References
Abramov, O., Kring, D.A., 2007. Numerical modeling of impact-induced
hydrothermal activity at the Chicxulub crater. Meteoritics & Planetary
Science 42, 93–112.
https://doi.org/10.1111/j.1945-5100.2007.tb00220.x
Alley, R.B., Emanuel, K.A., Zhang, F., 2019. Advances in weather
prediction. Science 363, 342–344.
https://doi.org/10.1126/science.aav7274
Alqurashi, A., Kumar, L., 2013. Investigating the Use of Remote Sensing
and GIS Techniques to Detect Land Use and Land Cover Change: A Review.
https://doi.org/10.4236/ars.2013.22022
Aning, A.A., Tucholka, P., Danuor, S.K., 2013. 2D Electrical Resistivity
Tomography (ERT) Survey using the Multi-Electrode Gradient Array at the
Bosumtwi Impact Crater, Ghana. Journal of Environment and Earth Science
3, 12.
Artemieva, N., Karp, T., Milkereit, B., 2004. Investigating the Lake
Bosumtwi impact structure: Insight from numerical modeling.
Geochemistry, Geophysics, Geosystems 5.
https://doi.org/10.1029/2004GC000733
Bandyopadhyay, S., Jaiswal, R.K., Hegde, V.S., Jayaraman, V., 2009.
Assessment of land suitability potentials for agriculture using a remote
sensing and GIS based approach. International Journal of Remote Sensing
30, 879–895. https://doi.org/10.1080/01431160802395235
Baratoux, D., Niang, C.A.B., Reimold, W.U., Sapah, M.S., Jessell, M.W.,
Boamah, D., Faye, G., Bouley, S., Vanderhaeghe, O., 2019a. Bosumtwi
impact structure, Ghana: Evidence for fluidised emplacement of the
ejecta. Meteoritics & Planetary Science 54, 2541–2556.
https://doi.org/10.1111/maps.13253
Baratoux, D., Niang, C.A.B., Reimold, W.U., Sapah, M.S., Jessell, M.W.,
Boamah, D., Faye, G., Bouley, S., Vanderhaeghe, O., 2019b. Bosumtwi
impact structure, Ghana: Evidence for fluidised emplacement of the
ejecta. Meteorit Planet Sci 54, 2541–2556.
https://doi.org/10.1111/maps.13253
Boamah, D., Koeberl, C., 2007. The Lake Bosumtwi impact structure in
Ghana: A brief environmental assessment and discussion of ecotourism
potential. Meteoritics & Planetary Science 42, 561–567.
https://doi.org/10.1111/j.1945-5100.2007.tb01061.x
Chouet, B.A., Matoza, R.S., 2013. A multi-decadal view of seismic
methods for detecting precursors of magma movement and eruption. Journal
of Volcanology and Geothermal Research 252, 108–175.
https://doi.org/10.1016/j.jvolgeores.2012.11.013
Colangelo, G., Lapenna, V., Loperte, A., Perrone, A., Telesca, L., 2008.
2D electrical resistivity tomographies for investigating recent
activation landslides in Basilicata Region (Southern Italy).
Danuor, S., Aning, A.A., Pohl, J., Karp, T., Berckhemer, H., 2013.
GEOPHYSICAL CHARACTERISTICS OF THE BOSUMTWI IMPACT CRATER FROM SEISMIC,
GRAVITY AND MAGNETIC MEASUREMENTS.
https://doi.org/10.19044/ESJ.2013.V9N15P%P
Danuor, S.K., Menyeh, A., 2007. Results of pre-drilling potential field
measurements at the Bosumtwi crater. Meteoritics & Planetary Science
42, 541–547. https://doi.org/10.1111/j.1945-5100.2007.tb01059.x
Elbra, T., Kontny, A., Pesonen, L.J., Schleifer, N., Schell, C., 2007.
