References
  1. J.M. Carlsson and M. Scheffler. Structural, electronic, and chemical properties of nanoporous carbon. Physical Review Letters , Volume 96, Issue 4, 2006, Article Number: 046806.
  2. T.O. Wehling, E. Şaşıoğlu, C. Friedrich, A.I. Lichtenstein, M.I. Katsnelson, and S. Blügel. Strength of effective coulomb interactions in graphene and graphite. Physical Review Letters , Volume 106, Issue 23, 2011, Article Number: 236805.
  3. R.E. Smalley. Discovering the fullerenes. Reviews of Modern Physics , Volume 69, Issue 3, 1997, Pages 723-730.
  4. P. Ayala, R. Arenal, A. Loiseau, A. Rubio, and T. Pichler. The physical and chemical properties of heteronanotubes. Reviews of Modern Physics , Volume 82, Issue 2, 2010, Pages 1843-1885.
  5. A.M. Marconnet, M.A. Panzer, and K.E. Goodson. Thermal conduction phenomena in carbon nanotubes and related nanostructured materials.Reviews of Modern Physics , Volume 85, Issue 3, 2013, Pages 1295-1326.
  6. K.L. Klein, A.V. Melechko, T.E. McKnight, S.T. Retterer, P.D. Rack, J.D. Fowlkes, D.C. Joy, and M.L. Simpson. Surface characterization and functionalization of carbon nanofibers. Journal of Applied Physics , Volume 103, Issue 6, 2008, Article Number: 061301.
  7. S. Mrozowski. Zone structure of graphite. Physical Review , Volume 92, Issue 5, 1953, Pages 1320-1321.
  8. J.C. Slonczewski and P.R. Weiss. Band structure of graphite.Physical Review , Volume 109, Issue 2, 1958, Pages 272-279.
  9. H. Shioyama. The interactions of two chemical species in the interlayer spacing of graphite. Synthetic Metals , Volume 114, Issue 1, 2000, Pages 1-15.
  10. C. Binns, S.H. Baker, C. Demangeat, and J.C. Parlebas. Growth, electronic, magnetic and spectroscopic properties of transition metals on graphite. Surface Science Reports , Volume 34, Issues 4-5, 1999, Pages 107-170.
  11. P.M. Adams, H.A. Katzman, G.S. Rellick, and G.W. Stupian. Characterization of high thermal conductivity carbon fibers and a self-reinforced graphite panel. Carbon , Volume 36, Issue 3, 1998, Pages 233-245.
  12. M. Kerford and R.P. Webb. An investigation of the thermal profiles induced by energetic carbon molecules on a graphite surface.Carbon , Volume 37, Issue 5, 1999, Pages 859-864.
  13. R.S. Rubino and E.S. Takeuchi. The study of irreversible capacity in lithium-ion anodes prepared with thermally oxidized graphite.Journal of Power Sources , Volumes 81-82, 1999, Pages 373-377.
  14. J. Gibkes, B.K. Bein, D. Krüger, and J. Pelzl. Thermophysical characterization of fine-grain graphites based on thermal waves.Carbon , Volume 31, Issue 5, 1993, Pages 801-807.
  15. P.G. Klemens and D.F. Pedraza. Thermal conductivity of graphite in the basal plane. Carbon , Volume 32, Issue 4, 1994, Pages 735-741.
  16. M.S. Seehra and A.S. Pavlovic. X-Ray diffraction, thermal expansion, electrical conductivity, and optical microscopy studies of coal-based graphites. Carbon , Volume 31, Issue 4, 1993, Pages 557-564.
  17. D. Angermeier, R. Monna, A. Slaoui, and J.C. Muller. Analysis of thin film polysilicon on graphite substrates deposited in a thermal CVD system. Journal of Crystal Growth , Volume 191, Issue 3, 1998, Pages 386-392.
  18. C.-C. Hung and J. Miller. Thermal conductivity of pristine and brominated highly graphitized pitch based carbon fibers.Carbon , Volume 25, Issue 5, 1987, Pages 679-684.
