References
  1. M.C. Massaro, R. Biga, A. Kolisnichenko, P. Marocco, A.H.A. Monteverde, and M. Santarelli. Potential and technical challenges of on-board hydrogen storage technologies coupled with fuel cell systems for aircraft electrification. Journal of Power Sources , Volume 555, 2023, Article Number: 232397.
  2. T. Hua, R. Ahluwalia, L. Eudy, G. Singer, B. Jermer, N. Asselin-Miller, S. Wessel, T. Patterson, and J. Marcinkoski. Status of hydrogen fuel cell electric buses worldwide. Journal of Power Sources , Volume 269, 2014, Pages 975-993.
  3. D. Shin and S. Yoo. Diagnostic method for PEM fuel cell states using probability Distribution-Based loss component analysis for voltage loss decomposition. Applied Energy , Volume 330, Part B, 2023, Article Number: 120340.
  4. T. Takahashi, Y. Kokubo, K. Murata, O. Hotaka, S. Hasegawa, Y. Tachikawa, M. Nishihara, J. Matsuda, T. Kitahara, S.M. Lyth, A. Hayashi, and K. Sasaki. Cold start cycling durability of fuel cell stacks for commercial automotive applications. International Journal of Hydrogen Energy , Volume 47, Issue 97, 2022, Pages 41111-41123.
  5. J.A. Medrano, M. Oliva, J. Ruiz, L. García, and J. Arauzo. Catalytic steam reforming of butanol in a fluidized bed and comparison with other oxygenated compounds. Fuel Processing Technology , Volume 124, 2014, Pages 123-133.
  6. J. Vicente, J. Ereña, M. Olazar, P.L. Benito, J. Bilbao, and A.G. Gayubo. Kinetic behaviour of commercial catalysts for methane reforming in ethanol steam reforming process. Journal of Energy Chemistry , Volume 23, Issue 5, 2014, Pages 639-644.
  7. I. Dybkjaer. Tubular reforming and autothermal reforming of natural gas - an overview of available processes. Fuel Processing Technology , Volume 42, Issues 2-3, 1995, Pages 85-107.
  8. T. Kim, S. Jo, Y.-H. Song, and D.H. Lee. Synergetic mechanism of methanol-steam reforming reaction in a catalytic reactor with electric discharges. Applied Energy , Volume 113, 2014, Pages 1692-1699.
  9. S.M. Baek, J.H. Kang, K.-J. Lee, and J.H. Nam. A numerical study of the effectiveness factors of nickel catalyst pellets used in steam methane reforming for residential fuel cell applications.International Journal of Hydrogen Energy , Volume 39, Issue 17, Pages 9180-9192.
  10. T. Borowiecki, A. Denis, M. Rawski, A. Gołębiowski, K. Stołecki, J. Dmytrzyk, and A. Kotarba. Studies of potassium-promoted nickel catalysts for methane steam reforming: Effect of surface potassium location. Applied Surface Science , Volume 300, 2014, Pages 191-200.
  11. S. Sayas and A. Chica. Furfural steam reforming over Ni-based catalysts. Influence of Ni incorporation method. International Journal of Hydrogen Energy , Volume 39, Issue 10, 2014, Pages 5234-5241.
  12. M.A. Tadbir and M.H. Akbari. Methanol steam reforming in a planar wash coated microreactor integrated with a micro-combustor.International Journal of Hydrogen Energy , Volume 36, Issue 20, 2011, Pages 12822-12832.
  13. U. Izquierdo, V.L. Barrio, J.F. Cambra, J. Requies, M.B. Güemez, P.L. Arias, G. Kolb, R. Zapf, A.M. Gutiérrez, and J.R. Arraibi. Hydrogen production from methane and natural gas steam reforming in conventional and microreactor reaction systems. International Journal of Hydrogen Energy , Volume 37, Issue 8, 2012, Pages 7026-7033.
  14. L.L. Makarshin, D.V. Andreev, A.G. Gribovskiy, and V.N. Parmon. Influence of the microchannel plates design on the efficiency of the methanol steam reforming in microreactors. International Journal of Hydrogen Energy , Volume 32, Issue 16, 2007, Pages 3864-3869.
