References
- J.M. Carlsson and M. Scheffler. Structural, electronic, and chemical
properties of nanoporous carbon. Physical Review Letters ,
Volume 96, Issue 4, 2006, Article Number: 046806.
- T.O. Wehling, E. Şaşıoğlu, C. Friedrich, A.I. Lichtenstein, M.I.
Katsnelson, and S. Blügel. Strength of effective coulomb interactions
in graphene and graphite. Physical Review Letters , Volume 106,
Issue 23, 2011, Article Number: 236805.
- R.E. Smalley. Discovering the fullerenes. Reviews of Modern
Physics , Volume 69, Issue 3, 1997, Pages 723-730.
- P. Ayala, R. Arenal, A. Loiseau, A. Rubio, and T. Pichler. The
physical and chemical properties of heteronanotubes. Reviews of
Modern Physics , Volume 82, Issue 2, 2010, Pages 1843-1885.
- A.M. Marconnet, M.A. Panzer, and K.E. Goodson. Thermal conduction
phenomena in carbon nanotubes and related nanostructured materials.Reviews of Modern Physics , Volume 85, Issue 3, 2013, Pages
1295-1326.
- K.L. Klein, A.V. Melechko, T.E. McKnight, S.T. Retterer, P.D. Rack,
J.D. Fowlkes, D.C. Joy, and M.L. Simpson. Surface characterization and
functionalization of carbon nanofibers. Journal of Applied
Physics , Volume 103, Issue 6, 2008, Article Number: 061301.
- S. Mrozowski. Zone structure of graphite. Physical Review ,
Volume 92, Issue 5, 1953, Pages 1320-1321.
- J.C. Slonczewski and P.R. Weiss. Band structure of graphite.Physical Review , Volume 109, Issue 2, 1958, Pages 272-279.
- H. Shioyama. The interactions of two chemical species in the
interlayer spacing of graphite. Synthetic Metals , Volume 114,
Issue 1, 2000, Pages 1-15.
- C. Binns, S.H. Baker, C. Demangeat, and J.C. Parlebas. Growth,
electronic, magnetic and spectroscopic properties of transition metals
on graphite. Surface Science Reports , Volume 34, Issues 4-5,
1999, Pages 107-170.
- P.M. Adams, H.A. Katzman, G.S. Rellick, and G.W. Stupian.
Characterization of high thermal conductivity carbon fibers and a
self-reinforced graphite panel. Carbon , Volume 36, Issue 3,
1998, Pages 233-245.
- M. Kerford and R.P. Webb. An investigation of the thermal profiles
induced by energetic carbon molecules on a graphite surface.Carbon , Volume 37, Issue 5, 1999, Pages 859-864.
- R.S. Rubino and E.S. Takeuchi. The study of irreversible capacity in
lithium-ion anodes prepared with thermally oxidized graphite.Journal of Power Sources , Volumes 81-82, 1999, Pages 373-377.
- J. Gibkes, B.K. Bein, D. Krüger, and J. Pelzl. Thermophysical
characterization of fine-grain graphites based on thermal waves.Carbon , Volume 31, Issue 5, 1993, Pages 801-807.
- P.G. Klemens and D.F. Pedraza. Thermal conductivity of graphite in the
basal plane. Carbon , Volume 32, Issue 4, 1994, Pages 735-741.
- M.S. Seehra and A.S. Pavlovic. X-Ray diffraction, thermal expansion,
electrical conductivity, and optical microscopy studies of coal-based
graphites. Carbon , Volume 31, Issue 4, 1993, Pages 557-564.
- D. Angermeier, R. Monna, A. Slaoui, and J.C. Muller. Analysis of thin
film polysilicon on graphite substrates deposited in a thermal CVD
system. Journal of Crystal Growth , Volume 191, Issue 3, 1998,
Pages 386-392.
- C.-C. Hung and J. Miller. Thermal conductivity of pristine and
brominated highly graphitized pitch based carbon fibers.Carbon , Volume 25, Issue 5, 1987, Pages 679-684.