Petrophysical and paleomagnetic data of drill cores from the Bosumtwi
impact structure, Ghana. Meteoritics & Planetary Science 42, 829–838.
https://doi.org/10.1111/j.1945-5100.2007.tb01078.x
French, B.M., 2004. The importance of being
cratered: The new role of
meteorite impact as a normal geological process. Meteoritics &
Planetary Science 39, 169–197.
https://doi.org/10.1111/j.1945-5100.2004.tb00335.x
French, B.M., Koeberl, C., 2010. The convincing identification of
terrestrial meteorite impact structures: What works, what
doesn’t, and why. Earth-Science
Reviews 98, 123–170.
https://doi.org/10.1016/j.earscirev.2009.10.009
Glikson, A.Y., Haines, P.W., 2005. Shoemaker Memorial Issue on the
Australian impact record: 1997 – 2005 update. Australian Journal of
Earth Sciences 52, 475–476.
https://doi.org/10.1080/08120090500170385
Grandjean, G., Leparoux, D., 2004. The potential of seismic methods for
detecting cavities and buried objects: experimentation at a test site.
Journal of Applied Geophysics 56, 93–106.
https://doi.org/10.1016/j.jappgeo.2004.04.004
Grieve, R.A.F., 1991. Terrestrial impact: The record in the rocks*.
Meteoritics 26, 175–194.
https://doi.org/10.1111/j.1945-5100.1991.tb01038.x
Grieve, R.A.F., Masaitis, V.L., 1994. The Economic Potential of
Terrestrial Impact Craters. International Geology Review 36, 105–151.
https://doi.org/10.1080/00206819409465452
Grieve, R.A.F., Pilkington, M., 1996. The signature of terrestrial
impacts 22.
Gupta, S., Rajiah, P., Middlebrooks, E.H., Baruah, D., Carter, B.W.,
Burton, K.R., Chatterjee, A.R., Miller, M.M., 2018. Systematic Review of
the Literature: Best Practices. Academic Radiology 25, 1481–1490.
https://doi.org/10.1016/j.acra.2018.04.025
Gusenbauer, M., Haddaway, N.R., 2020. Which academic search systems are
suitable for systematic reviews or meta-analyses? Evaluating retrieval
qualities of Google Scholar, PubMed, and 26 other resources. Research
Synthesis Methods 11, 181–217. https://doi.org/10.1002/jrsm.1378
Habimana, E., Aning, A.A., Sarpong, V.A., Danour, S.K., Nero, C., 2020.
Mapping the subsurface structure of the suevite deposit in the north of
the Bosumtwi impact crater using electrical resistivity and seismic
refraction tomographies. Annals of Geophysics 63, SE218–SE218.
https://doi.org/10.4401/ag-7752
Harris, E., 2004. Building scientific capacity in developing countries.
EMBO Rep 5, 7–11. https://doi.org/10.1038/sj.embor.7400058
Heap, M.J., Gilg, H.A., Byrne, P.K., Wadsworth, F.B., Reuschlé, T.,
2020. Petrophysical properties, mechanical behaviour, and failure modes
of impact melt-bearing breccia (suevite) from the Ries impact crater
(Germany). Icarus 349, 113873.
https://doi.org/10.1016/j.icarus.2020.113873
Hergarten, S., Kenkmann, T., 2015. The number of impact craters on
Earth: Any room for further discoveries? Earth and Planetary Science
Letters 425, 187–192. https://doi.org/10.1016/j.epsl.2015.06.009
Huete, A.R., 2012. Vegetation Indices, Remote Sensing and Forest
Monitoring. Geography Compass 6, 513–532.
https://doi.org/10.1111/j.1749-8198.2012.00507.x
Hunze, S., Wonik, T., 2007. Lithological and structural characteristics
of the Lake Bosumtwi impact crater, Ghana: Interpretation of acoustic
televiewer images. Meteoritics & Planetary Science 42, 779–792.
https://doi.org/10.1111/j.1945-5100.2007.tb01074.x
Jones, W.B., 1985. The origin of the Bosumtwi Crater, Ghana—an
historical review. Proceedings of the Geologists’ Association 96,
275–284. https://doi.org/10.1016/S0016-7878(85)80009-2
JONES, WB, BACON, M., HASTINGS, DA, 1981. The Lake Bosumtwi impact
crater, Ghana. GSA Bulletin 92,
342–349.
