DEM,  ~45% by roughness, and ~30% from variable interaction. There is minimal error (in total 592 
~10%) contributed from the length, slope, or residual effects of the model combined. It is notable 593 
that as one approaches the upper end of the curve, the contribution of error from the interaction 594 
and V terms decrease further and are generally overtaken by sensitivity to roughness.  595 

These results indicate that the primary challenge in developing accurate SRCs is 596 
Manning's roughness for mid and high SRC values, and very low SRCs are affected by DEM 597 
errors and missing bathymetry, but there are other key sources of uncertainty. The overwhelming 598 
sensitivity to roughness means that areas suffering from other inputs can only be identified when 599 
the uncertainty in roughness is minimized. Given that the primary objective of many operational 600 
flood inundation forecasting systems is to warn of high magnitude events, optimization of 601 
roughness for this objective seems practical. For those seeking predictive skill for lower 602 
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magnitude events, i.e., “nuisance” flooding, improving accuracy of base information such as the 603 
DEM seems to be more critical. 604 

Aside from roughness and the interaction of all inputs, the volume of water computed 605 
from the DEM was the largest source of error. As the USGS 3D elevation program moves their 606 
elevation program towards the collection of nationally comprehensive and complete LIDAR 607 
coverage, it is worth mentioning here the possible opportunities and limitations with the method 608 
provided here. 609 

5 Discussion 610 
A challenging aspect of the transferability of our proposed methodology is the scale-611 

dependency of both DEM that plays a crucial role in generating water volume for a given depth 612 
defined by a HAND product, and hydrographic properties that are used for roughness 613 
calculations. Ideally we would like the trained roughness ML model to be transferable to any 614 
other hydrographic network generated at different scales. We conjecture that this holds true for 615 
networks of comparable scale (i.e., 1:100,000 ratio). Another question is whether the assumption 616 
that the variable selected during the feature importance analysis remains consistent as 617 
hydrographic network scale changes? For instance in higher resolution networks, characterized 618 
by the prevalence of more tributaries with greater sinuosity, the arbolate sum, a key 619 
characteristic, typically demonstrates a notable increase. Consequently, if a smaller river system 620 
within the higher resolution network is trained solely on lower resolution data, it might 621 
erroneously exhibit attributes akin to those of a much larger system, potentially resulting in 622 
artificially low roughness values.  623 

Similar to hydrographic scale impact on roughness, the higher resolution LiDAR or DEM 624 
data improves accuracy in channel volume estimation and synthetic rating curve calculation by 625 
providing detailed terrain data, enhancing channel morphology representation, and minimizing 626 
uncertainties in channel geometry and hydraulic modeling. This contributes to more reliable 627 
assessments of water resources and flood risks. The utilization of LiDAR data holds promise for 628 
mitigating uncertainty in volume estimations through several mechanisms. The first method, akin 629 
to that employed in GeoFlood, involves increasing the horizontal (grid) resolution to yield more 630 
effective "cells." This reduction in resampling inherently enhances the vertical accuracy at each 631 
cell. The second method entails utilizing LiDAR to refine vertical accuracy within the same 10m 632 
grid as the current 3DEP 10m product, effectively integrating the latest data captures to enhance 633 
the existing grid. In both scenarios, if a new DEM is utilized, recalibration of the base inputs to a 634 
Synthetic Rating Curve (SRC) – namely, the cross-sectional area and hydraulic radius at depth Y 635 
– following the methodology outlined by Zheng et al. (2017) is necessary. This entails updating 636 
the GBM model based on the full hyperparameter set (Step 2) but does not necessitate retraining 637 
on the complete set of VAA attributes (Step 1). 638 

