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Summary

The tracking control problem of trajectory planning is studied in this paper based on
prescribed performance method (PPM) for the small-scale unmanned autonomous
helicopter (UAH) with wind-gust disturbances (WGDs) and unmeasurable states.
For the purpose, the nonlinear model with flapping dynamics is established, and the
transformation performance function is used to ensure that the errors of trajectory
tracking satisfy the corresponding performance. The fractional-order observers are
investigated to estimate the longitudinal and lateral flapping angles that are treated
as unmeasurable states, and estimate the WGDs, respectively. Based on PPM and the
designed observers, the fractional-order theory-based backstepping trajectory track-
ing control scheme is developed for the UAH system, and the three-dimensional
trajectory is planned by the improved wolf pack algorithm. Then the stability of
the entire system is proven through strict theoretical analysis. Finally, the simula-
tion analysis on the UAH are presented to demonstrate the efficiency of the designed
method.

KEYWORDS:
Trajectory tracking control, prescribed performance, fractional-order observer, unmeasurable states

1 INTRODUCTION

As we all know, unmanned aerial vehicles have been widely used in all aspects of real life, and many types of unmanned aerial
vehicles have been designed, and the corresponding flight technologies have been studied. However, as a special kind of aircraft,
the unmanned autonomous helicopter (UAH) has many advantages compared with fixed-wing aircrafts, for instance, the hovering
in the air, the flying in any direction, the flexible operation, the vertical take-off and landing and so on1. Because of the advantages
above, the development of UAH has become an important research topic in the aerospace field. Moreover, the UAH has also
been widely used in the areas of detection, strike, tracking, target interception, atmospheric monitoring, power monitoring and
other military and civilian fields2. However, unlike other mechanical systems, the UAH system is an underactuated nonlinear
system with multiple-inputs and mutliple-outputs, and its different channels have strong dynamic coupling, which will bring
different complex difficulties to the design of flight control methods for UAH systems3,4. Therefore, it is very necessary and
corresponding engineering application significance to design feasible flight control technologies for the UAH systems.
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In general, the linear and nonlinear control methods are two kinds of flight control methods for the UAH systems in the
published works. For the linear control methods, for instance, the traditional PID control5, the 𝐻∞ control6, the linear active
disturbance rejection control7 and the linear quadratic regulator control8, etc. But the linear control methods used in the UAH
control can only describe the helicopter operation state near the balance point. However, as a nonlinear UAH system with strong
coupling, some nonlinear control methods are explored to achieve the effective control of UAH system, for instance, the sliding
model control9, the backstepping control10,11, the intelligent control based on the neural network12 and the fuzzy control13. For
the control methods mentioned above, the backstepping control is heavily applied in the nonlinear control because of its unique
design process14,15. Furthermore, the backstepping control has been used to investigate and research the trajectory tracking
control (TTC) of the various UAHs for its good flexibility and scalability. For instance, in16, the generalized PI observer and the
backstepping control were integrated to come up with a feedforward-feedback compound control scheme. A compound control
approach was explored by the synthesis of harmonic disturbance observer and the backstepping control for the tracking control of
UAH in17. In18, the backstepping control was employed to inquire into an adaptive anti-disturbance fault-tolerant control scheme
for the UAH model subject to actuator fault. In the case of external disturbances, the backstepping control, the sliding model
control and the robust anti-disturbance control method were combined and applied to different sub-loops to ensure the stability
for the uncertain quadrotor system in19. Although the research results have designed nonlinear control technologies for UAH
systems, there are still few TTC methods based on the fractional-order theory for UAH systems under wind-gust disturbances
(WGDs). Therefore, to improve the robustness of the UAH systems, this kind of control problems may warrant further study.

The WGDs are also a key factor for the outdoor applications of UAHs, especially when the UAHs perform missions in the
urban, the valley and the marine environments. If the external WGDs are not considered, it will cause turbulence and thrust
fluctuation during the UAH flight, and the stability of the UAH system in the corresponding environment is affected. Thus, the
flight quality will be reduced, and even cause the flight safety can not be ensured20. Therefore, how to ensure the UAV system
has excellent stability performance and the ability to resist external disturbances are the key points for the research of UAH
control. In order to have good TTC performance for the UAH under the WGDs, the influence of the rotor flapping motion can
not be ignored for the design of the UAH flight control. In21–23, for the process of designing the UAH tracking controllers, the
works either ignored the influence of the rotor flapping motion, or treated the longitudinal and lateral flapping angles (LLFAs)
generated by the rotor flapping dynamics as measurable states. However, in the actual flight, it is unrealistic to measure the
LLFAs by sensors. Since the state observers can estimate the unknown states effectively, and some control methods based on
the state observers have been reported24–29. Thus, according to the design methods of the state observer mentioned above, the
unknown state estimation of the UAH and the suppression method of WGDs can be studied. Furthermore, on the basis of the
advantages of fractional-order control30, the adjustment margin of the fractional-order controllers and observers designed can be
increased accordingly. Therefore, in the field of the UAH control research, designing a reasonable observer by taking advantage
of the fractional-order theory to observe the unknown LLFAs is a key problem worth studying for the control of UAH systems.

In addition, in the previous studies on the control schemes of UAH systems, few studies were reported on the combination
of the trajectory planning and the UAH systems control. However, in view of the complex flying environment of the UAHs,
planning the flight path in advance is helpful to improve the flight safety of UAHs. Further, the effective control methods are
adopted to ensure the flight of the UAHs along the planned trajectory and improve the efficiency of the UAHs’ mission execution.
By reason of the foregoing, the overall works of this paper are : (i) For the safe flight of the UAH in dynamic environments, a
three-dimensional trajectory is planned by the improved wolf pack algorithm (WPA), and some traditional trajectory planning
algorithms are introduced to compare and show that the improved WPA has better trajectory planning effect; (ii) Aiming at the
issues of the WGDs and the unmeasurable LLFAs in the actual flight of the UAH, the LLFAs are taken as the unmeasurable
states, and a fractional-order observer is designed to assess the unknown states, and the fractional-order extended state observer
(ESO) is developed to tackle the impact of the WGDs; (iii) Considering that the UAH needs to meet the specified performance
requirements in the flight process, based on the error transformation function, a backstepping TTC scheme is designed for the
UAH system under the performance constraint and the WGDs, and the control scheme can assure that all signals are bounded
in the entire system, and the tracking error of the planned trajectory can satisfy the performance of the corresponding design
under the developed method.

In the rest of this paper, the organizational structure is presented as follows: the small-scale UAH model under the external
WGDs is established in Section 2, and the error transformation function under the prescribed performance method (PPM) is
given. In Section 3, the design process of fractional-order observer and ESO are described. In Section 4, the detailed analysis
processes of the TTC scheme for the UAH are given, and the stability of the entire system is proven. The simulation anslysis
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results and the generation of three-dimensional trajectory tracking are introduced in Section 5, and the corresponding conclusions
are given in Section 6.

2 PROBLEM FORMULATION AND PREPARATION

2.1 Model Analysis of Unmanned Helicopters
To facilitate analyze the motion characteristics of the UAH, the reference frames are defined as follows: the inertial frame
is set as ℜ𝑒 =

{

𝑂𝑒, 𝑋𝑒, 𝑌𝑒, 𝑍𝑒
}

, which the centre 𝑂𝑒 is usually located at a certain point. The aircraft-body frame is set as
ℜ𝑏 =

{

𝑂𝑏, 𝑋𝑏, 𝑌𝑏, 𝑍𝑏
}

, which the center 𝑂𝑏 is situated at center of the gravity for the UAH. The relationship between the two
coordinate frames is shown in Fig. 1 , where the paremeters 𝑎 and 𝑏 respectively represent the LLFAs of the main rotor, the
variables 𝑇𝑚𝑟 and 𝑄𝑚𝑟 represent the thrust and the main rotor’s counter torque, respectively.
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FIGURE 1 Coordinate frames of the unmanned helicopter.

For the actual flight of the UAH, the states such as speed and attitude, will be inevitably influenced by the external WGDs.
For the analysis of this paper, the wind-gust in form ‘1-cos’ is used to represent the external wind disturbance suffered by the
UAH. The specific mathematical expression of the wind gust model can be described as in31
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where  = [𝑥,𝑦,𝑧]T denotes the corresponding three-axis velocity of the wind-gust in the inertial frames ℜ𝑒, 𝑖𝑚, 𝑖 =
𝑥, 𝑦, 𝑧 denote the three-axis intensity of the wind-gust, 𝑑𝑖, 𝑖 = 𝑥, 𝑦, 𝑧 denote the wind-gust scale, and 𝑥, 𝑦 and 𝑧 respectively
denotes the position coordinate of the UAH in the inertial frames.

