
OR I G I N A L A RT I C L E
Jou rna l o f So f twa re : Evo l u t i on and Proce s s

Test Suite Assessment of Safety-Critical Systemsusing Safety Tactics and Fault-Based MutationTesting
Havva Gulay Gurbuz1 | Bedir Tekinerdogan1* | Cagatay
Catal2 | Nagehan Pala Er3

1Information Technology Group,
Wageningen University & Research,
Wageningen, The Netherlands
2Department of Computer Science and
Engineering, Qatar University, Doha, Qatar
3Aselsan, Ankara, Turkey
Correspondence
Information Technology Group,
Wageningen University & Research,
Wageningen, The Netherlands
Email: bedir.tekinerdogan@wur.nl
Funding information
No funding received

A safety-critical system is a system in which the software
malfunctioning could result in death, injury, or damage to
the environment. Addressing safety concerns early on at
the architecture design level is critical to guide the subse-
quent life cycle activities to ensure that the eventual sys-
tem is reliable. A fundamental approach to address safety
at the design level is the adoption of architectural tactics. It
is crucial for safety-critical systems to correctly implement
the constraints as defined by the selected safety tactics.
This article proposes a systematic approach for assessing
the adequacy of test suites of safety-critical systems based
on these architectural safety tactics. We use a case study
to evaluate the effectiveness of our approach using fault-
injection techniques. Our study shows that this systematic
approach is feasible and effective for test suite assessment
of safety-critical systems.
K E YWORD S
software safety, safety-critical systems, fault-based testing,
domain-specific language, test suite assessment, safety tactics

1

2

1 | INTRODUCTION1

Currently, an increasing number of safety-critical systems are controlled by software and rely on the correct operation2

of the software. Aircraft flight control, nuclear systems, medical devices are well-known examples of safety-critical3

systems. In this context, a safety-critical system is a system in which software malfunctioning could result in death,4

injury, or damage to the environment. The software can be considered as safe, which may not lead to a dangerous5

or life-threatening event for the system. In the literature several studies have discussed the methods, techniques,6

processes, tools, and models to make the software safe [1, 2, 3].7

System safety engineering applies engineering and management principles, criteria, and techniques to optimize8

all aspects of safety within the constraints of operational effectiveness, time, and cost throughout all phases of the9

system life cycle [4, 5]. Software safety can be addressed at different levels in the software development life cycle.10

Addressing safety concerns early on at the software architecture design level is crucial because quality characteristics11

such as safety cannot be included after the software implementation. An essential approach to address safety at the12

design level is the adoption of architectural tactics [6]. A tactic is a design decision for realizing quality goals at the13

architectural level. A safety tactic can be introduced for realizing safety. Wu and Kelly propose, for example, a set of14

tactics for software safety [7]. Based on the point at which faults are addressed for ensuring safety, we can categorize15

safety tactics as fault avoidance, fault detection, and fault tolerance safety tactics [8]. Safety-critical systems usually16

use a combination of these tactics to address the required safety concerns.17

Once a safety-critical system is designed, it is crucial to analyze it for safety requirements before starting the18

implementation, installation, and operation phases. It is critical to ensure that the potential faults can be identified19

and cost-effective solutions are provided to avoid or recover from the failures. One of the most critical issues is20

investigating the effectiveness of the applied safety tactics to safety-critical systems. Several scenario-based software21

architecture analysis approaches [9, 10, 11] exist in the literature to analyze the architecture’s quality. Unfortunately,22

these approaches are general purpose and do not directly consider safety concerns, thus fail to provide an in-depth23

analysis of the safety tactics.24

In this article, we adopt a fault-based testing approach to analyze the effectiveness of the test suite of safety-25

critical systems using safety tactics. The novelties of this study are pointed out as follows: (1) building a systematic26

fault-based testing approach for assessing test suite adequacy based on architectural tactics and (2) developing DSL27

and tool for the proposed fault-based testing approach. An essential aspect in fault-based testing is mutation analysis28

which involves modifying a program under test to create variants (a.k.a., mutants) of the program. To apply fault-based29

testing for assessing the test suite, we first present a metamodel and a domain-specific language that models several30

safety views and the relation to the code. Mutants are generated for the potential hazards and the corresponding31

tactics. The approach results in the impact analysis of a test suite on the applied tactics. The proposed approach32

is illustrated using an industrial case study in the avionics domain. The case study demonstrates an important part33

of the aircraft control platform used in the developed avionics systems. With the case study, our tool allowed us to34

automate this process by removing manual steps for generating the mutations and running test cases. It also helped35

us ensure the safety concerns were properly addressed in the test cases by focusing on the safety tactics.36

The remainder of the article is organized as follows. In Section 2, we present the required background information37

for understanding the overall approach. Section 3 provides a case study thatwe use to illustrate our fault-based testing38

approach. Section 4 presents the metamodel and domain-specific language for software safety tactics. In Section 5,39

we present the proposed fault-based testing approach. Section 6 presents our tool that implements the corresponding40

approach. In Section 7, we illustrate the proposed approach and the tool using the industrial case study. We present41

DSL evaluation in Section 8. Section 9 presents the related work, and Section 10 concludes the paper.42

3

2 | PRELIMINARIES43

2.1 | Safety Tactics44

Several studies [7, 12, 13] proposed architectural tactics or patterns for supporting safety design. Safety tactics are45

organized in [7, 13] based on fault avoidance, fault detection, and fault containment.46

Fault avoidance aims to prevent faults from occurring in the system. Simplicity and Substitution are fault avoid-47

ance tactics. Fault detection focuses on monitoring the system and identifying faults when they occur in the system.48

Condition Monitoring, Sanity Check, and Comparison are tactics for fault detection. Fault containment seeks to limit49

the impact of the fault and prevent propagation of the fault. Fault containment includes Redundancy, Repair, Degra-50

dation, Voting, Override, and Barrier tactics. In this study, we refer to and reuse the tactics discussed in the literature51

[13]. Table 1 shows the safety tactics along with their descriptions.52

2.2 | Fault-Based Testing53

Fault-based testing is one of the testing approaches which aims to analyze, evaluate, and design test suites by using54

fault data. Mutation testing is one of the common forms of fault-based testing. It aims to design new test cases by55

analyzing the quality of the existing test cases. Mutation testing involves modifying a program under test to create56

variants of the program. Variants are created by making small changes in the program following a pattern. Mutation57

operators are the patterns to change the program’s code, and each variant of the program is called a mutant. A test58

suite is applied to both a mutant and the original program code. If the original code and mutant behave differently,59

the test suite can detect the change between the original and the mutant program. However, if the original code and60

mutant behave the same, the test suite is not adequate to detect the difference, and it needs to be improved.61

Mutation analysis consists of the following three steps [14]:62

1. Mutation operator selection relevant to faults.63

2. Mutant generation.64

3. Distinguishing mutants by executing the original program and each generated mutants with the test cases.65

After test cases are executed on mutated programs, the mutation score is calculated using the number of live mutants66

and the number of killed mutants. If the behavior/output of a mutant differs from the original program, the mutant is67

killed. Otherwise, the mutant is alive. The mutation score is calculated using equation (1). If a mutant’s behavior is the68

same as the original program, the mutant is equivalent. Mutation score [15] is used to evaluate the adequacy of the69

test cases. The mutation score shows the effectiveness of test cases in terms of their ability to detect injected faults.70

A higher mutation score means a higher quality of test cases.71

Mut at i onScor e =
of k i l l ed mut ant s ∗ 100

of t ot al mut ant s − # of equiv al ent mut ant s
(1)

3 | CASE STUDY72

This section describes a case study to illustrate our approach in subsequent sections. The case study is taken from73

an open-source software called Openpilot [16] implemented using Python and C++. Based on this study [17], it74

4

Safety Tactic Category Description
Simplicity Fault Avoidance Keep the system as simple as possible to avoid faults.
Substitution Fault Avoidance Use more reliable components which are well-proven in safety domain

to avoid faults.
Sanity Check Fault

Detection
Checkwhether a system state or value remains in a valid range defined
in system specification.

Condition Moni-
toring

Fault
Detection

Check whether a system value remains in a valid range compared to
a more reliable reference value. Reference value is computed at run-
time and it is based on system input values and is not pre-known value
from the system specification.

Comparison Fault
Detection

Compare the outputs of redundant systems to detect faults.

Diverse
Redundancy

Fault
Containment

Develop redundant components using different implementations
based on the same system specification.

Replication
Redundancy

Fault
Containment

Develop redundant system using the same implementation.

Repair Fault
Containment

Bring a failed system back to its normal and healthy state and restore
it.

Degradation Fault
Containment

Brings a system with an error into a state with reduced functionality
in which the system still maintains the core safety functions.

Voting Fault
Containment

Mask the failure through choosing a correct result from redundant sys-
tems.

Override Fault
Containment

Choose the output of redundant subsystems by preferring one subsys-
tem or one output state over another.

Barrier Fault
Containment

Protect a subsystem from influences or influencing other subsystems.