Despite the potential enhancements to the current DEM, the issue of changing scales (cell 639 
resolution) raises an open question. To qualitatively assess the transferability of GBM-produced 640 
roughness values across DEM scales, we compared the reported, tuned roughness values at five 641 
USGS sites examined in Zheng et al. (2018) to the GBM values. While the GBM approach 642 
tended to overpredict roughness compared to the reported GeoFlood values, a correlation was 643 
observed (albeit from a limited dataset). This trend aligns with the notion that larger grid cells 644 
yield larger volumes and, per equation 11, necessitate larger roughness values. The idea that 645 
roughness varies with DEM resolution finds support in hydrologic modeling research. For 646 
example, it has been established that 2D flood models are sensitive to DEM resolution (Fewtrell 647 
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et al., 2008; Horritt & Bates, 2002; Saksena & Merwade, 2015; Schumann et al., 2007), and 648 
roughness (Lim et al., 2016; Mason et al., 2003; Pappenberger et al., 2005). However, conflicting 649 
findings exist regarding the existence of a scaling relationship, with some studies suggesting 650 
otherwise (M. Foster & M. Maxwell, 2019). Hence, it is acknowledged that the dependency of 651 
GBM roughness values on DEM and hydrography constitutes a limitation of the dataset 652 
produced herein, not the methodology. Future investigations will explore methods for 653 
operationalizing roughness model fitting and prediction based on the methods and data (USGS 654 
rating curves) developed in this study. 655 

An assessment of the sites exhibiting extreme error in SRC with the calibrated n values 656 
demonstrated that SRC extreme error often occurs when roughness approaches one of the 657 
enforced physical limits. It was also in these areas where the largest divergence between the 658 
predicted and calibrated n values was observed. In many ways, this divergence in n values offers 659 
a signal for when other aspects of the SRC creation are uncharacteristically influential. The value 660 
of n serves as a proxy for representing the ratio of water volume to discharge. Very large n 661 
values represent situations where a very strong resistance to flow is used to reduce discharge 662 
when HAND volumes are large for a given stage, but the actual SRC derived discharge is low. 663 
Very low values of n represent the opposite situation where calculated water volumes based on 664 
HAND properties are low but the required discharge is quite large. (perhaps suggesting a need 665 
for representing channel bathymetry to accommodate excess HAND water volumes). 666 

Finally, several critical considerations arise when utilizing this dataset or extending the 667 
workflow beyond its current scope. The workflow, beginning with a mechanical measurement of 668 
roughness to train a predictive model based on network attributes, subsequently utilized the same 669 
network and DEM to establish a relationship between water surface height and discharge 670 
required for that stage. However, the applicability of these findings to variations in input 671 
parameters, such as alterations to the underlying network, remains unclear. Further inquiry is 672 
warranted to determine whether the values derived from this dataset could be used as a direct 673 
crosswalk to the new network, whether the values would need to be recalculated based on the 674 
new attributes of the network using the existing model, whether the model would need retraining 675 
using the new inputs, or whether the process of determining the selected features needs to be 676 
performed.   677 