According to the aerodynamics, the flight dynamic and the external WGDs, the nonlinear model of the UAH is written as32,33

̇ =  +𝐷

̇ = 𝑅𝑒𝑏𝐹∕𝑚 + 𝑔𝜗 +𝐷

Λ̇ = Ω
Ω̇ = − −1(Ω × Ω) +  −1Σ +𝐷Ω

𝑎̇ = −𝑎∕𝜏𝑒 − 𝑞 +𝑙𝑜𝑛∕𝜏𝑒𝑇𝑎
𝑏̇ = −𝑏∕𝜏𝑒 − 𝑝 + 𝑙𝑎𝑡∕𝜏𝑒𝑇𝑏

(2)

where = [𝑥, 𝑦, 𝑧]T is the position of UAH defined inℜ𝑒, = [𝑢, 𝑣,𝑤]T is the velocity defined inℜ𝑏,𝐷 =  = [𝑑𝑥, 𝑑𝑦, 𝑑𝑧]T,
𝐷 = [𝑑𝑢, 𝑑𝑣, 𝑑𝑤]T, represents the additional velocity vector caused by the wind-gust, 𝑚 is the mass, 𝑔 is the gravity, 𝜗 =
[0, 0, 1]T, 𝐷Ω =  −1𝑅𝑒𝑏Σ can be obtained based on the analysis in34, Σ represents the additional disturbance torque of the
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FIGURE 2 The block diagram of the proposed control scheme.

fuselage for the UAH caused by the wind-gust31, Λ = [𝜙, 𝜃, 𝜓]T represents the attitude angles, Ω = [𝑝, 𝑞, 𝑟]T represents the
attitude angular rates,  = diag{𝑥𝑥,𝑦𝑦,𝑧𝑧} is the diagonal inertial matrix of UAH, 𝜏𝑒 is the rotor dynamic time constant,
𝑙𝑜𝑛 is the longitudinal gain and 𝑙𝑎𝑡 is the lateral gain. 𝑇𝑎 and 𝑇𝑏 are the control inputs. 𝑅𝑒𝑏 and  represent the transformation
matrix from ℜ𝑏 to ℜ𝑒 and attitude rotation matrix, , respectively. 𝐹 = [0, 0, 𝑇𝑚𝑟]T and Σ represent the applied resultant force
and resultant moment, respectively. Specifically, 𝑅𝑒𝑏,  and Σ are described in35.

In order to promote the tracking controller design, some assumpations and a lemma that need to be used are given as follows,
and an overall study block diagram of the corresponding control scheme is presented in Fig. 2 .

Assumption 1. 12 To guarantee that the attitude rotation matrix  is non-singularity, it can be assumed that 𝜙(𝑡) < |

|

|

𝜋
2
|

|

|

and
𝜃(𝑡) < |

|

|

𝜋
2
|

|

|

while 𝑡 ≥ 0.

Assumption 2. The wind-gust changes uniformly. For the bounded disturbances caused by the wind-gust 𝐷 , 𝐷 and 𝐷Ω in
system (2), the first derivatives are norm bounded.

Assumption 3. The all states in system (2) are measurable except for the LLFAs 𝑎 and 𝑏. Furthermore, the desired position signal
𝑑 = [𝑥𝑑 , 𝑦𝑑 , 𝑧𝑑]T, the yaw angle signal𝜓𝑑 and their derivatives ̇𝑑 , 𝜓̇𝑑 , ̈𝑑 ,𝜓𝑑 are bounded, that is, there exist unknown positive
constants Υ and Υ𝜓 satisfy that𝑀 = {(𝑑 , ̇𝑑 , ̈𝑑) ∶ 2

𝑑 + ̇2
𝑑 + ̈2

𝑑 ≤ Υ} and𝑀𝜓 = {(𝜓𝑑 , 𝜓̇𝑑 , 𝜓̈𝑑) ∶ 𝜓2
𝑑 + 𝜓̇

2
𝑑 + 𝜓̈

2
𝑑 ≤ Υ𝜓}.

Lemma 1. 36 Under bounded initial conditions at time zero, if one has that the Lyapunov fnction 𝑉 (𝑥) satisfies 𝜋̄1(‖𝑥‖) ≤
𝑉 (𝑥) ≤ 𝜋̄2(‖𝑥‖) and ̇̄𝑉𝑥 ≤ −𝜅𝑉 (𝑥) +𝑀 , where 𝜋̄1, 𝜋̄2 ∶ ℝ𝑛 → ℝ is a kind of function of ∞, and 𝜅, 𝑀 are positive constants,
then the variable 𝑥(𝑡) is uniformly bounded.

Lemma 2. 37 For the integrable function  (𝑡), if we have that  (𝑡∗) for 𝑡∗ ∈ (0, 𝑡), then one has that 𝐼−𝜇 | (𝑡)| ≥ 𝐿̄, where
𝐼−𝜇(∙) is the fractional integral, 𝜇 is fractional order, and 𝐿̄ is a positive constant.

2.2 Prescribed Performance
During the process of trajectory tracking control for the UAH, it is almost impossible to make the tracking errors converge to
zero immediately, but the overshoot is likely to reach to a high value, which may increase the risk of uncontrollable aircraft.
To improve this problem, a feasible prescribed performance control strategy is adopted to restrict the tracking errors to ensure
that the system achieves satisfactory transient and steady-state performance (TSSP). Firstly, defining the tracking error fo the
position, one has that 𝑒 = 𝑑 −  = [𝑒𝑥, 𝑒𝑦, 𝑒𝑧]T = [𝑒1, 𝑒2, 𝑒3]T and the yaw tracking error 𝑒𝜓 = 𝜓𝑑 − 𝜓 = 𝑒4, where
 = [𝑥, 𝑦, 𝑧]T, 𝑑 = [𝑥𝑑 , 𝑦𝑑 , 𝑧𝑑]T is the desired position vector and 𝜓𝑑 is the desired yaw angle vector. On the basis of the
PPM, the tracking error 𝑒 = [𝑒1, 𝑒2, 𝑒3, 𝑒4]T is strictly limited to a predefined region by the time attenuation function. The
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specific form is written as38

−𝜆1𝑖𝜌̄𝑖(𝑡) < 𝑒𝑖(𝑡) < 𝜆2𝑖𝜌̄𝑖(𝑡), 𝑖 = 1, 2, 3, 4 (3)

where 𝜆1𝑖 ∈ (0, 1] and 𝜆2𝑖 ∈ (0, 1] are paremeters to be designed, 𝜌̄𝑖(𝑡) denotes the prescribed performance function, which can
be described as38

𝜌̄𝑖(𝑡) = (𝜌̄𝑖0 − 𝜌̄𝑖∞)𝑒−𝜎𝑖𝑡 + 𝜌̄𝑖∞ (4)

where 𝜌̄𝑖0 > 0 is an initial value of 𝜌̄𝑖(𝑡), lim𝑡→∞ = 𝜌̄𝑖∞ > 0, 𝜎𝑖 > 0 denotes the positive constant. Meanwhile, one has that 𝜌̄𝑖(𝑡)
is a smooth decreasing function and satisfies that −𝜆1𝑖𝜌̄10 < 𝑒𝑖(0) < 𝜆2𝑖𝜌̄10, 𝑖 = 1, 2, 3, 4. Furthermore, according to the results
in38, the following transformed error variable 𝛽𝑖 is written as

𝛽𝑖 = 𝑄(
𝑒𝑖(𝑡)
𝜌̄𝑖(𝑡)

) (5)

where 𝑄(⋅) ∶ (−𝜆1𝑖, 𝜆2𝑖) → (−∞,∞) is a strictly increasing smooth function. Therefore, the corresponding transformed error
variable 𝛽𝑖 is utilized to ensure that the system (2) achieves better performance. Hence, the control target of the system can be
transformed into designing a reasonable controller so that the transformed variable 𝛽𝑖 is bounded. So, the transformed function
is choosen as

𝑄(
𝑒𝑖(𝑡)
𝜌̄𝑖(𝑡)

) = (1 − 𝛼(
𝑒𝑖(0)
𝜌̄𝑖(0)

))
𝑒𝑖(𝑡)∕𝜌̄𝑖(𝑡)

𝜆1𝑖 + 𝑒𝑖(𝑡)∕𝜌̄𝑖(𝑡)
+ 𝛼(

𝑒𝑖(0)
𝜌̄𝑖(0)

)
𝑒𝑖(𝑡)∕𝜌̄𝑖(𝑡)

𝜆2𝑖 − 𝑒𝑖(𝑡)∕𝜌̄𝑖(𝑡)
(6)

where 𝛼𝑖 = 𝛼( 𝑒𝑖(0)
𝜌̄𝑖(0)

) =

{

1, 𝑒𝑖(0) ≥ 0
0, 𝑒𝑖(0) < 0

.

Then, one can obtain
𝛽̇𝑖 = 𝜌̄𝑖(𝑡)Π𝑖𝑒̇𝑖(𝑡) − ̇̄𝜌𝑖(𝑡)Π𝑖𝑒𝑖(𝑡) (7)

where Π𝑖 = (1 − 𝛼𝑖)
𝜆1𝑖

(𝜆1𝑖𝜌̄𝑖(𝑡)+𝑒𝑖(𝑡))2
+ 𝛼𝑖

𝜆2𝑖
(𝜆2𝑖𝜌̄𝑖(𝑡)−𝑒𝑖(𝑡))2

. Then, defining 𝛽 = [𝛽𝑥, 𝛽𝑦, 𝛽𝑧, 𝛽𝜓 ]T = [𝛽1, 𝛽2, 𝛽3, 𝛽4]T, 𝜌̄ =
diag{𝜌̄𝑥, 𝜌̄𝑦, 𝜌̄𝑧, 𝜌̄𝜓} = diag{𝜌̄1, 𝜌̄2, 𝜌̄3, 𝜌̄4}, Π = diag{Π𝑧,Π𝑦,Π𝑧,Π𝜓} = diag{Π1,Π2,Π3,Π4}T, and one has

𝛽̇ = 𝜌̄Π𝑒̇ − ̇̄𝜌Π𝑒 (8)

Remark 1. 38 Consider the error 𝑒 and the defined transformed error 𝛽𝑖 in (5). If 𝛽𝑖 can be ensure to be bounded, the prescribed
performance of 𝑒 (𝑡) can be satisfied for all 𝑡 ≥ 0, then, the form (3) is satisfied.