TABLE 1 List of Safety Tactics

5

is one of the most popular open-source software in the safety-critical system domain. Openpilot is open-source75

driver assistance system developed by Comma.ai. It has Automated Lane Centering, Forward Collision Warning and76

Lane Departure Warning functionalities supporting a variety of car makes and models. It also has Driver Monitoring77

capability to alert distracted and asleep drivers. Openpilot consists of different components to communicate with78

the car and sensors, decide on the state of gas, brake, and steering, and process the sensor data to provide a safer79

driving experience for the drivers. Their high-level component diagram is given in [18]. In this study, we focus on80

Driver Monitoring capability which evaluates the data coming from sensors and generates alerts for drivers for a safer81

driving experience.82

In Figure 1, we presented the high-level component diagram of Openpilot that we focused on this study. The83

overall component diagram for the Openpilot can be found in [18]. AlertManager is a module to process and manage84

the alerts. Events is a base module which defines events and alerts in Openpilot environment. Controlsd is a main85

module to combinewide range of inputs from sensors and car state and produces car-specific Controller AreaNetwork86

(CAN) messages. CAN is a communication protocol. Electrical units and devices in the car is communicated through87

CAN messages. Controlsd communicates with AlertManager to publish proper alerts to the user based on the inputs88

it receives.89

F IGURE 1 High-level architectural diagram of the case study

For the case study, we select displaying an alert to user when an unusual event occurs. As explained in [19], to ensure90

the safety of the driver, hazards and safety requirements should be identified and addressed accordingly. Hazard is91

a potentially dangerous situation that can result in or contribute to an accident [5]. For the case study, the hazards92

is displaying an incorrect alert or no alert to the user. The possible causes of this hazard are a loss of/error in the car93

sensors, a loss of/error in communication with the car sensors, an error in the display device, and incorrect evaluation94

of the data coming from sensors. Car accident is identified as the possible consequence of this hazard. The severity95

of the hazard is catastrophic since the possible consequence of the hazards is a car crash. Based on this hazard, we96

define the safety requirements in Table 2.97

Openpilot uses several safety tactics in their implementation to meet the defined safety requirements. In order98

to implemented SR5, they use Sanity Check tactic by checking the event type to decided whether it is an alert or99

not. If it is not an alert, they do not show it to the user. To implement SR6, they use Condition Monitoring and Sanity100

Check tactics to monitors the alerts’ state and to decide which alert has a high priority to be shown to the user. Table101

3 summarizes the rest of the applied tactics for the case study, along with the safety requirements.102

6

Safety
Requirement

Explanation

SR1 Events should be evaluated at least from two different components.
SR2 If only one of the components produces an event, the incoming event should be evaluated

and a warning should be generated.
SR3 If both components cannot produce an event, the error should be generated.
SR4 The two events should be compared and if they are not same, always the event coming

from the selected source should be displayed along with a warning.
SR5 If an event is not an alert, do not show it as an alert.
SR6 If there are multiple alerts that occurring at the same time, show the most recent and high

prioritized event as a current alert.
SR7 If an alert is not active, even if it is the most recent and high prioritized one do not show it

as a current alert.
TABLE 2 Safety Requirements for the selected hazards
Safety
Req.

Safety Tactic & Category Tactic Description

SR1 Replication Redundancy (Fault
Containment)

The events are evaluated by two different Alert Managers
where both has the same logic to evaluate events.

SR 2 Condition Monitoring (Fault De-
tection)
Voting (Fault Containment)

The health of both AlertManagers should be periodically mon-
itored to see whether they are healthy or not. If one of them
is failing, the event from the other manager will be displayed.

SR3 Condition Monitoring (Fault De-
tection)
Repair (Fault Containment)

The health of both AlertManagers should be periodically mon-
itored to see whether they are healthy or not. If there is a fail-
ure on any of the managers, they will be put in repair mode.
If both of them are failing, an error will be generated and no
alert will be shown.

SR 4 Comparison (Fault Detection)
Override (Fault Containment)

If the events produced by each Alert Manager are not same,
always show the event coming from Alert Manager 1 and dis-
play a warning.

SR5 Sanity Check (Fault Detection) The given event is checked if it is meets the criteria for repre-
senting an alert in the Openpilot environment.

SR6 Sanity Check (Fault Detection)
Comparison (Fault Detection)

All the existing alerts’ states are monitored and validated
against the pre-defined criteria to decide which alert is going
to be shown to the user.

SR7 Sanity Check (Fault Contain-
ment)

Monitor the alert’s state and if it is not active do not show it
to the user.

TABLE 3 Applied Safety Tactics to Case Study

7

F IGURE 2 Metamodel for Safety DSL

4 | DSL FOR SAFETY103

This section presents the metamodel and domain-specific language (DSL) for software safety to represent safety-104

related concepts. After a thorough domain analysis, our earlier work [8] derived a metamodel to express safety design105

concepts. In this work, we enhanced the earlier metamodel to support our fault-based testing approach. We updated106

the previous metamodel by adding Architecture To Code Relation part to show concepts and relations used in the fault-107

based testing approach to generate mutations and running test cases. We present the updated metamodel in Figure108

2.109

The first part (Safety-Critical) of the metamodel includes the concepts present in the architecture design. Three110

types of architectural elements are distinguished asMonitoring Element, Safety-Critical Element, and Non-Safety Critical111

Element. Monitoring Element monitors one or more Safety-Critical Elements by checking their status. If there is a112

problem in a Safety-Critical Element, the Monitoring Element can react by stopping/starting/restarting/initializing the113

related Safety-Critical Element. Safety-Critical Element presents the element which includes safety-critical operations.114

A Safety-Critical Element can consist of one or more Safety-Critical Elements. We represented this relation in the figure115

using is element of. A Safety-Critical Element has States, including Safe State. If a fault is detected, which can lead to116

a hazard in the system and there is a safe state, the system can take itself to the safe state to prevent the hazard. In117

this regard, we have defined Safe State for defining safe states for Safety-Critical Elements. A Monitoring Element or118

Safety-Critical Element applies Safety Tactics in order to ensure the safety of the system.119

The second part of the metamodel includes the concepts related to applied safety tactics in the design. We have120

identified the well-known safety tactics as fault avoidance, fault detection, and fault tolerance. Fault avoidance tactic121

aims to prevent faults from occurring in the system. When a fault occurs, the fault is detected by applying fault122

detection tactics. Fault tolerance is the ability of the system to continue correctly and maintain a safe operational123

condition when a fault occurs. Therefore, applied Safety Tactic can be Fault Avoidance Tactic, Fault Detection Tactic, or124

Fault Tolerance Tactic to deal with faults.125

The third part of the metamodel includes the concepts which are related to hazards in the system. A Hazard126

8

F IGURE 3 An example definition of a hazard using our DSL

describes the presence of a potential risk situation that can result or contribute to the mishap. A Hazard causes some127

Consequences. Safety Requirements are derived from identified Hazards. For the safety-critical systems, a thorough128

hazard analysis should be done to discover potential hazards and identify their root causes. Fault Tree Analysis [1] is129

one of themostwell-known andwidely usedmethods for hazard analysis. It aims to analyze a design for possible faults130

that could lead to hazards in the system using Boolean logic. We define FTA Node, Operator, and Fault to conducting131

Fault Tree Analysis. FTA Nodes, Faults, and Operators are the elements of a fault tree. Operator is used to conduct132

Boolean logic. Operator can be AND or OR. One or more FTA Nodes cause a Hazard.133

The last part of themetamodel isArchitectureToCodeRelations defined in the fault-based testing process formutant134

generation and test case run steps. As presented in Figure 2, ArchitectureToCodeRelations consists of Implementation135

Relations which can beModule-Class Relation or Class-Test Case Relation. Module-Class Relation describes which Safety-136

Critical Elements defined in Safety-Critical View consists of which classes in the program code. Class-Test Case Relation137

defines which classes in the program code should be tested with which test cases. Based on the safety metamodel138

presented in Figure 2 we provide a domain-specific language (DSL) to represent the concepts in the safety domain.139

The EBNF grammar [20] of this DSL is presented in A. In Figure 3, we present an example definition of a hazard using140

our DSL. It illustrates the hazards "displaying an incorrect alert or no alert to the user" and "violating maintaining a141

safe distance" from the case study that we explained in Section 3.142

5 | FAULT-BASED TESTING APPROACH143

In the previous sections, we describe the metamodel and the corresponding DSL for modeling safety-critical archi-144

tectural concerns and their relation to the implementation. Following up on this, Figure 4 shows the process of our145

fault-based testing approach. Our fault-based testing (FBT) approach leverages the DSL, and we use mutation testing146

to evaluate the test suite’s quality. Within our approach, we enhanced the classical method for mutation testing with147

:148

9

• providing a guideline for how to select and decide on mutation operators for applied safety tactics149

• automating the mutation generation (for implementation-level mutations), and test case execution150

• defining a scope for the testing process by only focusing the safety requirements and the safety tactics151

F IGURE 4 Process of Proposed Fault-Based Testing Approach

10

The approach consists of several steps: identifying safety requirements and safety tactics, building a safety model152

and mutation model, generating mutants, running the test suite on the generated mutants, and evaluating the results.153