- B. Kastelein, R.D.V. Bergen, H. Postma, H.C. Meijer, and F. Mathu.
Thermal conductance of highly oriented pyrolytic graphite along the
c-direction at very low temperatures including magnetic field effects.Carbon , Volume 30, Issue 6, 1992, Pages 845-850.
- B.T. Kelly and K.E. Gilchrist. The basal thermal conductivity of
highly oriented pyrolytic graphite as a function of degree of
graphitization. Carbon , Volume 7, Issue 3, 1969, Pages 355-358.
- V.J. Cee, D.L. Patrick, and T.P. Beebe. Unusual aspects of
superperiodic features on highly oriented pyrolytic graphite.Surface Science , Volume 329, Issues 1-2, 1995, Pages 141-148.
- F. Rodriguez-reinoso and P.A. Thrower. Microscopic studies of oxidized
highly oriented pyrolytic graphites. Carbon , Volume 12, Issue
3, 1974, Pages 269-279.
- J. Kim, D. Kim, K.W. Lee, E.H. Choi, S.J. Noh, H.S. Kim, and C.E. Lee.
Proton-irradiation effects on the charge transport in highly oriented
pyrolytic graphite. Solid State Communications , Volume 186,
2014, Pages 5-7.
- H. Fredriksson, D. Chakarov, and B. Kasemo. Patterning of highly
oriented pyrolytic graphite and glassy carbon surfaces by
nanolithography and oxygen plasma etching. Carbon , Volume 47,
Issue 5, 2009, Pages 1335-1342.
- T. Scheike, P. Esquinazi, A. Setzer, and W. Böhlmann. Granular
superconductivity at room temperature in bulk highly oriented
pyrolytic graphite samples. Carbon , Volume 59, 2013, Pages
140-149.
- D. Díaz-Fernández, J. Méndez, A.D. Campo, R.J.O. Mossanek, M. Abbate,
M.A. Rodríguez, G. Domínguez-Cañizares, O. Bomatí-Miguel, A.
Gutiérrez, and L. Soriano. Nanopatterning on highly oriented pyrolytic
graphite surfaces promoted by cobalt oxides. Carbon , Volume 85,
2015, Pages 89-98.
- M.D. Shirk and P.A. Molian. Ultra-short pulsed laser ablation of
highly oriented pyrolytic graphite. Carbon , Volume 39, Issue 8,
2001, Pages 1183-1193.
- J. Humlíček, A. Nebojsa, F. Munz, M. Miric, and R. Gajic. Infrared
ellipsometry of highly oriented pyrolytic graphite. Thin Solid
Films , Volume 519, Issue 9, 2011, Pages 2624-2626.
- E. Pollmann, P. Ernst, L. Madauß, and M. Schleberger. Ion-mediated
growth of ultra thin molybdenum disulfide layers on highly oriented
pyrolytic graphite. Surface and Coatings Technology , Volume
349, 2018, Pages 783-786.
- Z.-H. Wang, K. Kanai, K. Iketaki, Y. Ouchi, and K. Seki. Epitaxial
growth of p-sexiphenyl film on highly oriented pyrolytic graphite
surface studied by scanning tunneling microscopy. Thin Solid
Films , Volume 516, Issue 9, 2008, Pages 2711-2715.
- N. Bajales, M. Ávila, V. Galván, and P.G. Bercoff.
Multi-characterization of electron-induced defects in highly oriented
pyrolytic graphite. Current Applied Physics , Volume 16, Issue
3, 2016, Pages 421-427.
- D.S. Martin, P. Weightman, and J.T. Gauntlett. The adsorption of
n-hexadecane onto highly oriented pyrolytic graphite studied by atomic
force microscopy. Surface Science , Volume 398, Issue 3, 1998,
Pages 308-317.
- A.M. Borisov, E.S. Mashkova, A.S. Nemov, and E.S. Parilis. Effect of
radiation damage on ion-induced electron emission from highly oriented
pyrolytic graphite. Vacuum , Volume 80, Issue 4, 2005, Pages
295-301.