On the basis of the description, this paper aims at designing a TTC method with four control inputs 𝑈 = [𝑇𝑚𝑟, 𝑇𝑡𝑟, 𝑇𝑎, 𝑇𝑏]T, so
that the output  = [𝑥, 𝑦, 𝑧, 𝜓]T can follow the desired yaw angle 𝜓𝑑 and the desired position of the desired trajectory planned
by the improved WPA, and the corresponding error can astricte to the predefined bounds by using PPF.

3 FLAPPING ANGLES AND DISTURBANCE ESTIMATION

3.1 Estimation of Flapping Angles
In the actual system, the attitude angle and the corresponding angle rate of the UAH can be measured by the sensors installed
on the airframe. But it is unrealistic to measure the flapping angles by installing sensors on the rotor, so this paper considers the
LLFAs 𝑎 and 𝑏 in the flapping movement of the UAH as unmeasurable states. Considering the dynamic model of the UAH with
𝑎 and 𝑏 as follows:

Ω̇ = − −1(Ω × Ω) +  −1Σ +𝐷Ω

𝑎̇ = −𝑎∕𝜏𝑒 − 𝑞 +𝑙𝑜𝑛∕𝜏𝑒𝑇𝑎
𝑏̇ = −𝑏∕𝜏𝑒 − 𝑝 + 𝑙𝑎𝑡∕𝜏𝑒𝑇𝑏

(9)

Since 𝑎 and 𝑏 are unmeasurable state variables, for convenience of the subsequent high-gain observer design, the relevant
state variables are redefined. Defining 𝜛1 = Ω = [𝑝, 𝑞, 𝑟]T, 𝜛̄2 = [𝑎, 𝑏]T, 𝑢1 = [𝑇𝑎, 𝑇𝑏]T, then (9) can be rewritten as

𝜛̇1 = 𝑓1 + 𝑔1[𝜛̄T
2 , 𝑇𝑡𝑟]

T +𝐷Ω

̇̄𝜛2 = 𝑓2 + 𝑔̄2𝑢1
(10)
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where 𝑓1 = − −1(Ω × 𝐽Ω) +  −1[0, 0,−𝑄𝑚𝑟]T, 𝑔1 =  −1
⎡

⎢

⎢

⎣

0 𝐶𝑚 + 𝑇𝑚𝑟𝐿𝑧 −𝐻𝑧
𝐶𝑚 + 𝑇𝑚𝑟𝐿𝑧 0 0

0 0 𝐻𝑥

⎤

⎥

⎥

⎦

, 𝑓2 =
[

−𝑎∕𝜏𝑒 − 𝑞
−𝑏∕𝜏𝑒 − 𝑝

]

, 𝑔̄2 =

[

𝑙𝑜𝑛∕𝜏𝑒 0
0 𝑙𝑎𝑡∕𝜏𝑒

]

, 𝐶𝑚 is the stiffness coefficient of the main rotor, 𝐿𝑧 is the relative distance, 𝐻𝑥 and 𝐻𝑧 are the relative

longitudinal distance and the vertical distance, respectively.
From (10), it can be seen that the actual contol input [𝑇𝑡𝑟, 𝑇𝑎, 𝑇𝑏]T is distributed in different loops, and the UAH system is

not the strict form of feedback. To facilitate to subsequent estimation of the flapping angles and the design of the trajectory
tracking controller, a reasonable tail rotor actuator dynamics is introduced to solve the problem. Thence, the specific first-order
equation39 is introduced as follows:

𝑇𝑡𝑟
𝑇𝑛

=
𝐴𝑡

𝜏2𝑠 + 1
(11)

where 𝐴𝑡 represents the gain of tail rotor total pitch input to the tail rotor thrust, and 𝑇𝑛 represents the pitch input.
Redefining 𝑢𝑓 = [𝑇𝑎, 𝑇𝑏, 𝑇𝑛]T, 𝜛2 = [𝑎, 𝑏, 𝑇𝑡𝑟]T, and according to the (9)-(11), (10) can be rewritten as

𝜛̇1 = 𝑓1 + 𝑔1𝜛2 +𝐷Ω

𝜛̇2 = Γ𝜛2 + 𝐼𝜛1 + 𝑔2𝑢𝑓
(12)

where Γ =
⎡

⎢

⎢

⎣

−1∕𝜏𝑒 0 0
0 −1∕𝜏𝑒 0
0 0 −1∕𝜏2

⎤

⎥

⎥

⎦

, 𝐼 =
⎡

⎢

⎢

⎣

0 −1 0
−1 0 0
0 0 0

⎤

⎥

⎥

⎦

, 𝑔2 =
⎡

⎢

⎢

⎣

𝑙𝑜𝑛∕𝜏𝑒 0 0
0 𝑙𝑎𝑡∕𝜏𝑒 0
0 0 𝐴𝑡∕𝜏2

⎤

⎥

⎥

⎦

.

According to (12), a fractional-order observer is designed as
̇̂𝜛1 = 𝑓1 + 𝑔1𝜛̂2 + 𝐷̂Ω + 𝛼1𝜛̃1 + 𝛼0𝜛10

𝐼
−𝜐𝜛1
𝑓 𝜛11

+ ‖

‖

𝑔1‖‖
2𝜛̃1

̇̂𝜛2 = Γ𝜛̂2 + 𝐼𝜛1 + 𝑔2𝑢𝑓 + 𝛼2𝜛̃1

(13)

where 𝜛̃1 = 𝜛1 − 𝜛̂1, 𝜛̂1 and 𝜛̂2 are the estimation of 𝜛1 and 𝜛2, respectively. 𝛼0 ∈ ℜ3×3, 𝛼1 ∈ ℜ3×3 and 𝛼2 ∈ ℜ3×3 are the
designed diagonal matrices to be designed. 𝜛10

= [𝜛̃T
1 , 03×2] ∈ ℜ3×3. 𝜛11

is the vector for the absolute values of each of the
variables in the error 𝜛̃1, and 𝜐𝜛1

is the frational order.
Defining the estimation error 𝜛̃2 = 𝜛2 − 𝜛̂2 and 𝐷̃Ω = 𝐷̂Ω −𝐷Ω. Derivativing 𝜛̂1 and 𝜛̂2, one can obtain

̇̃𝜛1 = 𝑔1𝜛̃2 − 𝛼1𝜛̃1 − 𝐷̃Ω − ‖

‖

𝑔1‖‖
2𝜛̃1 − 𝛼0𝜛10

𝐼
−𝜐𝜛1
𝑓 𝜛11

̇̃𝜛2 = Γ𝜛̃2 − 𝛼2𝜛̃1

(14)

According to (14), the boundedness of observation error 𝜛̃1 and 𝜛̃2 will be proven in the following section. Meanwhile, the
model (2) is rewritten as

̇ =  +𝐷

̇ = 𝑅𝑒𝑏𝐹∕𝑚 + 𝑔𝜗 +𝐷

Λ̇ = Ω
𝜛̇1 = 𝑓1 + 𝑔1𝜛2 +𝐷Ω

𝜛̇2 = Γ𝜛2 + 𝐼𝜛1 + 𝑔2𝑢𝑓

(15)

Remark 2. The real system input is 𝑢 = [𝑇𝑎, 𝑇𝑏, 𝑇𝑡𝑟]T for the attitude rate and flapping dynamics subsystem of UAH. Since
system model in (15) is not a strict form of feedback so that it is not suitable for applying backstepping method to design the
controller. By considering (11), the above problem is solved and the corresponding control input 𝑢𝑓 = [𝑇𝑎, 𝑇𝑏, 𝑇𝑛]T can be
obtained. Meanwhile, the actual input 𝑢 = [𝑇𝑎, 𝑇𝑏, 𝑇𝑡𝑟]T can also be obtained through the relevance between 𝑇𝑡𝑟 and 𝑇𝑛 in (11).

3.2 Fractional-order Extended State Observers
Considering the following unmanned helicopter subsystems with external WGDs:

̇ =  +𝐷

̇ = 𝑅𝑒𝑏𝐹∕𝑚 + 𝑔𝜗 +𝐷

𝜛̇1 = 𝑓1 + 𝑔1𝜛2 +𝐷Ω

(16)
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Since the distance 𝐷 ∈ ℜ3×3, 𝐷 ∈ ℜ3×3 and 𝐷Ω ∈ ℜ3×3 are unknown, the fractional-order ESO is designed to restrain
the affect of the external WGDs as follows:

Defining 𝐷 , 𝐷 and 𝐷Ω as the extended states of the system in (16) and let  = 𝑥1,  = 𝑥2, 𝐷 = 𝑥3, 𝐷 = 𝑥4, 𝜛1 = 𝑥5
and 𝐷Ω = 𝑥6. Then the system (16) is rewritten as

̇̄𝑥1 = 1 + 𝑥̄2
̇̄𝑥2 = ℎ∗(𝑡)

(17)

where 𝑥̄1 = [𝑥T1 , 𝑥
T
2 , 𝑥

T
5 ]

T, 1 = [𝑥T2 , (𝑅
𝑒
𝑏𝐹∕𝑚 + 𝑔𝜗)T, (𝑓1 + 𝑔1𝜛2)T]T, 𝑥̄2 = [𝑥T3 , 𝑥

T
4 , 𝑥

T
6 ]