To build a safety model and mutation model, we first need to define the safety concerns in the system. For this, we154

start our process by identifying safety requirements and safety tactics. In the following, we explain our proposed155

approach in detail.156

5.1 | Identifying Safety Requirements157

The first step of our proposed approach is identifying the safety requirements of the system. Safety requirements are158

defined based on the hazards and risks in the system [21]. Hazard analysis is performed to identify the hazards in the159

system by building a list of all hazards, their causes, consequences, and severity. Hazard severity levels are defined as160

catastrophic, critical, marginal, or negligible in [21]. Hazard identification activity is performed with domain experts161

(avionics engineers and pilots), system engineers, and safety engineers. The risks in the system are defined by the162

estimation of the probability of occurrence of each hazard. In [21], occurrence definitions are classified as frequent,163

probable, occasional, remote, or improbable. Based on the hazard severity and hazard occurrence class identification,164

risks should be assessed and categorized as high, serious, medium, or low. After the risk definition, a risk assessment165

should be conducted using fault tree analysis, event tree analysis, simulation, etc. Safety requirements can be derived166

using identified hazards and risks. In the following subsections, we use "maintaining a safe distance with the leading167

car" as an example safety requirement. For this requirement, a hazard would be “failing to maintain a safe distance on168

autopilot mode for autonomous driving cars”.169

5.2 | Identifying Safety Tactics170

As a second step, safety tactics should be defined to satisfy identified safety requirements. In Table 1, we provided171

the list of well-known safety tactics that can address safety concerns. Safety tactic(s) should be determined to avoid172

failures and hazards for each identified safety requirement. Table 1 can be leveraged as a guideline to determine safety173

tactics for the hazards defined in the identifying safety requirements step. Based on the example we defined Section174

in 5.1, below are the example safety tactics that can be defined to avoid this hazard using Table 1:175

• Sanity Check: Check the distance with the leading car and ensure that it stays within the defined threshold176

distance.177

• Diverse redundancy: Calculate the distance with the leading car from at least two different software components178

to reduce the risk of miscalculation.179

5.3 | Building Safety Model180

The next step is creating a safety model using the safety DSL. We use the safety model to generate mutants and run181

test cases. Hazard view, safety tactic view, and safety-critical view should be defined in order to construct a safety182

model.183

Hazard View184

The hazard view should include the safety requirements and the hazards derived from the safety requirements in the185

first step of our FBT approach. In addition to hazards, the model should contain failures and faults that the identified186

11

hazards can cause. Figure 5 shows a simple hazard view for the example hazard we have defined in the previous187

subsections.188

Safety Tactic View189

The safety tactic view consists of the safety tactics identified in the second step of our FBT approach. The safety190

tactic view should contain the information on "Sanity Check" and "Diverse Redundancy" tactics we defined in Section191

5.2. Figure 6 shows a simple safety tactic view for the example scenario we have defined.192

Safety-Critical View193

The safety-critical view describes the architectural components of the system from a safety perspective. Figure 7194

shows a simple safety-critical view for the example scenario we have defined. In this example, since in the system we195

apply diverse redundancy tactic, we have two distinct components to calculate the distance between the leading car.196

This view also includes other safety-critical, non-safety-critical and other elements in the system.197

Implementation Relations View198

For the mutant generation and test case execution steps, architecture to code relations should also be defined. Figure199

8 shows a simple architecture to code relationships view for the example scenario we have defined. In this example,200

with module-class relations, we indicate that the "distanceCalculatorComponent1" includes "Distance" and "Calcu-201

latorComponentA" implementation classes/files. And with class-test case relations, we indicate that the tests for202

"Distance" class/file lives in test suite "distanceTests" where the tests for "CalculatorComponentA" lives in test suites203

"calculatorTests" and "componentATests".204

12

F IGURE 5 Hazard View for a sample hazard

F IGURE 6 Safety Tactic View for the example scenario

13

F IGURE 7 Safety-Critical View for the example scenario

F IGURE 8 Architecture to Code Relationships View for the example scenario

14
Saf

ety
Tac

tic
Tac

ticP
rop

erti
es

Mu
tati

onM
ode

l
Sim

plic
ity

N/A
N/A

Sub
stit

utio
n

-Us
ing

mo
rer

elia
ble

com
pon

ent
s

-Ar
chit

ect
ura

l-le
vel

mu
tati

on:
Rep

lace
the

com
pon

ent
sw

ith
fau

lty
com

pon
ent

s
San

ity
Che

ck
-Ch

eck
ing

the
sys

tem
stat

eor
valu

eto
see

if
itre

mai
nsw

ithi
na

vali
dra

nge
det

erm
ined

in
the

sys
tem

spe
cific

atio
n

-Im
plem

ent
atio

n-le
vel

mu
tati

on:
Mu

tate
the

imp
lem

ent
atio

no
fch

eck
ing

logi
cby

re-
plac

ing,
add

ing
orr

em
ovin

gth
ear

ithm
etic

,re
latio

nal
and

logi
cal

ope
rato

rs
Mu

tati
on

ope
rato

rs:A
rith

me
tico

per
ato

rs,L
ogic

alo
per

ato
rs,R

elat
ion

alo
per

ato
rs

Con
diti

on
Mo

ni-
tori

ng
-C

hec
king

the
sys

tem
stat

eo
rva

lue
tos

ee
ifit

rem
ains

wit
hin

ava
lidr

ang
eca

lcul
ate

dat
run

tim
e

-H
avin

ga
com

pon
ent

for
mo

nito
ring

-M
uta

tet
he

imp
lem

ent
atio

no
fch

eck
ing

logi
cb

yre
plac

ing,
add

ing
orr

em
ovin

gth
e

arit
hm

etic
,re

latio
nal

and
logi

cal
ope

rato
rs

Mu
tati

on
ope

rato
rs:A

rith
me

tico
per

ato
rs,L

ogic
alo

per
ato

rs,R
elat

ion
alo

per
ato

rs
-Ar

chit
ect

ura
l-le

vel
mu

tati
on:

Rep
lace

the
mo

nito
ring

com
pon

ent
wit

hth
efa

ulty
one

Com
par

ison
-Co

mp
arin

gva
lues

from
red

und
ant

one
s

-Im
plem

ent
atio

n-le
vel

mu
tati

on:
Mu

tate
the

imp
lem

ent
atio

no
fco

mp
aris

on
logi

cby
rep

laci
ng,

add
ing,

rem
ovin

gth
ere

latio
nal

and
logi

cal
ope

rato
rs

Mu
tati

on
ope

rato
rs:L

ogic
alo

per
ato

rs,R
elat

ion
alo

per
ato

rs
Div

erse
Red

un-
dan

cy
-Ha

ving
diff

ere
nti

mp
lem

ent
atio

nsf
orr

edu
n-

dan
tco

mp
one

nts
ors

ubs
yste

ms
-Ar

chit
ect

ura
l-le

vel
mu

tati
on:

Rep
lace

the
red

und
ant

com
pon

ent
(s)w

ith
aco

mp
one

nt
whi

chh
asa

sam
eim

plem
ent

atio
no

fth
epr

ima
ryc

om
pon

ent
.

Rep
lica

tion
Red

und
anc

y
-H

avin
gsa

me
imp

lem
ent

atio
nfo

rre
dun

dan
t

com
pon

ent
sor

sub
sys

tem
s

-Ar
chit

ect
ura

l-le
vel

mu
tati

on:
Rep

lace
the

red
und

ant
com

pon
ent

(s)w
ith

aco
mp

one
nt

whi
chh

asd
iffe

ren
tim

plem
ent

atio
nfr

om
the

prim
ary

com
pon

ent
.

Rep
air

-H
avin

ga
com

pon
ent

for
rep

airin
gth

efa
iled

com
pon

ent
s

-Ar
chit

ect
ura

l-le
vel

mu
tati

on:
Rep

lace
the

imp
lem

ent
atio

no
fa

rep
airin

gco
mp

one
nt

wit
ha

com
pon

ent
tha

tha
sm

issin
gfu

nct
ion

aliti
eso

ra
fau

lty
one

Deg
rad

atio
n

-H
avin

ga
com

pon
ent

tha
tbr

ings
the

sys
tem

toa
stat

ew
ith

red
uce

dfu
nct

ion
aliti

es
-A

rch
itec

tura
l-le

vel
mu

tati
on:

Rep
lace

the
imp

lem
ent

atio
no

fa
deg

rad
atio

nc
om

po-
nen

tw
ith

aco
mp

one
ntt

hat
has

mis
sing

fun
ctio

nali
ties

ort
hef

ault
yon

e
Vot

ing
-H

avin
ga

com
pon

ent
tha

tch
oos

est
he

ma-
jori

tyo
fth

eo
utp

utv
alue

sas
out

put
-Im

plem
ent

atio
n-le

vel
mu

tati
on:

Rep
lace

the
imp

lem
ent

atio
nof

the
vot

ing
com

pon
ent

tos
elec

tou
tpu

tva
lue

ran
dom

ly.T
her

eis
nom

uta
tion

ope
rato

rsu
gge

sted
,th

isre
qui

res
dom

ain
kno

wle
dge

tom
uta

tet
hep

rog
ram

cod
e.