6 Conclusions 678 
At the onset of this research, the necessity for improved reach-level roughness was 679 

highlighted to support continental flood mapping efforts. We employed the methodology 680 
proposed by Zheng et al. (2017) to define reach-averaged hydraulic traits from a 10m HAND 681 
product in catchments with a USGS gauge and calibrated a roughness value to minimize the 682 
error in predicted flows. This approach resulted in 78% of gaged locations achieving nRMSE ≤ 683 
30%. To produce SRCs in ungauged basins, we evaluated a range of methods for estimating 684 
reach-level roughness. Among these, a data-driven ML model based on NHDPlus hydrographic 685 
topology proved the most robust. The ML model produced almost four times the number of 686 
SRCs with acceptable error compared to non-optimizable methods (e.g., stream order and land 687 
cover methods). Additionally, its correlation with the optimized single value is twice that of the 688 
next closest method. The predictions were able to achieve a ranked correlation of 0.89 with the 689 
optimized values and SRCs with reasonable error in 62% of the tested locations. In contrast, a 690 
widely used global roughness value captured just 13% of SRCs with reasonable error, and the 691 
best performing stream order parameterization captured just 16%.  692 
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A sensitivity test showed that the DEM and roughness are the principal sources of error 693 
in the conceptual rating curve model, while length and slope are practically non-significant. We 694 
demonstrated that as the upper end of the SRC is approached, it becomes apparent that the 695 
contribution of error from the interaction and V terms decrease further and are generally 696 
overtaken by sensitivity of roughness. These conclusions are generally in line with other work 697 
that has looked at HAND-based SRC uncertainty at individual sites (Godbout et al., 2019). The 698 
conclusion is that in locations where roughness is the primary contributor of uncertainty, the data 699 
driven roughness and existing data inputs can produce reasonable SRCs. In areas where the 700 
DEM and hydrography introduce uncertainty, the calibrated values take on a role that was not 701 
per se roughness, but rather a broad error-reducing scalar. Such locations were not pervasive, 702 
and generally clustered around regions with large built-up extents, known engineered controls, or 703 
low relief. In these areas where DEM fidelity is a primary source of SRC error, there is capacity 704 
for LIDAR to be used with the methods suggested as part of the GeoFlood project (Zheng et al., 705 
2018). A drawback to using LIDAR is the availability, procurement costs, and computational 706 
needs associated with creating HAND and generating inundation forecasts at large scales. 707 
Fortunately, the 10m DEM seems serviceable for the majority of CONUS, and the SRC error 708 
map (Figure 2) can help prioritize areas where the integration of LIDAR data might be especially 709 
beneficial.   710 
  Future work will involve exploring several avenues to address key findings in this 711 
research and potential implications. Firstly, we demonstrated a disparity in error across different 712 
sections of the rating curve, particularly higher error in the lower section compared to the middle 713 
and upper portions. This signals a need to evaluate the absence of bathymetry in the model, as 714 
the missing channel volume likely impacts the lower end of the rating curve. Secondly, the 715 
findings suggest promising prospects for FIM methods that rely on Synthetic Rating Curves 716 
(SRCs) for high flow applications. Thirdly, there is potential for optimizing the roughness 717 
coefficient (n) for various sections of the rating curve. While a composite n was not found to be 718 
beneficial, a stage-varying n might prove advantageous. Lastly, future research will explore how 719 
this method scales across different networks, assessing its applicability and performance in 720 
diverse hydrological settings. Within the United States, LIDAR may provide better discretization 721 
and some additional bathymetry data. The effects of this can be tested at reaches that have both 722 
LIDAR and USGS rating curves. These datasets can be effective in training a ML model and 723 
gaining a better understanding of the effect of grid cells and data driven roughness on model 724 
training. In essence, further research may be able to quantify how more location-attuned 725 
roughness values can contribute to improved large-scale hydrologic routing and other 726 
applications of reach-level roughness. 727 

For regions outside the USA, official stream network data similar to the NHD are few 728 
and far between. Publicly available data are often aggregated at lower spatial resolutions, 729 
decreasing the ability to represent the full drainage network. However, the rapid increase in the 730 
amount of crowd-sourced stream network data available through platforms like OpenStreetMap 731 
offers the promise of high-resolution data that can be used for improved global reach level 732 
modeling for smaller rivers. Localized high-resolution official drainage networks, crowd-sourced 733 
stream network data offer the opportunity to evaluate the impact of scale, network density, and 734 
attributes on the ability of GBM models to characterize the rating curve relationship. Overall, the 735 
value of the current work lies in the data produced for the scale of the medium-resolution NHD 736 
and 10m 3DEP product, as well as a method and curated set of training data to apply to other 737 
scales within and outside the United States. The roughness values have been made publicly 738 
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available on HydroShare with easy-access options for both R and Python. With respect to R, the 739 
roughness values can be accessed with the nhdplusTools get_vaa functionalities. We hope the 740 
use of this data can support improved flood forecasting, applications that need to estimate 741 
roughness, and can prompt consideration of what other hydrologic properties and characteristics 742 
can be learned and supported by the topology implicit to hydrography datasets. 743 
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