T, ℎ∗(𝑡) = [ℎ∗T1 , ℎ
∗T
2 , ℎ

∗T
3 ]T is a function

vector for the bounded time derivatives of the disturbances 𝐷 , 𝐷 and 𝐷Ω.
Define the errors as 𝑒1 = 𝑥̂1 − 𝑥1, 𝑒2 = 𝑥̂2 − 𝑥2, 𝑒3 = 𝑥̂3 − 𝑥3, 𝑒4 = 𝑥̂4 − 𝑥4, 𝑒5 = 𝑥̂5 − 𝑥5, and 𝑒6 = 𝑥̂6 − 𝑥6. Then the

fractional-order ESO is designed as
̇̄̂𝑥1 = ̂1 + ̂̄𝑥2 − 𝛽11𝐼

−𝜐0
𝑓 2 − 𝛽2𝑒1 − ‖

‖

𝑔1‖‖
2𝑒1

̇̄̂𝑥2 = −𝛽3𝑒1 − 𝛽4 ̂̄𝑥2
(18)

where ̂̄𝑥1 and ̂̄𝑥2 represent the estimations of 𝑥̄1 and 𝑥̄2 respectively. 𝑥̂3 = 𝐷̂𝑃 = [𝑑𝑥, 𝑑𝑦, 𝑑𝑧]T, 𝑥̂4 = 𝐷̂𝑉 = [𝑑𝑢, 𝑑𝑣, 𝑑𝑤]T,
𝑥̂6 = 𝐷̂Ω, 𝑒1 = [𝑒T1 , 𝑒

T
2 , 𝑒

T
5 ]

T is the estimation error vector and 1 = [𝑒1, 09×8] ∈ ℜ9×9. 2 is the vector for the absolute values of
each of the variables in the error 𝑒1, and 𝜐0 is the frational order. ̂1 = [𝑥T2 , (𝑅

𝑒
𝑏𝐹∕𝑚 + 𝑔𝜗)T, (𝑓1 + 𝑔1𝜛̂2)T]T. 𝛽1 ∈ ℜ9×9 > 0,

𝛽2 ∈ ℜ9×9 > 0, 𝛽3 ∈ ℜ9×9 > 0 and 𝛽4 ∈ ℜ9×9 > 0 are the diagonal constant matrices.
Moreover, the errors are defined as 𝑒3 = 𝑥̂3 − 𝑥3, 𝑒4 = 𝑥̂4 − 𝑥4 and 𝑒6 = 𝑥̂6 − 𝑥6. Then the time derivatives of 𝑒1 and

𝑒2 = [𝑒T3 , 𝑒
T
4 , 𝑒

T
6 ]

T are given by

̇̄𝑒1 = 𝑒2 + ̃1 − 𝛽11𝐼
−𝜐0
𝑓 2 − 𝛽2𝑒1 − ‖

‖

𝑔1‖‖
2𝑒1

̇̄𝑒2 = −𝛽3𝑒1 − ℎ∗(𝑡) − 𝛽4(𝑒2 + 𝑥̄2)
(19)

where the vector ̃1 = ̂1 − 1 = [0,⋯ , 0, (−𝑔1𝜛̃2)T]T ∈ ℜ9 and 𝜛̃2 = 𝜛2 − 𝜛̂2. On the error system (19), the effectiveness
of the fractional-order ESO is analyzed in the section on the system stability analysis.

Remark 3. The advantage of the fractional-order controller over the traditional controller is that fractional-order controller has
more flexible regulation performance40. Therefore, the fractional-order term is introduced to increase the degree of freedom for
the designed observers.

4 TRAJECTORY TRACKING CONTROLLER DESIGN AND STABILITY ANALYSIS

In this section, on the basis of the PPM and ESO, the backstepping method is applied to develop the trajectory controller to
track the desired three-dimensional trajectory planned by the trajectory planning algorithm. To facilitate the design of the TTC
scheme, the UAH’s model is divided into four subsystems, which are described in the following sections, and the corresponding
controller of each subsystem is designed.

4.1 Three-dimensional Trajectory Planning
According to the results of the WPA41,42, an improved WPA is used to plan the desired trajectory from the start point to the
destination point. Compared with the traditional WPA43, the improved WPA has better faster convergence speed and the global
optimization ability. The specific planning steps of the improved WPA is shown in Table 1 .

4.2 Altitude Subsystem
According to the vertical dynamics in system (15), which is described as

𝑧̇ = 𝑤 + 𝑑𝑧

𝑤̇ = 𝑔 − 1
𝑚
cos𝜙 cos 𝜃𝑇𝑚𝑟 + 𝑑𝑤

(20)
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TABLE 1 Path planning by utilizing the improved WPA

RemarkRemarkRemark

The path of unmanned helicopter can be defined as the collection of a series of three-dimensional position
point vector  = {𝑠,1,2, ...,𝑔}, where 𝑠 and 𝑔 represent the start point and the destination point,
respectively. 𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖), 𝑖 = 1, 2, ... denotes the intermediate path point. Then take 𝑖 as the position
information of the wolf in three-dimensional space for the improved WPA method.

Step 1Step 1Step 1 Parameters initializationParameters initializationParameters initialization. Initialize the position of wolfs, the maximum iterations, update scale factor, pop-
ulation number, scale factor, distance determination, and maximum number of migration walks.

Step 2Step 2Step 2

The fitness value of objective function is calculated for the individual of the initial population, and one with
the best value is chosen as the initial head wolf. The migration behavior is performed until the fitness value
of a probe wolf is better than the current head wolf or reaches the maximum migration steps, and turn to
Step 3Step 3Step 3.

Step 3Step 3Step 3

The wolves except the head wolf is randomly selected as the fierce wolves, and the fierce Wolf rushes to the
prey position based on the summoning behavior location. On the way, if the value sensed by the fierce wolf
is greater than the head wolf, the head wolf is replaced by the current fierce wolf to restart the summoning
behavior; if the value is less than the head wolf, continue to rush until the distance between the fierce wolf
and the head wolf is less than the critical distance, and turn to Step 4Step 4Step 4.

Step 4Step 4Step 4 The probe wolves and the fierce wolves jointly detect the position of the prey (i.e. the position of the head
wolf), and the corresponding position is updated for the wolves participating in the siege.

Step 5Step 5Step 5
In the step, whether the number of iterations reaches the maximum number of iterations is further judged. If
it is satisfied, the head wolf position is output, that is, the coordinates of the optimal path points, otherwise
turn to Step 2Step 2Step 2.

According to (8), one can obtain

𝛽̇𝑧 = 𝜌̄𝑧Π𝑧(𝑧̇𝑑 −𝑤 − 𝑑𝑧) − ̇̄𝜌𝑧Π𝑧𝑒𝑧 (21)

Then, a detailed control scheme for the attitude subsystem (20) is proposed by utilizing the backstepping approach.
Step 1Step 1Step 1: The variables are defined as 𝑧𝑧 = 𝛽𝑧 and 𝑒𝑤 = 𝑤𝑑 − 𝑤, where 𝑤𝑑 denotes the virtual control law. Then, the time

derivative of 𝑧𝑧 can be written as

𝑧̇𝑧 = 𝜌̄𝑧Π𝑧(𝑧̇𝑑 −𝑤𝑑 + 𝑒𝑤 − 𝑑𝑧) − ̇̄𝜌𝑧Π𝑧𝑒𝑧 (22)

From (22), the virtual control law 𝑤𝑑 is constructed as

𝑤𝑑 = (𝜌̄𝑧Π𝑧)−1[𝑘1𝑧𝑧 + 𝜌̄𝑧Π𝑧𝑧̇𝑑 − ̇̄𝜌𝑧Π𝑧𝑒𝑧 − 𝜌̄𝑧Π𝑧𝑑𝑧 + 𝑧𝑧(𝜌̄𝑧Π𝑧)2 tanh((𝑧𝑧𝜌̄𝑧Π𝑧)
2∕𝑧)] (23)

where 𝑘1 > 0 and 𝑧 > 0 are the designed parameters.
Substituting (24) into (22), one can obtain

𝑧̇𝑧 = −𝑘1𝑧𝑧 + 𝜌̄𝑧Π𝑧𝑑𝑧 + 𝜌̄𝑧Π𝑧𝑒𝑤 − 𝑧𝑧(𝜌̄𝑧Π𝑧)2 tanh((𝑧𝑧𝜌̄𝑧Π𝑧)
2∕𝑧) (24)

Step 2Step 2Step 2: Taking the time derivative of 𝑒𝑤, one has

𝑒̇𝑤 = 𝑤̇𝑑 − 𝑔 +
1
𝑚
cos𝜙 cos 𝜃𝑇𝑚𝑟 − 𝑑𝑤 (25)

To avoid the direct derivation of 𝑤𝑑 in the design of the subsequent controller, the dynamic surface control method (DSCM)
is employed to drive 𝑤𝑑 through the first-order filter 𝜁𝑤 in the following form:

𝑡𝑤𝜁̇𝑤 + 𝜁𝑤 = 𝑤𝑑 , 𝜁𝑤(0) = 𝑤𝑑(0) (26)

where 𝑡𝑤 > 0 is the filter time constant.
Defining the filter error as 𝑒𝜁𝑤 = 𝜁𝑤−𝑤𝑑 , and the derivative of 𝑒𝜁𝑤 is written as 𝑒̇𝜁𝑤 = −𝑡−1𝑤 𝑒𝜁𝑤+𝑀1(𝑧𝑧, 𝑧̇𝑑 , 𝑒𝑧, 𝑑𝑧, 𝜌̄𝑧,Π𝑧), where

𝑀1(𝑧𝑧, 𝑧̇𝑑 , 𝑒𝑧, 𝑑𝑧, 𝜌̄𝑧,Π𝑧) is the smooth function consisting of partial derivatives of the corresponding variables in a compact
set. Then for a given initial condition, the function 𝑀1(𝑧𝑧, 𝑧̇𝑑 , 𝑒𝑧, 𝑑𝑧, 𝜌̄𝑧,Π𝑧) is bounded in the compact set44. Hence, we have
|𝑀1(𝑧𝑧, 𝑧̇𝑑 , 𝑒𝑧, 𝑑𝑧, 𝜌̄𝑧,Π𝑧)| ≤ 𝑀̄1, where 𝑀̄1 is a positive constant. Then, the corresponding control input 𝑇𝑚𝑟 based on the
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fractional therory is designed as