Ove
rrid

e
-H

avin
ga

com
pon

ent
tha

tch
oos

est
he

out
-

put
ofr

edu
nda

ntc
om

pon
ent

sb
yp

refe
rrin

g
one

out
put

ove
ran

oth
er

-Im
plem

ent
atio

n-le
vel

mu
tati

on:
Rep

lace
the

ove
rrid

ing
logi

cby
sele

ctin
gth

eo
utp

ut
valu

efr
om

one
oft

hec
om

pon
ent

sot
her

tha
nth

epr
efe

rred
one

.

Bar
rier

-A
bar

rier
com

pon
ent

for
pro

tec
ting

aco
m-

pon
ent

from
infl

uen
ces

ori
nflu

enc
ing

oth
ers

-Ar
chit

ect
ura

l-le
vel

mu
tati

on:
Rep

lace
the

bar
rier

com
pon

ent
wit

hon
eth

ata
llow

sth
e

com
pon

ent
sto

hav
ean

effe
cto

nea
cho

the
r.

TA
B
LE

4
Mu

tati
on

Mo
del

for
Saf

ety
Tac

tics

15

5.4 | Mutant Generation205

In order to generate mutants, we need to know what part of the system needs to be changed and how its behavior is206

going to be changed. With safety models, we already define what part of the system needs to be changed by focusing207

on safety tactics and the safety-critical components in the system. We introduce a mutation model for each safety208

tactic to define the behavioral change. Each mutation model describes the possible ways of changing the behavior209

of the applied safety tactic. Using these models, the mutation generation can be achieved. Each row in Table 4,210

explains a mutation model for well-known safety tactics listed in Table 1. Each mutation model is defined based on211

the tactic properties column. If the safety tactic is addressed on the implementation (code) level, the mutation is also212

applied on implementation-level. Where if the safety tactic is addressed on the component level, the mutation is213

applied at architectural-level. Table 4 also includes common mutation operators related to each implementation-level214

mutation model. If we take the example safety tactics we defined in Section 5.2, Sanity Check tactic requires having215

a range check on a system state or value to check their validity. The mutation model for this tactic would be on the216

implementation-level where wemutate the tactic implementation by adding or removing the arithmetic, relational and217

conditional operators. If we consider Diverse Redundancy tactic, it requires having redundant components which they218

have different implementations. The mutation model for this tactic would be on the architectural-level where we add219

redundant components to have each component have the same implementation. Table 4 can be used as a guideline to220

build mutation models for each safety tactic defined for the given safety-critical system. The relations between safety221

tactics, mutation models and mutation operators in Table 4 are addressed in our tool which is presented in Section 6.222

There are several tools in the literature to generate implementation-level mutants. MutPy is [22] is one of the223

mutation testing tool for Python 3.3+ for generating implementation-level mutants automatically. We use MutPy’s224

guideline while selecting the proper mutation operators for the safety tactics that we applied to our case study. We225

have a code generation process where it provides an automatedway for creating implementation-level mutations. The226

code generation process uses the mapping between safety tactic and MutPy mutation operator presented in Table 4.227

For the code generation process, we have leveraged the code generator provided by Xtext framework [23]. Xtend [24]228

is part of the Xtext framework, and it is used for model-to-model or model-to-text transformation. We used Xtend229

to generate a code from our safety model (model-to-text transformation). The code generator is part of the tool we230

developed which is presented in Section 6. For the code generation process, we need the parts of the program code231

are going to be mutated and what type of mutation is going to be applied. The code generation process extract this232

information from the safety model of the system. Below are the steps for generating implementation-level mutations233

within our tool.234

1. Find applied safety tactic(s) for each safety requirement using the hazard and safety tactic view. Create a mapping235

between safety requirement and associated safety tactics.236

2. Find safety-critical modules for each safety tactic using the safety-critical view and create a mapping between237

them.238

3. Find implementation files/classes for each safety-critical modules from implementation relations view and create239

mapping between them.240

4. Find test suites for each implementation file/class from implementation relations view and create mapping be-241

tween them.242

Pseudo code for mutant generation:243

for each safety requirement in safety model do // use information from step #1244

16

for each safety tactic applied for the safety requirement do // use information from step #1245

for each safety-critical module implements the safety tactic do // use information from step #2246

code snippet += generate Python code with MutPy library // use information from step #3 and step #4247

end for248

end for249

generate Python file with the code snippet250

end for251

The code generation process uses the mapping between safety tactics and mutation models defined to decide252

on the mutation behavior. The mutation model tells us what type of mutations are going to be applied. If the muta-253

tion is at architectural-level, the mutation generation needs to be performed manually. On the other hand, for the254

implementation-level mutations, our tool generates a code snippet with the mutation operators defined in Table 4255

so that mutants can be generated. In order to get the parts of code to be mutated for implementation-level muta-256

tions, our tool extracts the module-class relations and test classes-class relations from Architecture To Code Relations257

for the safety-critical elements we have obtained. These relations help us to get the implementation details such as258

module, the class, and the test class. This information indicates the parts of the code are going to be mutated. For259

each safety tactic in the system, Python code is generated using the extracted information. The generated code is260

skeleton code which has the required code to generate mutants and run test cases by executing related methods from261

MutPy. We provide the mutation operators to the skeleton code and run the complete code with the original program262

code. Each selected mutation operator is switched with the operator in the original code by MutPy, and mutants263

are generated. Architectural-level mutation requires adding, removing, or modifying a component. Since it requires264

implementation-specific knowledge, it can be achieved by updating the component manually, or this process can be265

fully or partially automated depending on the case.266

Considering the example scenariowe provided in previous sections, themutationmodel for the SanityCheck tactic267

is on implementation-level and it requires to replace, add or remove the arithmetic, relational and logical operators in268

the program code. In this case the the generated code snippet for this tactic is given below:269

270
mut.py -t calculatorComponentA.py -u calculatorTests.py componentATests.py271

-o AOD AOR COD COI ROR LOR LOD --report-html mutationReport272273

5.5 | Running Test Cases on the Mutants and Mutation Score Evaluation274

When we have the mutants generated, as a next step, the test cases are run on the mutants to assess the quality of275

the test suite. Our study focuses on evaluating the quality of the existing test suite. From this perspective, we use the276

test suite implemented during the system development. Our approach does not include a process for generating test277

cases. For implementation-level mutations, this step is also automated. Test cases are run by executing the generated278

code. For the architectural-level mutations, we run the test cases manually. Test suite evaluation is performed on the279

implementation level.280

Based on the results of the test case execution step, we calculate the mutation score and evaluate it. If there is an281

alive mutant (not killed by any test cases), we add new test cases to handle the alive mutants. This process is repeated282

until all the mutants are killed.283

17

6 | TOOL284

In this section, we present the tool that we developed in the Eclipse environment to define safety models using safety285

DSL and the Python script to apply a fault-based testing process.286

We defined the grammar of safety DSL using Xtext [23], a language development framework provided as an287

Eclipse plug-in. After defining our DSL in Xtext, wewrote our code generator using Xtend provided in Xtext framework288

for the safety DSL. Xtext and the corresponding code generator create the parser and runnable language artifacts.289

From these artifacts, Xtext generates a full-featured Eclipse text editor. Figure 9 shows the snapshot of the Eclipse290

text editor for our case study. As explained in the previous section, for the mutant generation and test case execution291

steps, an existing open-source Python project MutPy is used. MutPy provides mutation operators for the mutant292

generation. Additionally, it enables to execution of predefined test cases on mutated program code. The Python293

script is generated during the code generation process to mutate the program code and execute test cases leveraging294

MutPy.295

F IGURE 9 Tool for Safety DSL

7 | CASE STUDY EVALUATION296

This section explains the application of our fault-based testing approach and presents the results by using an industrial297

case study described above. We applied the process shown in Figure 4. In the following, we explain the application298

of each step.299

18

F IGURE 10 High-level architectural diagram of the case study

Component Openpilot Module - Github Link
Events events.py
Alert Manager1 alertmanager1.py
Alert Manager2 alertmanager2.py
Alert Manager Monitor alertmanagermonitor.py
Controls controlsd.py

TABLE 5 High-level architectural component along with Openpilot module

7.1 | Build Safety Model300

As described in Section 3, we selected displaying an alert to user when an unusual event occurs hazard and identified301

safety requirements as shown in Table 2. Later, we defined the corresponding safety tactics and presented them in302

Table 3. In order to address the safety tactics we defined, we leveraged the part of Openpilot open-source software303

explained in Section 3 and built a case study. Figure 10 shows the overall high-level architecture diagram of our case304

study. We added another AlertManager (AlertManager2) to address Replication Redundancy defined in 3 for SR1.305

Table 5 presents the links to the Openpilot module associated with the component shown in Figure 10.306

These are the first two steps of the proposed fault-based testing approach. As a next step, we built the safety307

model. For defining the safety-critical view, firstly, we identified our architectural elements. AlertManager1 and Alert-308