https://doi.org/10.1130/0016-7606(1981)92<342:TLBICG>2.0.CO;2
Karp, T., Milkereit, B., Janle, P., Danuor, S.K., Pohl, J., Berckhemer,
H., Scholz, C.A., 2002. Seismic investigation of the Lake Bosumtwi
impact crater: preliminary results. Planetary and Space Science,
Exobiology: the search for extraterrestrial life and prebiotic ch
emistry 50, 735–743.
https://doi.org/10.1016/S0032-0633(02)00049-1
Koeberl, C., 2004. Remote sensing studies of impact craters: how to be
sure? Comptes Rendus Geoscience 336, 959–961.
https://doi.org/10.1016/j.crte.2004.05.001
Koeberl, C., Anderson, R.R., 1996. The Manson Impact Structure, Iowa:
Anatomy of an Impact Crater. Geological Society of America.
Koeberl, C., MacLeod, K.G., 2002. Catastrophic events and mass
extinctions: impacts and beyond. https://doi.org/10.1130/SPE356
Koeberl, C., Milkereit, B., Overpeck, J.T., Scholz, C.A., Amoako,
P.Y.O., Boamah, D., Danuor, S.K., Karp, T., Kueck, J., Hecky, R.E.,
King, J.W., Peack, J.A., 2007. An international and multidisciplinary
drilling project into a young complex impact structure: The 2004 ICDP
Bosumtwi Crater Drilling Project - An overview. Meteoritics and
Planetary Science 42, 483–511.
https://doi.org/10.1111/j.1945-5100.2007.tb01057.x
Koeberl, C., Peck, J., King, J., Milkereit, B., Overpeck, O., Scholz,
C., 2005. The ICDP Lake Bosumtwi Drilling Project: A First Report.
Scientific Drilling 1, 23–27.
https://doi.org/10.2204/iodp.sd.1.04.2005
Kontny, A., Elbra, T., Just, J., Pesonen, L.J., Schleicher, A.M., Zolk,
J., 2007. Petrography and shock-related remagnetisation of pyrrhotite in
drill cores from the Bosumtwi Impact Crater Drilling Project, Ghana.
Meteoritics & Planetary Science 42, 811–827.
https://doi.org/10.1111/j.1945-5100.2007.tb01077.x
Lapenna, V., Lorenzo, P., Perrone, A., Piscitelli, S., Rizzo, E., Sdao,
F., 2005. 2D electrical resistivity imaging of some complex landslides
in Lucanian Apennine chain, southern Italy. GEOPHYSICS 70, B11–B18.
https://doi.org/10.1190/1.1926571
Liberati, A., Altman, D.G., Tetzlaff, J., Mulrow, C., Gøtzsche, P.C.,
Ioannidis, J.P.A., Clarke, M., Devereaux, P.J., Kleijnen, J., Moher, D.,
2009. The PRISMA statement for reporting systematic reviews and
meta-analyses of studies that evaluate healthcare interventions:
explanation and elaboration. BMJ 339.
https://doi.org/10.1136/bmj.b2700
Maclaren, M., 1931. Lake Bosumtwi, Ashanti.
Malehmir, A., Durrheim, R., Bellefleur, G., Urosevic, M., Juhlin, C.,
White, D.J., Milkereit, B., Campbell, G., 2012. Seismic methods in
mineral exploration and mine
planning: A general overview of past and present case histories and a
look into the future. Geophysics 77, WC173–WC190.
https://doi.org/10.1190/geo2012-0028.1
Marvin, U.B., 1999. Impacts from space: the implications for
uniformitarian geology. Geological Society, London, Special Publications
150, 89–117. https://doi.org/10.1144/GSL.SP.1999.150.01.06
Meillieux, D., Schmitt, D., Milkereit, B., Danour, S., 2007. Integrated
petrophysical and borehole seismic studies of Lake Bosumtwi impact
crater, Ghana, in: SEG Technical
Program Expanded Abstracts 2007, SEG Technical Program Expanded
Abstracts. Society of Exploration Geophysicists, pp. 447–451.