𝑇𝑚𝑟 =
𝑚

cos𝜙 cos 𝜃
(−𝑘21𝑒𝑤 − 𝜁̇𝑤 + 𝑔 + 𝑑𝑤 − 𝜌𝑧Π𝑧𝑧𝑧 − 𝑘22𝑒𝑤𝐼

−𝜐𝑧
𝑓

|

|

𝑒𝑤||) (27)

where 𝑘21 > 0 and 𝑘22 > 0 are the designed controller parameters, and 𝜐𝑧 is the fractional order.
Substituting (27) into (25), we can obtain that 𝑒̇𝑤 = −𝑘21𝑒𝑤+𝑑𝑤−𝜌̄𝑧Π𝑧𝑧𝑧+𝑡−1𝑤 𝑒𝜁𝑤−𝑘22𝑒𝑤𝐼

−𝜐𝑧
𝑓

|

|

𝑒𝑤||−𝑀1(𝑧𝑧, 𝑧̇𝑑 , 𝑒𝑧, 𝑑𝑧, 𝜌̄𝑧,Π𝑧).
Then, in order to facilitate the subsequent system stability analysis, the Lyapunov function for the altitude subsystem is selected
as

𝑉1 =
1
2
𝑧2𝑧 +

1
2
𝑒2𝑤 + 1

2
𝑒2𝜁𝑤 (28)

Based on Lemma 2 and the analysis above, the time derivative of 𝑉1 can satisfy that

𝑉̇1 = 𝑧𝑧𝑧̇𝑧 + 𝑒𝑤𝑒̇𝑤 + 𝑒𝜁𝑤 𝑒̇𝜁𝑤
≤ −(𝑘21 − 1.5)𝑒2𝑤 − (𝑡−1𝑤 − 0.5𝑡−2𝑤 − 0.5)𝑒2𝜁𝑤 − 𝑘1𝑧2𝑧 + 0.5𝑑2𝑧 + 0.5𝑑2𝑤 + 0.2758𝑧 + 𝑀̄2

1 (29)

where (𝑧𝑧𝜌̄𝑧Π𝑧)2 − (𝑧𝑧𝜌̄𝑧Π𝑧)2 tanh((𝑧𝑧𝜌̄𝑧Π𝑧)
2∕𝑧 ≤ 0.2758𝑧 based on the result in45.

4.3 Yaw Subsystem
Considering the yaw angle model in (15) as follows:

𝜓̇ = 𝐻3𝜛1 =
sin𝜙
cos 𝜃

𝑞 +
cos𝜙
cos 𝜃

𝑟 (30)

where 𝐻3 represents the third row of matrix 𝐻 .
According to (8), one has

𝛽̇𝜓 = 𝜌̄𝜓Π𝜓 (𝜓̇𝑑 −
sin𝜙
cos 𝜃

𝑞 −
cos𝜙
cos 𝜃

𝑟) − ̇̄𝜌𝜓Π𝜓𝑒𝜓 (31)

The variables are defined as 𝑧𝜓 = 𝛽𝜓 and 𝑒𝑟 = 𝑟𝑑 − 𝑟, where 𝑟𝑑 is desired yaw angle rate. The time derivative of 𝑧𝜓 can be
written as

𝑧̇𝜓 = 𝜌̄𝜓Π𝜓 (𝜓̇𝑑 −
sin𝜙
cos 𝜃

𝑞 −
cos𝜙
cos 𝜃

(𝑟𝑑 − 𝑒𝑟)) − ̇̄𝜌𝜓Π𝜓𝑒𝜓 (32)
From (32), the desired yaw angle rate 𝑟𝑑 is designed as

𝑟𝑑 = (𝜌̄𝜓Π𝜓
cos𝜙
cos 𝜃

)−1[𝑘3𝑧𝜓 − 𝜌̄𝜓Π𝜓
sin𝜙
cos 𝜃

𝑞 + 𝜌̄𝜓Π𝜓 𝜓̇𝑑 − ̇̄𝜌𝜓Π𝜓𝑒𝜓 ] (33)

where 𝑘3 > 0 is the designed parameters.
According to (32) and (33), one has that 𝑧̇𝜓 = −𝑘3𝑧𝜓 + 𝑘(𝜙, 𝜃)𝑒Ω, where 𝑘(𝜙, 𝜃) =

[

0 0 𝜌𝜓Π𝜓
cos𝜙
cos 𝜃

]

, 𝑒Ω = [𝑒𝑝, 𝑒𝑞 , 𝑒𝑟]T,
𝑒𝑝 = 𝑝𝑑 − 𝑝, 𝑒𝑞 = 𝑞𝑑 − 𝑞, 𝑝𝑑 and 𝑞𝑑 are the desired roll rate and pitch rate, respectively. Then, to facilitate the stability analysis
for the subsequent system, the Lyapunov function for the altitude subsystem is chosen as

𝑉2 =
1
2
𝑧2𝜓 (34)

Based on the analysis above, one has

𝑉̇2 = −𝑘3𝑧2𝜓 + 𝑧𝜓𝑘(𝜙, 𝜃)𝑒Ω (35)

4.4 Horizontal Subsystem
The following horizontal model in (15) is written as:

̇1 = 1 +𝐷1

̇1 = − 1
𝑚
𝛾𝑇𝑚𝑟 +𝐷1

(36)

where 1 = [𝑥, 𝑦]T, 1 = [𝑢, 𝑣]T,𝐷1
= [𝑑𝑥, 𝑑𝑦]T,𝐷1

= [𝑑𝑢, 𝑑𝑣]T, 𝛾 =
[

𝑆𝜙𝑆𝜓 + 𝐶𝜙𝑆𝜃𝐶𝜓
−𝑆𝜙𝐶𝜓 + 𝐶𝜙𝑆𝜃𝑆𝜓

]

, 𝑆∙ and 𝐶∙ are the trigonometric

functions for sin(∙) and cos(∙), respectively. To facilitate the study of the controller design, the direction model46 is introduced
as follows:

𝛾̇ = 𝑁Ω1 (37)
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where Ω1 = [𝑝, 𝑞]T, 𝑁 =
[

𝐶𝜙𝑆𝜓 − 𝑆𝜙𝑆𝜃𝐶𝜓 𝐶𝜃𝐶𝜓
−𝐶𝜙𝐶𝜓 − 𝑆𝜙𝑆𝜃𝑆𝜓 𝐶𝜃𝑆𝜓

]

.

According to (8), we have

𝛽̇1,2 = 𝜌̄1,2Π1,2(̇1𝑑 − 1 −𝐷1
) − ̇̄𝜌1,2Π1,2𝑒1,2 (38)

where 𝛽1,2 = [𝛽𝑥, 𝛽𝑦]T, Π1,2 = diag{Π𝑥,Π𝑦}, 𝜌̄1,2 = diag{𝜌̄𝑥, 𝜌̄𝑦}, and 𝑃̇1𝑑 = [𝑥𝑑 , 𝑦𝑑]T.
The variables are defined as 𝑧1

= 𝛽1,2 and 𝑒1
= 1𝑑 − 1, where 1𝑑 is the desired forward and lateral translation speed,

𝛽1,2 is the transformed error vector. Then, a detailed control scheme for the attitude subsystem (38) is designed by utilizing the
backstepping approach.

Step 1Step 1Step 1: Taking the time derivative of 𝑧1
, we can obtain

𝑧̇1
= 𝜌̄1,2Π1,2(̇1𝑑 − 1𝑑 + 𝑒1 −𝐷1

) − ̇̄𝜌1,2Π1,2𝑒1
(39)

From (39), the virtual control law 1𝑑 is designed as

1𝑑 = (𝜌̄1,2Π1,2)−1[𝐾4𝑧1
+ 𝜌̄1,2Π1,2(̇1𝑑 − 𝐷̂1)

+𝑧1
‖

‖

𝜌̄1,2Π1,2
‖

‖

2 tanh(‖‖
‖

𝜌̄1,2Π1,2𝑧1

‖

‖

‖

2
∕ ) − ̇̄𝜌1,2Π1,2𝑒1

] (40)

where 𝐾4 ∈ ℜ2×2 is the designed gain diagonal matrix,  is a positive constant, and 𝐷̂1 = [𝑑𝑥, 𝑑𝑦]T. The variable 𝐷̃1
is

defined as 𝐷̃1
= [𝑑𝑥, 𝑑𝑦]T.

Substituting (40) into (39), one has

𝑧̇1
= −𝑧1

‖

‖

𝜌̄1,2Π1,2
‖

‖

2 tanh(‖‖
‖

𝜌̄1,2Π1,2𝑧1

‖

‖

‖

2
∕ ) −𝐾4𝑧1

+ 𝜌̄1,2Π1,2𝐷̃1
+ 𝜌̄1,2Π1,2𝑒1

(41)

Step 2Step 2Step 2: Taking the time derivative of 𝑒1
, it yields

𝑒̇1
= ̇1𝑑 − ̇1 = ̇1𝑑 +

1
𝑚
𝛾𝑇𝑚𝑟 −𝐷1

(42)

Defining the direction tracking error as 𝑒𝛾 = 𝛾𝑑 − 𝛾 , where 𝛾𝑑 is the desired direction pointing vector. Then we can obtain
that 𝑒̇1

= ̇1𝑑 +
1
𝑚
𝛾𝑑𝑇𝑚𝑟 −

1
𝑚
𝑒𝛾𝑇𝑚𝑟 − 𝐷1

. To avoid the direct derivation of 𝑉1𝑑 in the design of the subsequent controller, the
DSCM is employed to drive 1𝑑 through the first-order filter 𝜁1

in the following form:

𝑡1
𝜁̇1

+ 𝜁1
= 1𝑑 , 𝜁1

(0) = 1𝑑(0) (43)

where 𝑡1
> 0 is the filter time diagonal matrix.