Manager2 shown in Figure 10 are responsible for processing alerts. Each AlertManager receives the alert data from309

https://github.com/havvagulay/openpilot/blob/master/selfdrive/controls/lib/events.py
https://github.com/havvagulay/openpilot/blob/master/selfdrive/controls/lib/alertmanager.py
https://github.com/havvagulay/openpilot/blob/master/selfdrive/controls/lib/alertmanager2.py
https://github.com/havvagulay/openpilot/blob/master/selfdrive/controls/lib/alertmanagermonitor.py
https://github.com/havvagulay/openpilot/blob/master/selfdrive/controls/controlsd.py

19

Controls. Controls read the alert data from car sensors using CAN protocol. If a warning or should be generated, Alert-310

Managers notifies the Controls through commands relation. If a fault occurs in AlertManager1 and AlertManager2,311

they report the fault to Controls through reportsFault relation. For condition monitoring, voting, and recovery tactics,312

we added AlertManagerMonitor. AlertManagerMonitor monitors AlertManager1 and AlertManager2 components. It313

detects the failure when one of these managers fails and recovers from failures by stopping/starting/initializing the314

failed modules.315

We built a safety model by using safety DSL explained in Section 4 according to the case description. We defined316

hazard view, safety tactic view, and safety-critical view. For the sake of simplicity, we present a small part of the code317

snippet from the safety-critical view in Figure 11. Hazard view and safety-tactic view are created similarly using the318

safety DSL.319

Additionally, we defined implementation relations for the mutant generation and test case run steps. Module-320

Class Relations shows which safety-critical module consists of which implementation classes, Class-Test Case Rela-321

tions shows which implementation class should be tested with which test case classes. We present the architecture to322

code relations in Figure 11. Architecture to code relations provides a mapping between the module defined in the ar-323

chitectural model and the class implemented in Java. Also, they map the implementation classes and test classes. For324

example, Figure 11 shows that alertManager1 has the implementation in alertManager.py in module-class relations. In325

the next section, class-test case relations show that the test cases for alertManager.py is implemented in test_alerts.py,326

test_state_machine.py, test_alertmanager.py. The complete safety model for our case study can be found in [25].327

7.2 | Identify and Create Mutants328

In this step, we identified mutants based on the safety tactics that we implemented in our case study. Based on the329

mutation model we introduced in Table 4, we determined the mutants and presented them in Table 6. Table 4 explains330

the action item required to taken for each safety tactic. For example, for SR1, we have Replication Redundancy as a331

safety tactic in which we have AlertManager1 and AlertManager2 components as an application of this tactic. Based332

on the guideline we have in 4 we defined specific mutation models for each safety tactic we defined for the safety333

requirements.334

We used the safety model and the selected mutation operators as inputs to our tool to create skeleton code for335

generating mutants for method-level mutation generation. The skeleton code includes the required Python code for336

mutant generation and execution of test cases. A sample code snippet is shown in below:337

338
mut.py -t controlsd.py -u selfdrive/controls/tests/test_state_machine.py339

-o AOD AOR COD COI ROR LOR LOD --report-html Report-controlsd340341

This code snippet includes the mutant generation code for the Sanity Check tactic for the module Controls. The342

mutation operators that we have in the above code snippet are AOD (Arithmetic Operator Deletion), AOR (Arithmetic343

Operator Replacement), COI (Conditional Operator Insertion), COD (Conditional Operator Deletion), ROR (Relational344

Operator Replacement). LOR (Logical Operator Replacement), LOD (Logical Operator Deletion). COI and COD are345

works with conditional operators like && (and), ∥ (or), & (bit-wise and), | (bit-wise or), ˆ (xor), ! (not) where ROR is346

related to relational operators > (greater than), < (less than), >= (greater than or equals), <= (less than or equals), ==347

(equals), != (not equals). All of the details on these operators can be found in [22].348

For component-level mutation generation, we manually modified the code parts in the implementation of the349

case study to reflect mutations.350

20

F IGURE 11 Safety model definition for safety-critical view and architecture to code relations

21

Safety
Requirement

Safety Tactic Mutation Model

SR1 Replication Re-
dundancy

Component level: Replace the implementation of alert managers such that they
have different implementations.

SR2 Condition Moni-
toring
Voting

Method level: Use mutation tool to generate mutations of corresponding code
part for AlertManagerMonitor
Component level: Create the mutations of the AlertManagerMonitor as to have
faulty voting behavior

SR3 Condition Moni-
toring
Repair

Method level: Use mutation tool to generate mutations of corresponding code
part for AlertManagerMonitor
Component level: Create the mutations of the AlertManagerMonitor as to have
faulty repair behavior

SR4 Condition Moni-
toring
Override

Method level: Use mutation tool to generate mutations of corresponding code
part for Controls
Component level: Create the mutations of the Controls as to have faulty override
behavior

SR5 Sanity Check Method level: Use mutation tool to generate mutations of corresponding code
part for Events

SR6 Sanity Check
Comparison

Method level: Use mutation tool to generate mutations of corresponding code
part for Alert Managers

SR7 Sanity Check Method level: Use mutation tool to generate mutations of corresponding code
part for Controls

TABLE 6 Identifying Mutant Model for Case Study

22

Lines of
Mutated
Code

Total
Test
Cases

Mutation
Model

Total
Generated
Mutants

Equivalent
Mutants

Alive
Mutants

Killed
Mutants

Mutation
Score
(%)

Alert
Manager1

37 3 Replication
Redundancy

4 0 0 4 100

Alert
Manager2

37 3 Replication
Redundancy

4 0 0 4 100

TABLE 7 Mutation Results for SR1

7.3 | Run Test Cases351

The next step is executing test cases on mutant codes. Test case generation is performed by generated code for352

method-level mutants. As shown in Implementation Relations, controlsd.py should be tested with test_state_machine353

test class. For the sake of simplicity, the part of the generated code is shown in Figure ??. As given in the code, test354

cases are executed on mutants for each test class, and results are collected to generate a report.355

7.4 | Results356

The last step is the generation of the report. When the test cases are executed in Section 7.3, results are collected,357

and the code part is called to generate a report. The report includes the classes under test, test case classes, mutation358

operators, test results (fail/pass), related faults, and related safety tactics. Tables 7-13 show the results for our case359

study along with the mutation score. They also include details of mutant generation (the total number of lines of the360

mutated code, mutation model, the total number of generated mutants, the total number of alive mutants, and the361

total number of killed mutants). While calculating the mutation score, equivalent mutants should be determined. If362

a mutant semantically behaves precisely like the original program, the mutant is equivalent. We manually checked363

the generated mutants to see if they behave like the original code to detect equivalent mutants. This process can364

be improved by using the existing approaches proposed in several studies, such as [26, 27, 28]. Since the original365

program passes all of the test cases and the killed mutant is a mutant that failed on at least one of the test cases, a366

killed mutant cannot be an equivalent mutant. In this regard, we only checked the live mutants to see if any of them is367

an equivalent mutant. We included the number of equivalent mutants as another column in the tables. We calculated368

the mutation score using the formula presented in Section 5.369

Table 7, Table 10, Table 11 and Table 13 show the results for SR1, SR4, SR5 and SR7 respectively. For all of these,370

the mutation score is 100, no further action is required.371

Table 8 presents the mutation results for SR2. For Condition Monitoring and Voting tactic, there are 10 mutants372

generated and 8 of them killed. When we revisited the test cases for Condition Monitoring tactic, we observed that373

some cases are not considered for this tactic. The test cases were missing some of the edge cases for checking the374

state of each AlertManager. We added three more test cases to cover all of the cases. With the complete test suite,375

all of the mutants were killed, and we obtained a mutation score of 100.376

Table 9 presents the mutation results for SR3. For Condition Monitoring and Repair tactic, there are 11 mutants377

generated and 5 of them killed. When we revisited the test cases for Condition Monitoring tactic, we observed that378

some cases are not considered for the this tactic. When we revisited the test cases for this tactic, we observed that379

some cases are not considered for the Condition Monitoring tactic. The test cases were missing some of the edge380

23

Lines of
Mutated
Code

Total
Test
Cases

Mutation
Model

Total
Generated
Mutants

Equivalent
Mutants

Alive
Mutants

Killed
Mutants

Mutation
Score
(%)

Alert
Manager
Monitor

12 5 Condition
Monitoring
and Voting

10 0 2 8 80

TABLE 8 Mutation Results for SR2

Lines of
Mutated
Code

Total
Test
Cases

Mutation
Model

Total
Generated
Mutants

Equivalent
Mutants

Alive
Mutants

Killed
Mutants

Mutation
Score
(%)

Alert
Manager
Monitor

19 4 Condition
Monitoring
and Repair

11 2 6 5 55.55

TABLE 9 Mutation Results for SR3

cases for checking the state of each AlertManager. We added two more test cases to cover all of the cases. With the381

complete test suite, all of the mutants were killed, and we obtained a mutation score of 100.382