  19. B. Kastelein, R.D.V. Bergen, H. Postma, H.C. Meijer, and F. Mathu. Thermal conductance of highly oriented pyrolytic graphite along the c-direction at very low temperatures including magnetic field effects.Carbon , Volume 30, Issue 6, 1992, Pages 845-850.
  20. B.T. Kelly and K.E. Gilchrist. The basal thermal conductivity of highly oriented pyrolytic graphite as a function of degree of graphitization. Carbon , Volume 7, Issue 3, 1969, Pages 355-358.
  21. V.J. Cee, D.L. Patrick, and T.P. Beebe. Unusual aspects of superperiodic features on highly oriented pyrolytic graphite.Surface Science , Volume 329, Issues 1-2, 1995, Pages 141-148.
  22. F. Rodriguez-reinoso and P.A. Thrower. Microscopic studies of oxidized highly oriented pyrolytic graphites. Carbon , Volume 12, Issue 3, 1974, Pages 269-279.
  23. J. Kim, D. Kim, K.W. Lee, E.H. Choi, S.J. Noh, H.S. Kim, and C.E. Lee. Proton-irradiation effects on the charge transport in highly oriented pyrolytic graphite. Solid State Communications , Volume 186, 2014, Pages 5-7.
  24. H. Fredriksson, D. Chakarov, and B. Kasemo. Patterning of highly oriented pyrolytic graphite and glassy carbon surfaces by nanolithography and oxygen plasma etching. Carbon , Volume 47, Issue 5, 2009, Pages 1335-1342.
  25. T. Scheike, P. Esquinazi, A. Setzer, and W. Böhlmann. Granular superconductivity at room temperature in bulk highly oriented pyrolytic graphite samples. Carbon , Volume 59, 2013, Pages 140-149.
  26. D. Díaz-Fernández, J. Méndez, A.D. Campo, R.J.O. Mossanek, M. Abbate, M.A. Rodríguez, G. Domínguez-Cañizares, O. Bomatí-Miguel, A. Gutiérrez, and L. Soriano. Nanopatterning on highly oriented pyrolytic graphite surfaces promoted by cobalt oxides. Carbon , Volume 85, 2015, Pages 89-98.
  27. M.D. Shirk and P.A. Molian. Ultra-short pulsed laser ablation of highly oriented pyrolytic graphite. Carbon , Volume 39, Issue 8, 2001, Pages 1183-1193.
  28. J. Humlíček, A. Nebojsa, F. Munz, M. Miric, and R. Gajic. Infrared ellipsometry of highly oriented pyrolytic graphite. Thin Solid Films , Volume 519, Issue 9, 2011, Pages 2624-2626.
  29. E. Pollmann, P. Ernst, L. Madauß, and M. Schleberger. Ion-mediated growth of ultra thin molybdenum disulfide layers on highly oriented pyrolytic graphite. Surface and Coatings Technology , Volume 349, 2018, Pages 783-786.
  30. Z.-H. Wang, K. Kanai, K. Iketaki, Y. Ouchi, and K. Seki. Epitaxial growth of p-sexiphenyl film on highly oriented pyrolytic graphite surface studied by scanning tunneling microscopy. Thin Solid Films , Volume 516, Issue 9, 2008, Pages 2711-2715.
  31. N. Bajales, M. Ávila, V. Galván, and P.G. Bercoff. Multi-characterization of electron-induced defects in highly oriented pyrolytic graphite. Current Applied Physics , Volume 16, Issue 3, 2016, Pages 421-427.
  32. D.S. Martin, P. Weightman, and J.T. Gauntlett. The adsorption of n-hexadecane onto highly oriented pyrolytic graphite studied by atomic force microscopy. Surface Science , Volume 398, Issue 3, 1998, Pages 308-317.
  33. A.M. Borisov, E.S. Mashkova, A.S. Nemov, and E.S. Parilis. Effect of radiation damage on ion-induced electron emission from highly oriented pyrolytic graphite. Vacuum , Volume 80, Issue 4, 2005, Pages 295-301.