Defining the filter error as 𝑒𝜁1 = 𝜁1
− 1𝑑 , and the derivative of 𝑒𝜁1 is written as 𝑒̇𝜁1 = −𝑡−11

𝑒𝜁1 +
𝑀2(𝑧1

, ̇1𝑑 , 𝑒𝑃1 , 𝐷̂1
, 𝜌̄1,2,Π1,2), where 𝑀2(𝑧1

, ̇1𝑑 , 𝑒1
, 𝐷̂1

, 𝜌̄1,2,Π1,2) is the smooth function vector consisting of par-
tial derivatives of the corresponding variables in a compact set44. Then for a given initial condition, the function
𝑀2(𝑧1

, ̇1𝑑 , 𝑒1
, 𝐷̂1

, 𝜌̄1,2,Π1,2) is bounded in the compact set44. Hence, we have ‖𝑀2(𝑧1
, ̇1𝑑 , 𝑒1

, 𝐷̂1
, 𝜌̄1,2,Π1,2)‖ ≤ 𝑀̄2,

where 𝑀̄2 is a positive constant. Then, the corresponding virtual control law 𝛾𝑑 is designed as

𝛾𝑑 = 𝑚
𝑇𝑚𝑟

(−𝐾5𝑒1
− 𝜁̇1

+ 𝐷̂1
− 𝜌̄1,2Π1,2𝑧1

) (44)

where 𝐾5 ∈ ℜ2×2 is the designed diagonal matrix, and 𝐷̂1 = [𝑑𝑢, 𝑑𝑣]T. The variable 𝐷̃1
is defined as 𝐷̃1

= [𝑑𝑢, 𝑑𝑣]T.
Substituting (44) into (42), we can obtain

𝑒̇1
= −𝐾5𝑒1

+ 𝐷̃1
− 1
𝑚
𝑒𝛾𝑇𝑚𝑟 − 𝜌̄1,2Π1,2𝑧1

+ 𝑡−11
𝑒𝜁1 −𝑀2(𝑧1

, ̇1𝑑 , 𝑒1
, 𝐷̂1

, 𝜌̄1,2,Π1,2) (45)

Step 3Step 3Step 3: According to (37), the derivative of 𝑒𝛾 is written as 𝑒̇𝛾 = 𝛾̇𝑑−𝛾̇ = 𝛾̇𝑑−𝑁Ω1. Then the error is defined as 𝑒Ω1
= Ω1𝑑−Ω1,

where Ω1𝑑 = [𝑝𝑑 , 𝑞𝑑]T will be designed in the following analysis. Furthermore, one has that

𝑒̇𝛾 = 𝛾̇𝑑 −𝑁Ω1𝑑 +𝑁0𝑒Ω (46)

where the variable 𝑁0 =
[

𝑁 02×1
]

. To avoid the direct derivation of 𝛾𝑑 in the design of the subsequent controller, the DSCM is
employed to drive 𝛾𝑑 through the first-order filter 𝜁𝛾 in the following form:

𝑡𝛾 𝜁̇𝛾 + 𝜁𝛾 = 𝛾𝑑 , 𝜁𝛾 (0) = 𝛾𝑑(0) (47)

where 𝑡𝛾 > 0 is the filter time diagonal matrix.
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Defining the filter error as 𝑒𝜁𝛾 = 𝜁𝛾 − 𝛾𝑑 and the derivative of 𝑒𝜁𝛾 is written as 𝑒̇𝜁𝛾 = −𝑡−1𝛾 𝑒𝜁𝛾 +𝑀3(𝑒1
, 𝜁̇1

, 𝑧1
, 𝐷̂1

, 𝜌̄1,2,Π1,2),
where 𝑀3(𝑒1

, 𝜁̇1
, 𝑧1

, 𝐷̂1
, 𝜌̄1,2,Π1,2) is the smooth function vector consisting of partial derivatives of the corresponding vari-

ables in a compact set. Then for a given initial condition, the function𝑀3(𝑒1
, 𝜁̇1

, 𝑧1
, 𝐷̂1

, 𝜌̄1,2,Π1,2) is bounded in the compact
set. Hence, we have that ‖𝑀3(𝑒1

, 𝜁̇1
, 𝑧1

, 𝐷̂1
, 𝜌̄1,2,Π1,2)‖ ≤ 𝑀̄3, where 𝑀̄3 is a positive constant. Then the vector Ω1𝑑 is

designed as
Ω1𝑑 = 𝑁−1(𝐾6𝑒𝛾 + 𝜁̇𝛾 −

1
𝑚
𝑇𝑚𝑟𝑒𝑉1) (48)

where 𝐾6 ∈ ℜ2×2 is the designed diagonal matrix.
From (46) and (48), one has

𝑒̇𝛾 = −𝐾6𝑒𝛾 +𝑁0𝑒Ω + 1
𝑚
𝑇𝑚𝑟𝑒1

+ 𝑡−1𝛾 𝑒𝜁𝛾 −𝑀3(𝑒1
, 𝜁̇1

, 𝑧1
, 𝐷̂1

, 𝜌̄1,2,Π1,2) (49)

Then, to facilitate the stability analysis of the subsequent system, the Lyapunov function for the horizontal subsystem is chosen
as 𝑉3 =

1
2
𝑧T1
𝑧1

+ 1
2
𝑒T1
𝑒1

+ 1
2
𝑒T𝛾 𝑒𝛾 +

1
2
𝑒T𝜁1

𝑒𝜁1 +
1
2
𝑒T𝜁𝛾 𝑒𝜁𝛾 . Then, based on the analysis above, the time derivative of the 𝑉3 can

be written as
𝑉̇3 = 𝑧T1

𝑧̇1
+ 𝑒T1

𝑒̇1
+ 𝑒T𝛾 𝑒̇𝛾 + 𝑒

T
𝜁1
𝑒̇𝜁1 + 𝑒

T
𝜁𝛾
𝑒̇𝜁𝛾

≤ −𝜆min(𝐾4)
‖

‖

‖

𝑧1

‖

‖

‖

2
− (𝜆min(𝐾5) − 1.5)‖‖

‖

𝑒1

‖

‖

‖

2
− (𝜆min(𝐾6) − 1)‖‖

‖

𝑒𝛾
‖

‖

‖

2
− (𝜆min(𝑡−11

) − 0.5

− 0.5(𝜆max(𝑡−11
))2)‖‖

‖

𝑒𝜁1
‖

‖

‖

2
+ 0.5‖‖

‖

𝐷̃1

‖

‖

‖

2
+ 𝑀̄2

3 − (𝜆min(𝑡−1𝛾 ) − 0.5(𝜆max(𝑡−1𝛾 ))2 − 0.5)‖‖
‖

𝑒𝜁𝛾
‖

‖

‖

2

+ 𝑒T𝛾𝑁0𝑒Ω + 0.2758𝑀 + 𝑀̄2
2 + 0.5‖‖

‖

𝐷̃1

‖

‖

‖

2

(50)

where 𝜆max(∙) and 𝜆min(∙) denote the largest and smallest eigenvalues of the matrices, respectively.

4.5 Attitude Angular Rate And Rotor Flapping Dynamics Subsystem
Considering the relevant model in (15) as follows:

𝜛̇1 = 𝑓1 + 𝑔1𝜛2 +𝐷Ω

𝜛̇2 = Γ𝜛2 + 𝐼𝜛1 + 𝑔2𝑢𝑓
(51)

The variables are defined as 𝑒Ω = 𝜛1𝑑 −𝜛1 and 𝑒𝑢 = 𝜛2𝑑 − 𝜛̂2, where𝜛1𝑑 = [𝑝𝑑 , 𝑞𝑑 , 𝑟𝑑]T is the desired signal vector and its
value can be obtained from subsection B and C. 𝜛2𝑑 is the virtual control law. Then, a detailed control scheme for the attitude
subsystem (51) is designed by utilizing the backstepping approach.

Step 1Step 1Step 1: Taking the time derivative of 𝑒Ω, we can obtain

𝑒̇Ω = 𝜛̇1𝑑 − 𝑓1 − 𝑔1𝜛2𝑑 + 𝑔1𝑒𝑢 −𝐷Ω − 𝑔1𝜛̃2 (52)

To avoid the direct derivation of 𝜛1𝑑 in the subsequent controller design, the DSCM is employed to drive 𝜛1𝑑 through the
first-order filter 𝜁𝜛1

in the following form:

𝑡𝜛1
𝜁̇𝜛1

+ 𝜁𝜛1
= 𝜛1𝑑 , 𝜁𝜛1

(0) = 𝜛1𝑑(0) (53)

where 𝑡𝜛1
> 0 is the filter time diagonal matrix.