Table 12 presents the mutation results for SR6. For Sanity Check and Repair tactic, there are 11mutants generated383

and 5 of them killed. When we revisited the test cases for Repair tactic, we observed that some cases are not consid-384

ered for this tactic. The test cases were missing some of the edge cases for checking the state of each AlertManager.385

In first iteration, we added two more test cases to cover all of the cases. With the first iteration, we were able to kill386

5 more mutants in which the mutation score is 55%. In the second iteration we added two more test cases and we387

were able to obtain the mutation score as 100%.388

7.5 | Evaluation389

In this section, we present the evaluation of our fault-based testing approach. We generated mutations for the imple-390

mentation of the case study using the proposed approach and aim to achieve a 100% mutation score to locate the391

weaknesses in the test suite and have effective tests for safety concerns. For some of the safety requirements, the392

Lines of
Mutated
Code

Total
Test
Cases

Mutation
Model

Total
Generated
Mutants

Equivalent
Mutants

Alive
Mutants

Killed
Mutants

Mutation
Score
(%)

Controls 247 8 Condition
Monitoring
and Over-
ride

158 0 0 158 100

TABLE 10 Mutation Results for SR4

24

Lines of
Mutated
Code

Total
Test
Cases

Mutation
Model

Total
Generated
Mutants

Equivalent
Mutants

Alive
Mutants

Killed
Mutants

Mutation
Score
(%)

Events 13 5 Sanity
Check

45 0 0 45 100

TABLE 11 Mutation Results for SR5

Lines of
Mutated
Code

Total
Test
Cases

Mutation
Model

Total
Generated
Mutants

Equivalent
Mutants

Alive
Mutants

Killed
Mutants

Mutation
Score
(%)

Alert
Manager1

37 5 Sanity
Check
Comparison

21 1 14 6 30

Alert
Manager2

37 5 Sanity
Check
Comparison

21 1 14 6 30

TABLE 12 Mutation Results for SR6

Lines of
Mutated
Code

Total
Test
Cases

Mutation
Model

Total
Generated
Mutants

Equivalent
Mutants

Alive
Mutants

Killed
Mutants

Mutation
Score
(%)

Controls 342 8 Sanity
Check

258 0 0 258 100

TABLE 13 Mutation Results for SR7

25

mutation score was already 100%. For these kinds of requirements, the implemented test suite is able to cover all the393

edge cases. However, for example, SR6 requires multiple safety tactics to be implemented, and these tactics have lots394

of edge cases to check. We revisited the test cases and observed that the test suite was missing some test cases.395

With the help of our approach, engineers or developers build systemmodels by focusing on safety concerns. They396

use these models as an input to mutation testing and evaluate the adequacy of the test suite based on the safety397

concerns explicitly defined in the models. If the mutation score is not 100, they revisit and reiterate the test suite398

to add missing or edge test cases to achieve a mutation score of 100. Our tool automates the process by removing399

manual steps for generating the mutations and running test cases. It also helps to ensure the safety concerns are400

properly addressed in the test cases by focusing on the safety tactics.401

8 | DSL EVALUATION402

In this section, we present the evaluation of our DSL from the end users’ perspective. Since our DSL is relatively new,403

we do not have adequate trained users to conduct formal interviews with questionnaires to evaluate our DSL. In this404

regard, we have looked at the existing studies in the literature to provide an approach for assessing DSLs from various405

perspectives. [29, 30, 31, 32] propose different approaches to evaluate novel DSLs. For our DSL, we used Frame-406

work for Qualitative Assessment of DSLs (FQAD) [30], which is based on the ISO/IEC 25010:2011 standard. FQAD407

describes a set of quality properties for assessing a DSL, including Functional suitability, Usability, Reliability, Main-408

tainability, Productivity, Extensibility, Compatibility, Expressiveness, Reusability, and Integrability. In the following, we409

present the evaluation of our DSL considering each quality characteristic.410

Functional suitability indicates to what degree the DSL is fully developed. This means that all necessary function-411

alities exist in the DSL, and the DSL does not have functionality not given in the represented domain. We used our412

DSL to define multiple case studies, and we have been able to describe all the problem-specific functionalities needed413

to express safety. From this point, we can conclude that our DSL meets this criterion.414

Usability refers to the degree to which specified users can use DSL to accomplish specified goals. To analyze this415

property, we have asked engineers experienced in the safety domain to assess the overall usability of our DSL. They416

expressed that differentiating between safety-critical and non-safety-critical components in the system helped them417

identify where to focus on the safety requirements. They also indicated that expressing and seeing the direct relation418

between safety-critical components and safety tactics helped address safety concerns in the system. Overall, they419

mentioned that the DSL is easy to learn and use.420

Reliability of a DSL is defined as the property of a language that helps to produce reliable programs. We developed421

our DSL using the Xtext framework in the Eclipse environment. The Xtext framework provides full infrastructure422

including parser, linker, type checker, compiler and editing support for Eclipse. The Eclipse editor provides all the423

requirements for handling code errors.424

Maintainability shows to what degree the DSL is easy to maintain. Our DSL consists of four main parts, which are425

defined by applying the separation of concerns principle. This helps to achieve modularity in the DSL. For maintain-426

ability, it is also vital to address understandability. In our DSL, we directly model the concepts as defined in the safety427

domain. Therefore, the grammar is easy to understand. Maintenance also covers modifiability. Since our DSL design428

is modular, it can be easily modified, or new concepts can be added.429

Productivity refers to the degree to which a DSL promotes programming productivity. Our DSL helps to increase430

productivity because it enhances the design and testing process of safety-critical systems. It helps developers and431

engineers to identify safety-critical concerns by explicitly defining them at the early stages of the design. Also, it432

26

supports the testing stage by helping test engineers to assess the quality of the test suites focusing on the safety433

concerns.434

Extensibility defines the degree to which a DSL has general mechanisms for users to add new features. Our DSL435

can easily be extended because of its modularity. Our DSL consists of four different parts that each provides different436

a viewpoint to the safety domain. In this regard, our DSL can be easily extended by adding new concepts. Also, the437

Xtext framework and the Eclipse helps users to add new features to DSL easily.438

Compatibility of a DSL shows at what degree a DSL is compatible with the domain and the development process.439

We defined our DSL to enhance the testing process of safety-critical systems. It is designed to help test engineers440

to assess the test suites’ quality by focusing on safety concerns. It fits the systems engineering lifecycle in terms of441

requirement analysis, design, development, and testing.442

Expressiveness defines the relation between the program and what the programmer has in their mind. For this443

criterion, it is imperative to have a one-to-one mapping between the concepts and their representation in the DSL.444

We developed our DSL based on a thorough domain analysis whereby we have modeled each concept in the corre-445

sponding metamodel of the language. We can affirm a one-to-one correspondence between the concepts, and their446

representation in the DSL and there are no duplicated concepts. We also considered the abstraction level of the con-447

cepts in the DSL to ensure that they are not too generic or too specific but expressive enough to represent the safety448

domain.449

Reusability of a DSL refers to the degree to which DSL can be used in any other language. The definitions in our450

DSL can be used in any other language since the DSL directly models the concepts as defined in the safety domain.451

Integrability defines the degree to which the DSL is compatible with integration with other languages. We devel-452

oped the DSL using the Xtext framework in Eclipse environment. The Eclipse platform allows developers to extend453

Eclipse applications like Eclipse IDE with additional functionalities via Eclipse plug-ins. In this respect, our DSL can be454

integrated with other languages using the Eclipse IDE.455

9 | RELATED WORK456

Several studies have proposed domain-specific languages (DSL) for addressing safety. In [33], the authors define aDSL457

to present Petri-nets and a tool MeeNET to debug safety-critical systems. Their focus is on having a DSL to formally458

define behavior of the system using Petri-nets and verify the system behavior. Nandi et al. [34] proposes a DSLfor459

the correct deployment of RV solutions in the scope of cyber-physical systems. Kaleeswaran et al. [35] define a DSL460

for Hazard and Operability Analysis (HAZOP) study. HAZOP study is a systematic way to identify potential hazards in461

the system. The HAZOP-DSL helps users to build links between HAZOP study and the system model for consistency462

and traceability. With the DSL support, the changes in the system model can be detected, and the user is enforced463

to make necessary changes in the HAZOP. Their study enables users to detect issues in the safety analysis at early464

design levels. [36] defines a DSL for defining the safety requirements and automatically verifying their consistency465

using formal methods. They propose a domain-specific language SafeNL to enable users to define safety requirements466

formally. They convert the SafeNL documents into formal constraints (Clock Constraint Specification Language) and467

verify their consistency with existing tools. Queiroz et al. [37] propose a DSL for defining scenarios used in simulation468

testing of autonomous driving systems. Their DSL includes information about vehicles, pedestrians, paths, roads469

which are the main components to compose test cases for self-driving vehicle testing. Some studies [38, 39] define470

a DSL to improve processes in their engineering life cycle. [39] defines a DSL (Mauve) for specifying the software471

architecture of autonomous robots. Using this DSL, they analyze the real-time correctness of the architecture by472