  34. M.A. Mannan, H. Noguchi, T. Kida, M. Nagano, N. Hirao, and Y. Baba. Growth and characterization of stoichiometric BCN films on highly oriented pyrolytic graphite by radiofrequency plasma enhanced chemical vapor deposition. Thin Solid Films , Volume 518, Issue 15, 2010, Pages 4163-4169.
  35. D.S. Martin, P. Weightman, and J.T. Gauntlett. The evaporation of n-hexadecane from highly oriented pyrolytic graphite studied by atomic force microscopy. Surface Science , Volume 417, Issues 2-3, 1998, Pages 390-405.
  36. Y. Baba, K. Nagata, S. Takahashi, N. Nakamura, N. Yoshiyasu, M. Sakurai, C. Yamada, S. Ohtani, and M. Tona. Surface modification on highly oriented pyrolytic graphite by slow highly charged ions.Surface Science , Volume 599, Issues 1-3, 2005, Pages 248-254.
  37. R.S. Holt. Electron correlation effects in the momentum distribution of highly oriented pyrolytic graphite. Solid State Communications , Volume 59, Issue 5, 1986, Pages 321-323.
  38. D.-Q. Yang, K.N. Piyakis, and E. Sacher. The manipulation of Cu cluster dimensions on highly oriented pyrolytic graphite surfaces by low energy ion beam irradiation. Surface Science , Volume 536, Issues 1-3, 2003, Pages 67-74.
  39. E. Vetrivendan, R. Hareesh, and S. Ningshen. Synthesis and characterization of chemical vapour deposited pyrolytic graphite.Thin Solid Films , Volume 749, 2022, Article Number: 139180.
  40. P. Touzain and A. Hamwi. De-intercalation and second intercalation of potassium into a highly oriented pyrolytic graphite. Synthetic Metals , Volume 23, Issues 1-4, 1988, Pages 127-132.
  41. S. Kiddell, Y. Kazemi, J. Sorken, and H. Naguib. Influence of flash graphene on the acoustic, thermal, and mechanical performance of flexible polyurethane foam. Polymer Testing , Volume 119, 2023, Article Number: 107919.
  42. R.P. Yali, A. Mehri, and M. Jamaati. Nonlinear thermal transport in graphene nanoribbon: A molecular dynamics study. Physica A: Statistical Mechanics and its Applications , Volume 610, 2023, Article Number: 128416.
  43. J.C. Bi, H. Yun, M. Cho, M.-G. Kwak, B.-K. Ju, and Y. Kim. Thermal conductivity and mechanical durability of graphene composite films containing polymer-filled connected multilayer graphene patterns.Ceramics International , Volume 48, Issue 12, 2022, Pages 17789-17794.
  44. H. Yun, D.G. Yang, J.C. Bi, M.-G. Kwak, and Y. Kim. Fabrication and properties of thermally conductive adhesive tapes containing multilayer graphene patterns. Ceramics International , Volume 48, Issue 22, 2022, Pages 34053-34058.
  45. Z. Moradi, M. Vaezzadeh, and M. Saeidi. Temperature-dependent thermal expansion of graphene. Physica A: Statistical Mechanics and its Applications , Volume 512, 2018, Pages 981-985.
  46. H. Rezania and M. Yarmohammadi. Dynamical thermal conductivity of bilayer graphene in the presence of bias voltage. Physica E: Low-dimensional Systems and Nanostructures , Volume 75, 2016, Pages 125-135.
  47. K.K. Choudhary. Investigation of two-dimensional lattice thermal transport in bilayer graphene using phonon scattering mechanism.Physica E: Low-dimensional Systems and Nanostructures , Volume 58, 2014, Pages 106-110.
  48. N. Usha, V. Subramanian, V.R.K. Murthy, and J. Sobhanadri. Microwave studies on some low stage graphite ferric chloride intercalation compound. Materials Science and Engineering: B , Volume 45, Issues 1-3, 1997, Pages 85-87.