https://doi.org/10.1190/1.2792460
Michel, P., Morbidelli, A., 2012. Population of Impactors and the Impact
Cratering Rate in the Inner Solar System, in: Impact Cratering. John
Wiley & Sons, Ltd, pp. 21–31.
https://doi.org/10.1002/9781118447307.ch2
Mondol, N.H., Bjørlykke, K., Jahren, J., Høeg, K., 2007. Experimental
mechanical compaction of clay mineral aggregates—Changes in physical
properties of mudstones during burial. Marine and Petroleum Geology 24,
289–311. https://doi.org/10.1016/j.marpetgeo.2007.03.006
Morris, W.A., Ugalde, H., Clark, C., 2007. Physical property
measurements: ICDP boreholes LB-07A and LB-08A, Lake Bosumtwi impact
structure, Ghana. Meteoritics & Planetary Science 42, 801–809.
https://doi.org/10.1111/j.1945-5100.2007.tb01076.x
North, M.A., Hastie, W.W., Hoyer,
L., 2020. Out of Africa: The underrepresentation of African authors in
high-impact geoscience literature. Earth-Science Reviews 208, 103262.
https://doi.org/10.1016/j.earscirev.2020.103262
Palme, H., Janssens, M.-J., Takahashi, H., Anders, E., Jan, H., 1978.
Meteoritic material at five large
impact craters. Geochimica et Cosmochimica Acta 42, 313–323.
https://doi.org/10.1016/0016-7037(78)90184-9
Peck, J.A., Green, R.R., Shanahan, T., King, J.W., Overpeck, J.T.,
Scholz, C.A., 2004. A magnetic mineral record of Late Quaternary
tropical climate variability from Lake Bosumtwi, Ghana. Palaeogeography,
Palaeoclimatology, Palaeoecology 215, 37–57.
https://doi.org/10.1016/j.palaeo.2004.08.003
Pilkington, M., Grieve, R. a. F., 1992. The geophysical signature of
terrestrial impact craters. Reviews of Geophysics 30, 161–181.
https://doi.org/10.1029/92RG00192
Pilkington, M., Hildebrand, A.R., 2003. Transient and disruption cavity
dimensions of complex terrestrial impact structures derived from
magnetic data. Geophysical Research Letters 30.
https://doi.org/10.1029/2003GL018294
Plado, J., Pesonen, L.J., Koeberl, C., Elo, S., 2000. The Bosumtwi
meteorite impact structure, Ghana: A magnetic model. Meteoritics &
Planetary Science 35, 723–732.
https://doi.org/10.1111/j.1945-5100.2000.tb01456.x
Reimold, W.U., Koeberl, C., 2014. Impact structures in Africa: A review.
Journal of African Earth Sciences 93, 57–175.
https://doi.org/10.1016/j.jafrearsci.2014.01.008
Sanford, W.E., 2005. A simulation of the hydrothermal response to the
Chesapeake Bay bolide impact. Geofluids.
https://doi.org/10.1111/j.1468-8123.2005.00110.x
Sawyerr, A., 2004. African Universities and the Challenge of Research
Capacity Development. Journal of Higher Education in Africa / Revue de
l’enseignement supérieur en Afrique 2, 213–242.
Schell, C., Schleifer, N., Elbra, T., 2007. Characterisation of the log
lithology of cores LB-07A and LB-08A of the Bosumtwi impact structure by
using the anisotropy of magnetic susceptibility. Meteoritics &
Planetary Science 42, 839–847.
https://doi.org/10.1111/j.1945-5100.2007.tb01079.x
Schmitt, D.R., Milkereit, B., Karp, T., Scholz, C., Danuor, S.,
Meillieux, D., Welz, M., 2007. In situ seismic measurements in borehole
LB-08A in the Bosumtwi impact structure, Ghana: Preliminary
interpretation. Meteoritics & Planetary Science 42, 755–768.
https://doi.org/10.1111/j.1945-5100.2007.tb01072.x
Scholz, C.A., Karp, T., Brooks, K.M., Milkereit, B., Amoako, P.Y.O.,
Arko, J.A., 2002. Pronounced central uplift identified in the Bosumtwi
impact structure, Ghana, using multi-channel seismic reflection data.