27

verifying the schedulability of different components. They transform Mauve model into Periodic State Machines473

and analyze real-time characteristics of the architectural components. Also, they check the validity of behavioral474

properties by converting Mavue model into Fiarce [40] models and analyze the Fiarce model using TINA [41]. In [42],475

the authors propose a domain-specific modeling language (DSML) to provide a conceptual model for expressing the476

informationmandated by DO-178C standard. Iber et al. [43] proposes a DSL to specify tests fromUML Testing Profile477

(UTP). They model the UTP to support model-driven development processes such as generating test code.478

All these and other studies in the literature define DSL to support system development lifecycle. Some focus only479

on one step of the lifecycle such as requirement analysis or design or implementation, where some of them are specific480

to one safety-critical domain like railway systems,robotics, or automotive. To the best of our knowledge, no generic481

DSL has been presented which is dedicated to assess the quality of the test suite. With this study, our primary focus482

is evaluating the adequacy of the test suite based on the applied safety tactics in the software architecture models.483

Our DSL allows us to express safety tactics in the safety models and the system implementation details to generate484

mutants and run test cases.485

In the literature, several studies proposed a fault-based testing approach to test safety-critical systems. In [44],486

the authors proposes an approach to generate test oracles from the formal requirements defined in CASDL (Casco487

Accurate Specification Description Language). In another study [12], a test case generation approach is defined based488

on model mutation for the safety requirements in the system. Firstly, a fault model is defined by describing mutation489

operators andUMLmodels of the system. Then, they define a process for transforming aUMLmodel toOOAS (Object-490

Oriented Action Systems) using fault models. Subsequently, OOAS models’ mutations are generated and used for the491

test case generation process. Another study [45] applies mutation testing on a nuclear reactor. In this work, a test492

case generation approach is defined to test a nuclear reactor. Mutation testing is applied by mutating the source code.493

With this approach, they aim to calculate the degree of test adequacy of the generated test cases.494

Safety concern has not been explicitly addressed using a dedicated architecture perspective before. However,495

there is plenty ofwork related to safety engineering. In our earlier work [19, 46], we have provided a safety perspective496

that can support the architectural design of safety-critical systems. It can assist the system and software architects in497

designing, analyzing, and communicating the decisions regarding safety concerns by evaluating safety issues early on498

the life cycle before implementing the system.499

In [47, 48], several architectural patterns are proposed to support software safety design. Gawand et al. [48]500

propose a framework for the specification of architectural patterns to support safety and fault tolerance. They provide501

four types of patterns. One of the patterns is Control-Monitor pattern. They aim to improve fault detection by using502

redundancy by using this pattern. Another pattern is the TripleModular Redundancy pattern which is used to enhance503

system’s safety where there is no fail-safe state. The other pattern is the Reflective State pattern which separates the504

application into base-level and meta-level to separate control and safety aspects from the application logic. The last505

pattern is Fault Tolerance Redundancy pattern which improves the fault tolerance of the system while implementing506

the redundancy for safety. Armoush et al. [47] propose a Recovery Block with Backup Voting pattern which improves507

the fault tolerance of the system.508

Our earlier work considered the explicit modeling of viewpoints for quality concerns [49, 50, 51]. As a result, each509

quality concern, such as adaptability and recoverability, requires a different decomposition of the architecture. Archi-510

tectural elements and relations are defined to specify the required decomposition for the quality concerns. Earlier511

work on local recoverability has shown that this approach is also broadly applicable. We consider this work comple-512

mentary to the architectural perspectives approach. Both alternative approaches seem to have merits.513

28

10 | THREATS TO VALIDITY514

In this section, we discuss threats to the validity of our study using the guideline defined in [52].515

Construct validity: The main goal of our study is to assess the adequacy of the test suite of safety-critical systems.516

To achieve this, we built an approach by leveraging existing fault-based testing methods. While applying the proposed517

approach to the case study, we assumed that the implementation (code) of the case study is bug-free and the test suite518

is complete from a test coverage perspective. Any defects in the case study implementation and test suite may affect519

our case study evaluation results. Additionally, we used µJava [53] to generate mutants. Any issues in µJava would520

jeopardize our study’s construct validity. The other point we bring to attention is that our case study is implemented521

in Java. We did not focus on the requirements of programming languages for supporting the implementation of safety-522

critical concerns since the scope of the paper is on mutant generation. This also might have an effect on the construct523

validity.524

Internal validity: To evaluate our approach, we used a use case from a real industrial case study. For the given525

case study, there is no equivalent mutant detected. Some of the equivalent mutants could not be generated or found526

because of the size of the case study. This might cause a threat to our internal validity. We plan to perform additional527

case studies as future work.528

External validity: Our approach is based on safety concerns, and it provides a generic approach for safety-critical529

systems. To illustrate our work, we applied our approach to a real case from a safety-critical system in the avionics530

domain. However, it can be applied to any safety-critical system from any domain since the overall approach is generic.531

Reliability: In this work, we provided detailed information about each step of the proposed approach. The meta-532

model, DSL, and tool are publicly available through an open-source platform. Hence, the results obtained within our533

study are reproducible.534

11 | CONCLUSION535

Testing safety-critical systems is essential and for this purpose, developing an effective test suite is necessary. In536

this article, we have thus provided a systematic approach for assessing test suites of safety-critical systems. For this537

purpose, we have adopted a fault-based testing approach that can be used to analyze the effectiveness of so-called538

architecture safety tactics. We have developed the required metamodel and realized the DSL to model the faults and539

tactics and support fault-based testing. We have applied the approach and the tool for a real industrial case study.540

The approach and the tool are helpful to assess a given test suite and analyze the strength of the safety tactics.541

Based on the results from our case study, our main conclusion is that our approach is feasible and effective for542

test suite assessment of safety-critical systems. It supports the overall architecture design of safety-critical systems543

and analysis to realize the requirements for safety-critical systems. With our fault-based testing approach, engineers544

and developers build dedicated system models to express safety concerns, use these models as an input to mutation545

testing, and evaluate the effectiveness of the developed test suite based on the safety concerns addressed in the546

models. If the mutation score is not 100, they revisit and reiterate the test suite to add missing or edge test cases547

to achieve a mutation score of 100. Since our approach focuses on safety tactics and fault knowledge, it enables548

developers to build complete and robust test suites focusing on safety concerns while building safety-critical systems.549

For future developments, we aim to enhance the approach further by systematically analyzing different faults and550

safety tactics from various domains such as robotics, nuclear systems, and automotive. Besides, we aim to automate551

mutation operation selection with the help of the safety model. Another improvement area that we plan is generating552

29

test artifacts (test data, test scripts, test oracle) from the DSL we defined. We also consider adding debugging and553

testing support to our DSL as future work.554

Acknowledgements555

Authors thank their universities for providing the infrastructure.556

Conflict of interest557

The authors declare no conflict of interest.558

Supporting Information559

There is no supporting information.560

references561

[1] Leveson N, Harvey P. Analyzing Software Safety. IEEE Transactions on Software Engineering 1983 sep;9(05):569–579.562

[2] Ericson C. In: Hazard Analysis Techniques for System Safety John Wiley & Sons, Ltd; 2005. .563

[3] Sparkman D. Techniques, processes, and measures for software safety and reliability. Nuclear Systems Safety Program564

1992;.565

[4] Leveson NG. Safeware: System Safety and Computers. New York, NY, USA: ACM; 1995.566

[5] NASA Software Safety Guidebook;. URL: https://standards.nasa.gov/standard/nasa/nasa-gb-871913.567

[6] Rozanski N, Woods E. Software Systems Architecture: Working With Stakeholders Using Viewpoints and Perspectives.568

Addison-Wesley Professional; 2005.569

[7] Wu W, Kelly T. Safety tactics for software architecture design. In: Proceedings of the 28th Annual International Com-570

puter Software and Applications Conference, 2004. COMPSAC 2004.; 2004. p. 368–375 vol.1.571

[8] Gurbuz HG, Pala Er N, Tekinerdogan B. Architecture Framework for Software Safety. In: System Analysis and Modeling:572

Models and Reusability Cham: Springer International Publishing; 2014. p. 64–79.573

[9] Xue-FangD, Rui Z. A scenario-based lightweight software architecture analysis method. In: 3rd International Conference574

on Green Communications and Networks, vol. 54 VOLUME 1; 2014. p. 949–956.575

[10] Buchgeher G, Weinreich R. An approach for combining model-based and scenario-based software architecture analysis.576

In: 2010 Fifth International Conference on Software Engineering Advances; 2010. p. 141–148.577

[11] Tekinerdogan B, Sozer H, Aksit M. Software architecture reliability analysis using failure scenarios. Journal of Systems578

and Software 2008;81(4):558–575.579

[12] Herzner W, Schlick R, Brandl H, Wiessalla J. Towards Fault-based Generation of Test Cases for Dependable Embedded580

Software. Softwaretechnik-Trends 2011;31.581

[13] Preschern C, Kajtazovic N, Kreiner C, et al. Catalog of safety tactics in the light of the IEC 61508 safety lifecycle. In:582