  15. M. Domínguez, G. Cristiano, E. López, and J. Llorca. Ethanol steam reforming over cobalt talc in a plate microreactor. Chemical Engineering Journal , Volumes 176-177, 2011, Pages 280-285.
  16. J.-S. Suh, M.-T. Lee, R. Greif, and C.P. Grigoropoulos. Transport phenomena in a steam-methanol reforming microreactor with internal heating. International Journal of Hydrogen Energy , Volume 34, Issue 1, 2009, Pages 314-322.
  17. T. Conant, A. Karim, and A. Datye. Coating of steam reforming catalysts in non-porous multi-channeled microreactors. Catalysis Today , Volume 125, Issues 1-2, 2007, Pages 11-15.
  18. J.-S. Suh, M.-T. Lee, R. Greif, and C.P. Grigoropoulos. A study of steam methanol reforming in a microreactor. Journal of Power Sources , Volume 173, Issue 1, 2007, Pages 458-466.
  19. R.A. Patil, A. Patnaik, S. Ganguly, and A.V. Patwardhan. Effect of structural, thermal and flow parameters on steam reforming of methane in a catalytic microreactor. Chemical Engineering Research and Design , Volume 89, Issue 10, 2011, Pages 2159-2167.
  20. P. Pfeifer, K. Schubert, M.A. Liauw, and G. Emig. Electrically heated microreactors for methanol steam reforming. Chemical Engineering Research and Design , Volume 81, Issue 7, 2003, Pages 711-720.
  21. M. Levent, D.J. Gunn, and M.A. El-Bousiffi. Production of hydrogen-rich gases from steam reforming of methane in an automatic catalytic microreactor. International Journal of Hydrogen Energy , Volume 28, Issue 9, 2003, Pages 945-959.
  22. J. Kang, Y. Song, T. Kim, and S. Kim. Recent trends in the development of reactor systems for hydrogen production via methanol steam reforming. International Journal of Hydrogen Energy , Volume 47, Issue 6, 2022, Pages 3587-3610.
  23. D.H. Kim, S.H. Kim, and J.Y. Byun. A microreactor with metallic catalyst support for hydrogen production by partial oxidation of dimethyl ether. Chemical Engineering Journal , Volume 280, 2015, Pages 468-474.
  24. L. Mastroianni, Z. Vajglová, K. Eränen, M. Peurla, M.D. Serio, D.Y. Murzin, V. Russo, and T. Salmi. Microreactor technology in experimental and modelling study of alcohol oxidation on nanogold.Chemical Engineering Science , Volume 260, 2022, Article Number: 117920.
  25. T. Terazaki, M. Nomura, K. Takeyama, O. Nakamura, and T. Yamamoto. Development of multi-layered microreactor with methanol reformer for small PEMFC. Journal of Power Sources , Volume 145, Issue 2, 2005, Pages 691-696.
  26. A. Ghodba, M. Sharifzadeh, and D. Rashtchian. Integrated and inherently safe design and operation of a mobile power generation: Process intensification through microreactor reformer and HT-PEMFC.International Journal of Hydrogen Energy , Volume 46, Issue 46, 2021, Pages 23839-23854.
  27. A. Chougule and R.R. Sonde. Modelling and experimental investigation of compact packed bed design of methanol steam reformer.International Journal of Hydrogen Energy , Volume 44, Issue 57, 2019, Pages 29937-29945.
  28. P. Ribeirinha, I. Alves, F. Vidal Vázquez, G. Schuller, M. Boaventura, and A. Mendes. Heat integration of methanol steam reformer with a high-temperature polymeric electrolyte membrane fuel cell.Energy , Volume 120, 2017, Pages 468-477.
  29. A. Lotrič, M. Sekavčnik, and S. Hočevar. Effectiveness of heat-integrated methanol steam reformer and polymer electrolyte membrane fuel cell stack systems for portable applications.Journal of Power Sources , Volume 270, 2014, Pages 166-182.
  30. A. Perna. Hydrogen from ethanol: Theoretical optimization of a PEMFC system integrated with a steam reforming processor.International Journal of Hydrogen Energy , Volume 32, Issue 12, 2007, Pages 1811-1819.
  31. A. Lotrič, M. Sekavčnik, A. Pohar, B. Likozar, and S. Hočevar. Conceptual design of an integrated thermally self-sustained methanol steam reformer - High-temperature PEM fuel cell stack manportable power generator. International Journal of Hydrogen Energy , Volume 42, Issue 26, 2017, Pages 16700-16713.