Defining the filter error as 𝑒𝜁𝜛1
= 𝜁𝜛1

− 𝜛1𝑑 , and taking the time derivative of 𝑒𝜁𝜛1
, one has that 𝑒̇𝜁𝜛1

=
−𝑡−1𝜛1

𝑒𝜁𝜛1
+𝑀4(𝑧𝜓 , 𝜓̇𝑑 , 𝑒𝜓 , 𝑒𝛾 , 𝜁̇𝛾 , 𝑒1

, 𝜌̄𝜓 ,Π𝜓 ), where 𝑀4(𝑧𝜓 , 𝜓̇𝑑 , 𝑒𝜓 , 𝑒𝛾 , 𝜁̇𝛾 , 𝑒1
, 𝜌̄𝜓 ,Π𝜓 ) is the smooth function vector consist-

ing of partial derivatives of the corresponding variables in a compact set. Then for a given initial condition, the function
𝑀4(𝑧𝜓 , 𝜓̇𝑑 , 𝑒𝜓 , 𝑒𝛾 , 𝜁̇𝛾 , 𝑒1

, 𝜌̄𝜓 ,Π𝜓 ) is bounded in the compact set44. Hence, we have ‖𝑀4(𝑧𝜓 , 𝜓̇𝑑 , 𝑒𝜓 , 𝑒𝛾 , 𝜁̇𝛾 , 𝑒1
, 𝜌̄𝜓 ,Π𝜓 )‖ ≤ 𝑀̄4,

where 𝑀̄4 is a positive constant. Then, the corresponding virtual control law 𝜛2𝑑 is designed as

𝜛2𝑑 = 𝑔−11 (𝐾7𝑒Ω + 𝜁̇𝜛1
− 𝑓1 − 𝐷̂Ω + 𝑘T(𝜙, 𝜃)𝑧𝜓 +𝑁T

0 𝑒𝛾 + ‖

‖

𝑔1‖‖
2𝑒Ω) (54)

where 𝐾7 ∈ ℜ3×3 is the diagonal matrix.
Substituting (54) into (51), one can obtain

𝑒̇Ω = −𝐾7𝑒Ω + 𝐷̃Ω + 𝑔1𝑒𝑢 − 𝑘T(𝜙, 𝜃)𝑧𝜓 −𝑁T
0 𝑒𝛾 −𝑀4(𝑧𝜓 , 𝜓̇𝑑 , 𝑒𝜓 , 𝑒𝛾 , 𝜁̇𝛾 , 𝑒1

, 𝜌̄𝜓 ,Π𝜓 ) + 𝑡−1𝜛1
𝑒𝜁𝜛1

− 𝑔1𝜛̃2 − ‖

‖

𝑔1‖‖
2𝑒Ω (55)
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Step 2Step 2Step 2: Taking the time derivative of 𝑒𝑢, it yields

𝑒̇𝑢 = 𝜛̇2𝑑 − Γ𝜛2 − 𝐼𝜛1 − 𝑔2𝑢𝑓 (56)

To avoid the direct derivation of 𝜛2𝑑 in the design of the subsequent controller, the DSCM is employed to drive 𝜛2𝑑 through
the first-order filter 𝜁𝜛2

in the following form:

𝑡𝜛2
𝜁̇𝜛2

+ 𝜁𝜛2
= 𝜛2𝑑 , 𝜁𝜛2

(0) = 𝜛2𝑑(0) (57)

where 𝑡𝜛2
> 0 is the filter time diagonal matrix.

Defining the filter error as 𝑒𝜁𝜛2
= 𝜁𝜛2

− 𝜛2𝑑 , and the derivative of 𝑒𝜁𝜛2
can be written as 𝑒̇𝜁𝜛2

= −𝑡−1𝜛2
𝑒𝜁𝜛2

+
𝑀5(𝑒Ω, 𝜁̇𝜛1

, 𝐷̂Ω, 𝑧𝜓 , 𝑒𝛾 ), where 𝑀5(𝑒Ω, 𝜁̇𝜛1
, 𝐷̂Ω, 𝑧𝜓 , 𝑒𝛾 ) is the smooth function vector consisting of partial derivatives of the

corresponding variables in a compact set. Then for a given initial condition, the function 𝑀5(𝑒Ω, 𝜁̇𝜛1
, 𝐷̂Ω, 𝑧𝜓 , 𝑒𝛾 ) is bounded

in the compact set44. Hence, we have ‖𝑀5(𝑒Ω, 𝜁̇𝜛1
, 𝐷̂Ω, 𝑧𝜓 , 𝑒𝛾 )‖ ≤ 𝑀̄5, where 𝑀̄5 is a positive constant. Then, the equivalent

fatcional-order control input 𝑢𝑓 can be designed as

𝑢𝑓 = 𝑔−12 [𝐾81𝑒𝑢 + 𝜁̇𝜛2
− Γ𝜛̂2 − 𝐼𝜛̂1 + 𝑔T1 𝑒Ω − 𝛼2(𝜛1 − 𝜛̂1) −𝐾82𝑒𝑢𝐼

−𝜐𝑓
𝑓 𝑢] (58)

where 𝐾81 ∈ ℜ3×3 and 𝐾82 ∈ ℜ3×3 are the designed gain diagonal matrices, 𝑒𝑢 = [𝑒T𝑢 , 03×2] ∈ ℜ3×3, 𝑢 is the vector for the
absolute values of each of the variables in the error 𝑒𝑢, and 𝜐𝑓 is the frational order.

Substituting (58) into (56), one can obtain

𝑒̇𝑢 = −𝐾81𝑒𝑢 − 𝑔T1 𝑒Ω + 𝑡−1𝜛2
𝑒𝜁𝜛2

−𝐾82𝑒𝑢𝐼
−𝜐𝑓
𝑓 𝐸𝑢 −𝑀5(𝑒Ω, 𝜁̇𝜛1

, 𝐷̂Ω, 𝑧𝜓 , 𝑒𝛾 ) (59)

Then, to facilitate the stability analysis of the subsequent system, the Lyapunov function for the horizontal subsystem is chosen
as 𝑉4 =

1
2
𝑒TΩ𝑒Ω + 1

2
𝑒T𝑢 𝑒𝑢 +

1
2
𝑒T𝜁𝜛1

𝑒𝜁𝜛1
+ 1

2
𝑒T𝜁𝜛2

𝑒𝜁𝜛2
. Then, based on Lemma 2 and the analysis above, one can obtain that

𝑉̇4 ≤ −(𝜆min(𝐾7) − 1.5)‖
‖

𝑒Ω‖‖
2 + 0.5‖

‖

𝜛̃2
‖

‖

2 + 𝑀̄2
4 − (𝜆min(𝑡−1𝜛1

) − 0.5(𝜆min(𝑡−1𝜛1
))2 − 0.5)‖‖

‖

𝑒𝜁𝜛1

‖

‖

‖

2

− (𝜆min(𝑡−1𝜛2
) − 0.5(𝜆min(𝑡−1𝜛2

))2 − 0.5)‖‖
‖

𝑒𝜁𝜛2

‖

‖

‖

2
− 𝑒TΩ𝑘

T(𝜙, 𝜃)𝑧𝜓 − 𝑒TΩ𝑁
T
0 𝑒𝛾 + 0.5‖

‖

𝐷̃Ω
‖

‖

2

+ 𝑀̄2
5 − (𝜆min(𝐾8) − 1)‖

‖

𝑒𝑢‖‖
2

(60)

4.6 Stability Analysis
The above TTC design of the UAH with the unmeasurable states based on the PPM and the ESO can be summarized as the
following theorem:

Theorem 1. Consider the nonlinear model of the UAH with the prescribed performance, the external bounded WGDs and the
unmeasurable states espressed by (2). The fractional-order ESO is designed in the form of (18). The frational-order high-gain
observer is designed as (13). By properly selecting the controller paremeters, the designed control signals (24), (27), (33), (40),
(44), (48), (54) and (58) based on the PPM and the ESO can ultimately make the error signals of the entire system for the UAH
uniformly bounded, and realize the tracking of the given periodic desired signal.

ProofProofProof: For the close-loop control system of the UAH, the Lyapunov function is choosen as

𝑉 = 1
2
𝜛̃T

1 𝜛̃1 +
1
2
𝜛̃T

2 𝜛̃2 +
1
2
𝑒T1𝑒1 +

1
2
𝑒T2𝑒2 + 𝑉1 + 𝑉2 + 𝑉3 + 𝑉4 (61)

According to the analysis above, we can obtain

𝑉̇ = −1
‖

‖

𝜛̃1
‖

‖

2 +2
‖

‖

𝜛̃2
‖

‖

2 −3
‖

‖

𝑒1‖‖
2 −4

‖

‖

𝑒2‖‖
2 −5𝑒

2
𝑤 −6𝑒

2
𝜁𝑤

−7
‖

‖

‖

𝑧𝑃1
‖

‖

‖

2
−8

‖

‖

‖

𝑒𝑉1
‖

‖

‖

2

−9
‖

‖

‖

𝑒𝛾
‖

‖

‖

2
−10

‖

‖

‖

𝑒𝜁𝑉1
‖

‖

‖

2
−11

‖

‖

‖

𝑒𝜁𝛾
‖

‖

‖

2
−12

‖

‖

𝑒Ω‖‖
2 −13

‖

‖

𝑒𝑢‖‖
2 −14

‖

‖

‖

𝑒𝜁𝜛1

‖

‖

‖

2

−15
‖

‖

‖

𝑒𝜁𝜛2

‖

‖

‖

2
−16𝑧

2
𝑧 −17𝑧

2
𝜓 −18

(62)

where 1 = 𝜆min(𝛼1)−0.5−0.5(𝜆max(𝛼2))2, 2 = 𝜆max(Γ)+2, 3 = 𝜆min(𝛽2)−0.5−0.5(𝜆max(𝛽3))2, 4 = (𝜆min(𝛽4)−5.5), 5 =
𝑘21−1.5,6 = 𝑡−1𝑤 −0.5𝑡−2𝑤 −0.5,7 = 𝜆min(𝐾4),8 = 𝜆min(𝐾5)−1.5,9 = 𝜆min(𝐾6)−1,10 = 𝜆min(𝑡−11