Proceedings of VikingPLoP 2013 Conference; 2013. p. 79.583

https://standards.nasa.gov/standard/nasa/nasa-gb-871913

30

[14] Pezze M, Young M. Software Testing and Analysis: Process, Principles, and Techniques. Wiley; 2007.584

[15] Ammann P, Offutt J. Introduction to Software Testing. 1 ed. USA: Cambridge University Press; 2008.585

[16] Openpilot: an open-source driver assistance system.;. URL: https://github.com/commaai/openpilot.586

[17] Galanopoulou R, Spinellis DD. A Dataset of Open-Source Safety-Critical Software; 2021. .587

[18] Openpilot high-level component diagram.;. URL: https://github.com/commaai/openpilot/wiki/Introduction-to-588

openpilot#inter-process-communication.589

[19] GurbuzHG, Tekinerdogan B, Pala Er N. Safety Perspective for Supporting Architectural Design of Safety-Critical Systems.590

In: Software Architecture Cham: Springer International Publishing; 2014. p. 365–373.591

[20] International Organization for Standardization, editor, ISO/IEC 14977:1996 Information Technology - Syntactic Meta-592

language - Extended BNF; 1996.593

[21] [MIL-STD-882D]. Standard Practice for System Safety, Department of Defense; 2000.594

[22] MutPy, Mutation testing tool for Python 3.3;. URL: https://github.com/mutpy/mutpy.595

[23] Xtext Home Page;. URL: https://www.eclipse.org/Xtext.596

[24] Xtend Home Page;. URL: https://www.eclipse.org/xtend.597

[25] Safety DSL tool;. URL: http://github.com/havvagulay/safetyDsl.598

[26] Offutt AJ, Jie Pan. Detecting equivalent mutants and the feasible path problem. In: Proceedings of 11th Annual Con-599

ference on Computer Assurance. COMPASS ’96; 1996. p. 224–236.600

[27] Madeyski L, Orzeszyna W, Torkar R, Józala M. Overcoming the Equivalent Mutant Problem: A Systematic Literature601

Review and a Comparative Experiment of Second Order Mutation. IEEE Transactions on Software Engineering 2014602

Jan;40(1):23–42.603

[28] Adamopoulos K, Harman M, Hierons R. How to Overcome the Equivalent Mutant Problem and Achieve Tailored Se-604

lective Mutation Using Co-evolution. In: Genetic and Evolutionary Computation – GECCO 2004, vol. 3103; 2004. p.605

1338–1349.606

[29] Mernik M, Heering J, Sloane A. When and How to Develop Domain-Specific Languages. ACM Comput Surv 2005607

12;37:316–.608

[30] Kahraman G, Bilgen S. A framework for qualitative assessment of domain-specific languages. Software & Systems609

Modeling 2015 Oct;14(4):1505–1526. https://doi.org/10.1007/s10270-013-0387-8.610

[31] Oliveira N, Pereira MJV, Henriques PR, da Cruz DC. Domain specific languages: a theoretical survey. In: INForum’09-611

Simposio de Informatica; 2009. .612

[32] Kosar T, Oliveira N, Mernik M, João M, Pereira M, Repinšek M, et al. Comparing General-Purpose and Domain-Specific613

Languages: An Empirical Study. Computer Science and Information Systems 2010 05;438.614

[33] Idani A. Formal model-driven executable DSLs. Innovations in Systems and Software Engineering 2021;.615

[34] Nandi GS, Pereira D, Proença J, Tovar E. Work-In-Progress: a DSL for the safe deployment of Runtime Monitors in616

Cyber-Physical Systems. In: 2020 IEEE Real-Time Systems Symposium (RTSS); 2020. p. 395–398.617

[35] Kaleeswaran AP, Munk P, Sarkic S, Vogel T, Nordmann A. A Domain Specific Language to Support HAZOP Studies of618

SysML Models. In: Papadopoulos Y, Aslansefat K, Katsaros P, Bozzano M, editors. Model-Based Safety and Assessment619

Cham: Springer International Publishing; 2019. p. 47–62.620

https://github.com/commaai/openpilot
https://github.com/commaai/openpilot/wiki/Introduction-to-openpilot#inter-process-communication
https://github.com/commaai/openpilot/wiki/Introduction-to-openpilot#inter-process-communication
https://github.com/commaai/openpilot/wiki/Introduction-to-openpilot#inter-process-communication
https://github.com/mutpy/mutpy
https://www.eclipse.org/Xtext
https://www.eclipse.org/xtend
http://github.com/havvagulay/safetyDsl
https://doi.org/10.1007/s10270-013-0387-8

31

[36] Chen X, Zhong Z, Jin Z, Zhang M, Li T, Chen X, et al. Automating Consistency Verification of Safety Requirements for621

Railway Interlocking Systems. In: 2019 IEEE 27th International Requirements Engineering Conference (RE); 2019. p.622

308–318.623

[37] Queiroz R, Berger T, Czarnecki K. GeoScenario: An Open DSL for Autonomous Driving Scenario Representation. In:624

2019 IEEE Intelligent Vehicles Symposium (IV); 2019. p. 287–294.625

[38] Anderson M, Bowman J, Kilgo P. RDIS: Generalizing domain concepts to specify device to framework mappings. In:626

2012 IEEE International Conference on Robotics and Automation; 2012. p. 1836–1841.627

[39] Gobillot N, Lesire C, Doose D. A Modeling Framework for Software Architecture Specification and Validation. In: Simu-628

lation, Modeling, and Programming for Autonomous Robots; 2014. p. 303–314.629

[40] Berthomieu B, Bodeveix Jp, Farail P, Filali M, Garavel H, Gaufillet P, et al. Fiacre: an Intermediate Language for Model630

Verification in the Topcased Environment. Proc of the Embedded Real Time Software (ERTS) 2008 01;.631

[41] Berthomieu B, Vernadat F. Time Petri nets analysis with TINA; 2006. p. 123–124.632

[42] Metayer N, Paz A, El Boussaidi G. Modelling DO-178C Assurance Needs: A Design Assurance Level-Sensitive DSL. In:633

2019 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW); 2019. p. 338–345.634

[43] Iber J, Kajtazović N, Höller A, Rauter T, Kreiner C. Ubtl UML testing profile based testing language. In: 2015 3rd635

International Conference on Model-Driven Engineering and Software Development (MODELSWARD); 2015. p. 1–12.636

[44] Zheng H, Feng J, Miao W, Pu G. Generating Test Cases from Requirements: A Case Study in Railway Control System637

Domain. In: 2021 International Symposium on Theoretical Aspects of Software Engineering (TASE); 2021. p. 183–190.638

[45] Babu PA, Kumar CS, Murali N, Jayakumar T. An Intuitive Approach to Determine Test Adequacy in Safety-critical Soft-639

ware. SIGSOFT Softw Eng Notes 2012 Sep;37(5):1–10.640

[46] Gurbuz HG, Tekinerdogan B. Model-based testing for software safety: a systematic mapping study. Software Quality641

Journal 2018 Dec;26(4):1327–1372.642

[47] Armoush A, Salewski F, Kowalewski S. Recovery Block with Backup Voting: A New Pattern with Extended Represen-643

tation for Safety Critical Embedded Systems. In: 2008 International Conference on Information Technology; 2008. p.644

232–237.645

[48] Gawand H, S Mundada R, Swaminathan P. Design Patterns to Implement Safety and Fault Tolerance. International646

Journal of Computer Applications 2011 03;18.647

[49] Sozer H, Tekinerdogan B. Introducing Recovery Style forModeling and Analyzing System Recovery. In: SeventhWorking648

IEEE/IFIP Conference on Software Architecture (WICSA 2008); 2008. p. 167–176.649

[50] Sozer H, Tekinerdoğan B, Akşit M. Optimizing decomposition of software architecture for local recovery. Software650

Quality Journal 2013 Jun;21(2):203–240. https://doi.org/10.1007/s11219-011-9171-6.651

[51] Tekinerdogan B, Sozer H. Defining Architectural Viewpoints for Quality Concerns. In: Software Architecture, vol. 6903;652

2011. p. 26–34.653

[52] Runeson P, Höst M. Guidelines for conducting and reporting case study research in software engineering. Empirical654

Software Engineering 2008;14(2):131.655

[53] muJava Home Page; 2014. URL: http://cs.gmu.edu/~offutt/mujava.656

https://doi.org/10.1007/s11219-011-9171-6
http://cs.gmu.edu/~offutt/mujava

32

A | EBNF GRAMMAR OF DSL657

	Introduction
	Preliminaries
	Safety Tactics
	Fault-Based Testing

	Case Study
	DSL for Safety
	Fault-Based Testing Approach
	Identifying Safety Requirements
	Identifying Safety Tactics
	Building Safety Model
	Mutant Generation
	Running Test Cases on the Mutants and Mutation Score Evaluation

	Tool
	Case Study Evaluation
	Build Safety Model
	Identify and Create Mutants
	Run Test Cases
	Results
	Evaluation

	DSL Evaluation
	Related Work
	Threats to Validity
	Conclusion
	EBNF Grammar of DSL