  32. A.H. Abaidi and B. Madani. Intensification of hydrogen production from methanol steam reforming by catalyst segmentation and metallic foam insert. International Journal of Hydrogen Energy , Volume 46, Issue 75, 2021, Pages 37583-37598.
  33. A.C. Terracciano, S.S. Vasu, and N. Orlovskaya. Design and development of a porous heterogeneous combustor for efficient heat production by combustion of liquid and gaseous fuels. Applied Energy , Volume 179, 2016, Pages 228-236.
  34. A. Gharehghani, K. Ghasemi, M. Siavashi, and S. Mehranfar. Applications of porous materials in combustion systems: A comprehensive and state-of-the-art review. Fuel , Volume 304, 2021, Article Number: 121411.
  35. S.D. Watt, H.S. Sidhu, A.C. McIntosh, and J. Brindley. Chaotic flow in competitive exothermic-endothermic reaction systems. Applied Mathematics Letters , Volume 115, 2021, Article Number: 106960.
  36. R.C. Ramaswamy, P.A. Ramachandran, and M.P. Duduković. Coupling exothermic and endothermic reactions in adiabatic reactors.Chemical Engineering Science , Volume 63, Issue 6, 2008, Pages 1654-1667.
  37. P. Altimari and C.S. Bildea. Integrated design and control of plantwide systems coupling exothermic and endothermic reactions.Computers & Chemical Engineering , Volume 33, Issue 4, 2009, Pages 911-923.
  38. R.C. Ramaswamy, P.A. Ramachandran, and M.P. Duduković. Recuperative coupling of exothermic and endothermic reactions. Chemical Engineering Science , Volume 61, Issue 2, 2006, Pages 459-472.
  39. K. Steur, C.S. Bildea, P. Altimari, and A.C. Dimian. Steady-state behaviour of PFR-separation-recycle systems with simultaneous exothermic and endothermic, first-order reactions. Computers & Chemical Engineering , Volume 33, Issue 3, 2009, Pages 628-635.
  40. C.S. Bildea, K. Steur, and A.C. Dimian. Design and control of PFR - Separation - Recycle systems with simultaneous exothermic and endothermic reactions. Computer Aided Chemical Engineering , Volume 24, 2007, Pages 357-362.
  41. G. Kolios, J. Frauhammer, and G. Eigenberger. Efficient reactor concepts for coupling of endothermic and exothermic reactions.Chemical Engineering Science , Volume 57, Issue 9, 2002, Pages 1505-1510.
  42. M. Zanfir and A. Gavriilidis. Parametric sensitivity in catalytic plate reactors with first-order endothermic-exothermic reactions.Chemical Engineering Journal , Volume 86, Issue 3, 2002, Pages 277-286.
  43. A. Lifshitz and H. Teitelbaum. The unusual effect of reagent vibrational excitation on the rates of endothermic and exothermic elementary combustion reactions. Chemical Physics , Volume 219, Issues 2-3, 1997, Pages 243-256.
  44. S. Pushpavanam and R. Narayanan. Ignition and extinction in a model problem with parallel endothermic and exothermic reactions.Chemical Engineering Science , Volume 44, Issue 11, 1989, Pages 2611-2618.
  45. J.R. Rostrup-Nielsen, L.J. Christiansen, and J.-H.B. Hansen. Activity of steam reforming catalysts: Role and assessment. Applied Catalysis , Volume 43, Issue 2, 1988, Pages 287-303.
  46. A. Al-Ubaid and E.E. Wolf. Steam reforming of methane on reduced non-stoichiometric nickel aluminate catalysts. Applied Catalysis , Volume 40, 1988, Pages 73-85.
  47. T. Borowiecki. Nickel catalysts for steam reforming of hydrocarbons: Direct and indirect factors affecting the coking rate. Applied Catalysis , Volume 31, Issue 2, 1987, Pages 207-220.
  48. W. Dönitz, G. Dietrich, E. Erdle, and R. Streicher. Electrochemical high temperature technology for hydrogen production or direct electricity generation. International Journal of Hydrogen Energy , Volume 13, Issue 5, 1988, Pages 283-287.