Geology 30, 939–942.
https://doi.org/10.1130/0091-7613(2002)030<0939:PCUIIT>2.0.CO;2
Scholz, C.A., Karp, T., Lyons, R.P., 2007. Structure and morphology of
the Bosumtwi impact structure from seismic reflection data. Meteoritics
& Planetary Science 42, 549–560.
https://doi.org/10.1111/j.1945-5100.2007.tb01060.x
Signanini, P., Torrese, P., 2004. Application of high resolution
shear-wave seismic methods to a geotechnical problem. Bull Eng Geol
Environ 63, 329–336. https://doi.org/10.1007/s10064-004-0252-7
Steeples, D.W., 2001. Engineering and environmental geophysics at the
millennium. Geophysics 66, 31–35.
https://doi.org/10.1190/1.1444910
Stöffler, D., Langenhorst, F., 1994. Shock metamorphism of quartz in
nature and experiment: I. Basic observation and theory*. Meteoritics 29,
155–181. https://doi.org/10.1111/j.1945-5100.1994.tb00670.x
Stuiver, M., Reimer, P.J., 1993. Extended 14C Data Base and Revised
CALIB 3.0 14C Age Calibration Program. Radiocarbon 35, 215–230.
https://doi.org/10.1017/S0033822200013904
Stuiver, M., Reimer, P.J., Braziunas, T.F., 1998. High-Precision
Radiocarbon Age Calibration for Terrestrial and Marine Samples.
Radiocarbon 40, 1127–1151.
https://doi.org/10.1017/S0033822200019172
Theilen-Willige, B., 2021. Morphometric and Structural Evaluations of
Satellite Data from the Bosumtwi Impact Structure and Adjacent Areas in
Ashanti, Ghana. European Journal of Environment and Earth Sciences 2,
7–14. https://doi.org/10.24018/ejgeo.2021.2.3.137
Turner, B.F., Gardner, L.R., Sharp, WE, 1996. The hydrology of Lake
Bosumtwi, a climate-sensitive lake in Ghana, West Africa. Journal of
Hydrology 183, 243–261.
https://doi.org/10.1016/0022-1694(95)02982-6
Ugalde, H., Danuor, S.K., Milkereit, B., 2007a. Integrated 3-D model
from gravity and petrophysical data at the Bosumtwi impact structure,
Ghana. Meteoritics & Planetary Science 42, 859–866.
https://doi.org/10.1111/j.1945-5100.2007.tb01081.x
Ugalde, H., Danuor, S.K., Milkereit, B., 2007b. Integrated 3-D model
from gravity and petrophysical data at the Bosumtwi impact structure,
Ghana. Meteoritics & Planetary Science 42, 859–866.
https://doi.org/10.1111/j.1945-5100.2007.tb01081.x
Ugalde, H., Morris, W.A., Clark, C., Miles, B., Milkereit, B., 2007c.
The Lake Bosumtwi meteorite impact structure, Ghana—A magnetic image
from a third observational level. Meteoritics & Planetary Science 42,
793–800. https://doi.org/10.1111/j.1945-5100.2007.tb01075.x
Waddington, H., White, H., Snilstveit, B., Hombrados, J.G., Vojtkova,
M., Davies, P., Bhavsar, A., Eyers, J., Koehlmoos, T.P., Petticrew, M.,
Valentine, J.C., Tugwell, P., 2012. How to do a good systematic review
of effects in international development: a tool kit. Journal of
Development Effectiveness 4, 359–387.
https://doi.org/10.1080/19439342.2012.711765
Wulf, G., Hergarten, S., Kenkmann, T., 2019. Combined remote sensing
analyses and landform evolution modeling reveal the terrestrial Bosumtwi
impact structure as a Mars-like rampart crater. Earth and Planetary
Science Letters 506, 209–220.
https://doi.org/10.1016/j.epsl.2018.11.009