)−0.5(𝜆max(𝑡−11
))2−0.5,

11 = 𝜆min(𝑡−1𝛾 ) − 0.5(𝜆max(𝑡−1𝛾 ))2 − 0.5, 12 = 𝜆min(𝐾7) − 1.5, 13 = 𝜆min(𝐾81) − 1, 14 = 𝜆min(𝑡−1𝜛1
) − 0.5(𝜆min(𝑡−1𝜛1

))2 − 0.5,
15 = 𝜆min(𝑡−1𝜛2

) − 0.5(𝜆min(𝑡−1𝜛2
))2 − 0.5, 16 = 𝑘1, 17 = 𝑘3 and 18 = 0.2758𝑀𝑧 + 0.2758𝑀𝑃 + 𝑀̄2

1 + 𝑀̄2
2 + 𝑀̄2

3 + 𝑀̄2
4 +
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𝑀̄2
5 + 0.5ℎ̄∗1 + 0.5(𝜆max(𝛽4))2ℎ̄∗2. On the basis of Assumption 2, we have that ‖ℎ∗(𝑡)‖2 ≤ ℎ̄∗1 and ‖

‖

𝑥̄2‖‖
2 ≤ ℎ̄∗2, where ℎ̄∗1 and ℎ̄∗2

are positive constants.
According to (62) and Lemma 1, when the parameters are reasonable, the error signals in the entire system are ultimately

uniformly bounded.

5 SIMULATION STUDY

In this section, some simulation studies are presented to illustrate the effectiveness of the developed TTC for the nonlinear
model of the UAH. The simulations include two parts. In the first part, the three-dimensional trajectory of the UAH is planned
by using the WPA algorithm to generate a three-dimensional space trajectory, and the corresponding comparison results of the
different methods are given. In the second part, the trajectory in three-dimensional space is deemed as the desired signal, we
explore whether the trajectory tracking controller based on the PPM and fractional-order ESO can effectively ensure that the
three-dimensional space trajectory can be tracked, and the simulation comparisons are also presented.

5.1 Three-dimensional Trajectory And Comparative Analysis
On the basis of the improved WPA described in Table 1 , the three-dimensional space trajectory is planned, and the result of
the final planning trajectory is shown in Fig. 3 . In order to illustrate the superiority of using the improved WPA to plan three-
dimensional trajectory in this paper, the traditional WPA, the traditional particle swarm optimization (PSO) algorithm and the
genetic algorithm (GA)47,48 are introduced for the three-dimensional trajectory planning, and the simulation results are shown
in Figs. 4 -6 . According to the planned three-dimensional trajectory in Fig. 4 and Fig. 5 and the change curves of fitness
values in Fig. 6 , we can be seen that the improved WPA has the better planned track quality, the shorter distance and the faster
convergence speed than the traditional WPA, PSO and GA. Therefore, in the following simulation of the trajectory tracking, the
trajectory planned by using the improved WPA is regarded as the desired tracking trajectory.

FIGURE 3 Three-dimensional space trajectory. FIGURE 4 Front view of trajectory comparision.
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FIGURE 5 Top view of trajectory comparision.
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FIGURE 6 Curve of fitness value contrast change.

TABLE 2 Parameters of small-scale unmanned helicopter

Symbol Unit Value
𝑚 kg 1.5
𝑔 m∕s2 9.8

(𝐽𝑥𝑥, 𝐽𝑦𝑦, 𝐽𝑧𝑧) kg ⋅m2 (0.025, 0.051, 0.04)
(𝐿𝑥, 𝐿𝑦, 𝐿𝑧) m (0, 0, 0.09)
(𝐻𝑥,𝐻𝑧) m (0.03, 0.5)
(𝐴𝑙𝑜𝑛, 𝐵𝑙𝑎𝑡) rad∕ms (2, 2)

𝐶𝑚 N ⋅m 32
𝐶𝑘 m∕

√

N 0.01
𝐷𝑘 N ⋅m 0.4
𝜏𝑒 s 0.1

5.2 Control Simulation and Comparation
To verify the effectiveness of the TTC scheme for the three-dimensional space trajectory, the UAH is deemed as the study
object, and the basic parameters are given in Table 2 . The relevant parameters of the external wind gusts are choose as
𝑉𝑖𝑚 = 2m∕s, 𝑑𝑖 = 100m, 𝑖 = 𝑥, 𝑦, 𝑧. Specifically, the wind gust model of 𝐷 , 𝐷 and 𝐷Ω can be described as
𝐷 = [1 − cos(0.03𝑋), 1 − cos(0.03𝑌 ), 1 − cos(0.03𝑍)]T, 𝐷 = [0.03𝑢 sin(0.03𝑋), 0.03𝑣 sin(0.03𝑌 ), 0.03𝑤 sin(0.03𝑍)]T, and
𝐷Ω = [2 sin(0.2𝑡), 3 sin(0.3𝑡), 2 sin(0.1𝑡)]T. Besides, as the form shown in (4), the precribed performance function 𝜌̄𝑖 is choosen
as 𝜌̄𝑖 = 2 exp(−𝑡) + 0.1, 𝑖 = 1, 2, 3, 4, and the relevant designed parameters are selected as 𝜆1𝑖 = 𝜆2𝑖 = 0.2.

Futhermore, at the initial moment, the UAH hovers at point (0, 0, 0) and the desired position input signal is given by the
conclusion in the previous analysis. Meanwhile, the desired yaw angle input is selected as𝜓𝑑 = 0. The corresponding parameters
of the fractional-order ESOs are choosen as 𝛽1 = 𝛽2 = diag{60, 60,⋯ , 60} ∈ ℜ9×9 and 𝛽3 = 𝛽4 = diag{900, 900,⋯ , 900} ∈
ℜ9×9. The relevant parameters of fractional-order observer are set as 𝐴𝑡 = 44, 𝜏2 = 0.1, 𝛼0 = 𝛼1 = diag{1, 1, 1} ∈ ℜ3×3, 𝛼2 =
diag{0.1, 0.1, 0.1} ∈ ℜ3×3. The relevant parameters of the trajectory tracking controller are choosen as 𝑘1 = 4, 𝑘21 = 𝑘22 = 16,
𝑘3 = 32, 𝐾4 = diag{4, 4}, 𝐾5 = diag{16, 16}, 𝐾6 = diag{32, 32}, 𝐾7 = diag{50, 50, 50}, 𝐾81 = 𝐾82 = diag{50, 50, 50}.
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FIGURE 7 Tracking curves of position 𝑃 .
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FIGURE 8 Tracking curves of yaw angle 𝜓 .
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FIGURE 9 Error of 𝑒𝑥 with precribed performance.
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FIGURE 10 Error of 𝑒𝑦 with precribed performance.
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FIGURE 11 Error of 𝑒𝑧 with precribed performance.
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FIGURE 12 Error of 𝑒𝜓 with precribed performance.

The final simulation results are presented in the Fig.7 -Fig.16 . Firstly, Fig.7 and Fig.8 demonstrate the effectiveness of the
developed TTC method. The green and blue soild lines represent the actual output, and the desired input is represented by using
the red dotted line. One can obtain that the actual output curve of the UAH can still track the planned three-dimensional space
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FIGURE 13 Estimation of unmeasurable states 𝑎 and 𝑏.
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FIGURE 14 Tracking curves of ESO for disturbance 𝐷𝑃 .
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FIGURE 15 Tracking curves of ESO for disturbance 𝐷𝑉 .
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FIGURE 16 Tracking curves of ESO for disturbance 𝐷Ω.

FIGURE 17 Diagram of 3D trajectory tracking comparision.
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trajectory well in the present prescribed performance constraints and the external WGDs, which shows that the investigated TTC
approach can ensure that the UAH has good tracking performance and stability.

Then, the Figs. 9 -12 present the output tracking error of the UAH under the prescribed performance constraints, which can
be seen that by selecting valid control parameters, the output tracking error can be limited to the upper and lower bounds specified
by the precribed performance function, so as to ensure the system achieves satisfactory control performance. In addition, the
observation curve of the fractional-order observer and fractional-order ESOs for unmeasurable states and WGSs are shown in
Figs. 13 -16 . We can observe that the designed fractional-order observers can quickly estimate the unmeasurable states 𝑎, 𝑏
and the external WGDs, and the estimation errors are stable within a small range.

Moreover, to verify the effectiveness of the designed controller based on the fractional-order ESO in this paper, the proposed
PMM-based control scheme is compared with the traditional backstepping control method without fractional-order ESO in the
simulation of the tracking control, and the comparative simulation result is shown in Fig. 17 under the same control parameters.
And based on Fig. 17 , it can be seen that the trajectory tracking control method proposed in this paper has better tracking
effect. In conclusion, under the TTC method developed in this paper, the system of the UAH can achieve satisfactory tracking
performance.

6 CONCLUSION

In this paper, a backstepping TTC scheme based on the PPM is designed for the UAH with external WGDs and unmeasurable
states. Firstly, the nonlinear model of a 6-DOF UAH under external WGDs has been established. Secondly, a fractional-order
observer has been designed for unmeasurable states to estimate the flapping angles in actual flight. For the external disturbances,
the fractional-order ESO has been designed. Then the controller of the trajectory tracking has been designed based on the
backstepping method, and the tracking error is limited to the specified area through the PPM, which ensures the satisfactory
performance of the tracking error. Then the stability of the entire system has been proved by constructing a Lyapunov function.
Finally, the simulation results have demonstrated that the designed control approach can achieve the expected control objectives.
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