- M.A. Mannan, H. Noguchi, T. Kida, M. Nagano, N. Hirao, and Y. Baba.
Growth and characterization of stoichiometric BCN films on highly
oriented pyrolytic graphite by radiofrequency plasma enhanced chemical
vapor deposition. Thin Solid Films , Volume 518, Issue 15, 2010,
Pages 4163-4169.
- D.S. Martin, P. Weightman, and J.T. Gauntlett. The evaporation of
n-hexadecane from highly oriented pyrolytic graphite studied by atomic
force microscopy. Surface Science , Volume 417, Issues 2-3,
1998, Pages 390-405.
- Y. Baba, K. Nagata, S. Takahashi, N. Nakamura, N. Yoshiyasu, M.
Sakurai, C. Yamada, S. Ohtani, and M. Tona. Surface modification on
highly oriented pyrolytic graphite by slow highly charged ions.Surface Science , Volume 599, Issues 1-3, 2005, Pages 248-254.
- R.S. Holt. Electron correlation effects in the momentum distribution
of highly oriented pyrolytic graphite. Solid State
Communications , Volume 59, Issue 5, 1986, Pages 321-323.
- D.-Q. Yang, K.N. Piyakis, and E. Sacher. The manipulation of Cu
cluster dimensions on highly oriented pyrolytic graphite surfaces by
low energy ion beam irradiation. Surface Science , Volume 536,
Issues 1-3, 2003, Pages 67-74.
- E. Vetrivendan, R. Hareesh, and S. Ningshen. Synthesis and
characterization of chemical vapour deposited pyrolytic graphite.Thin Solid Films , Volume 749, 2022, Article Number: 139180.
- P. Touzain and A. Hamwi. De-intercalation and second intercalation of
potassium into a highly oriented pyrolytic graphite. Synthetic
Metals , Volume 23, Issues 1-4, 1988, Pages 127-132.
- S. Kiddell, Y. Kazemi, J. Sorken, and H. Naguib. Influence of flash
graphene on the acoustic, thermal, and mechanical performance of
flexible polyurethane foam. Polymer Testing , Volume 119, 2023,
Article Number: 107919.
- R.P. Yali, A. Mehri, and M. Jamaati. Nonlinear thermal transport in
graphene nanoribbon: A molecular dynamics study. Physica A:
Statistical Mechanics and its Applications , Volume 610, 2023, Article
Number: 128416.
- J.C. Bi, H. Yun, M. Cho, M.-G. Kwak, B.-K. Ju, and Y. Kim. Thermal
conductivity and mechanical durability of graphene composite films
containing polymer-filled connected multilayer graphene patterns.Ceramics International , Volume 48, Issue 12, 2022, Pages
17789-17794.
- H. Yun, D.G. Yang, J.C. Bi, M.-G. Kwak, and Y. Kim. Fabrication and
properties of thermally conductive adhesive tapes containing
multilayer graphene patterns. Ceramics International , Volume
48, Issue 22, 2022, Pages 34053-34058.
- Z. Moradi, M. Vaezzadeh, and M. Saeidi. Temperature-dependent thermal
expansion of graphene. Physica A: Statistical Mechanics and its
Applications , Volume 512, 2018, Pages 981-985.
- H. Rezania and M. Yarmohammadi. Dynamical thermal conductivity of
bilayer graphene in the presence of bias voltage. Physica E:
Low-dimensional Systems and Nanostructures , Volume 75, 2016, Pages
125-135.
- K.K. Choudhary. Investigation of two-dimensional lattice thermal
transport in bilayer graphene using phonon scattering mechanism.Physica E: Low-dimensional Systems and Nanostructures , Volume
58, 2014, Pages 106-110.
- N. Usha, V. Subramanian, V.R.K. Murthy, and J. Sobhanadri. Microwave
studies on some low stage graphite ferric chloride intercalation
compound. Materials Science and Engineering: B , Volume 45,
Issues 1-3, 1997, Pages 85-87.